Пример #1
0
def del_a_comment(insta_username):
    media_id = get_post_id(insta_username)
    url = BASE_URL + "/media/media-id/comments?access_token={}".format(
        ACCESS_TOKEN)
    print(url)
    comment_info = requests.get(url).json()

    if comment_info['meta']['code'] == 200:
        if len(comment_info['data']):
            #Here's a naive implementation of how to delete the negative comments :
            for x in range(0, len(comment_info["data"])):
                comment_id = comment_info['data'][x]['id']
                comment_text = comment_info['data'][x]['text']
                blob = TextBlob(comment_text, analyzer=NaiveBayesAnalyzer())
                if (blob.sentiment.p_neg > blob.sentiment.p_pos):
                    print('Negative comment : {}').format(comment_text)

                    delete_url = BASE_URL + "/media/{}/comments/{}/?access_token={}".format(
                        media_id, comment_id, ACCESS_TOKEN)
                    print('DELETE request url : %s').format(delete_url)
                    delete_info = requests.delete(delete_url).json()

                    if delete_info['meta']['code'] == 200:
                        print('Comment successfully deleted!\n')
                    else:
                        print('Unable to delete comment!')
                else:
                    print('Positive comment : %s\n').format(comment_text)
        else:
            print('There are no existing comments on the post!')
    else:
        print('Status code other than 200 received!')
def get_sentiment_for_text(text):
    '''
        Returns the sentiment score for the given text.
    '''
    text_analyzer = TextBlob(text, analyzer=NaiveBayesAnalyzer())
    sentiment = text_analyzer.sentiment
    return (sentiment.classification, sentiment.p_pos, sentiment.p_neg)
Пример #3
0
 def __init__(self, chunk: ('page', 'sentence'), verbose=True):
     self.chunk = chunk
     self.verbose = verbose
     self.logger = self.get_logger()
     self.scorers = {'vader': SentimentIntensityAnalyzer(),
                     'pattern': PatternAnalyzer(),
                     'huggingface': pipeline('sentiment-analysis'),
                     'naive': Blobber(analyzer=NaiveBayesAnalyzer())}
Пример #4
0
    def __init__(self, load_classifier=False):

        if load_classifier:
            self._load_classifier()
            print("classifier loaded !")

        self.tb = Blobber(analyzer=NaiveBayesAnalyzer())
        self.stop = set(stopwords.words('french'))
        self.stop_en = set(stopwords.words('english'))
Пример #5
0
def get_tweet_sentiment_NBA(tweet):
    '''
    Utility function to classify sentiment of passed tweet
    using textblob's sentiment method
    '''
    # create TextBlob object of passed tweet text
    analysis = TextBlob(clean_tweet(tweet), analyzer=NaiveBayesAnalyzer())
    # set sentiment
    return analysis.sentiment
Пример #6
0
def calculate_and_persist_subs_sentiment():
    for row in rows:
        print(row[1], row[2])
        pattern_analyser = TextBlob(row[2])
        naive_bayes_analyser = TextBlob(row[2], analyzer=NaiveBayesAnalyzer())
        cursor.execute(
            f'UPDATE Video SET '
            f'PA = {pattern_analyser.sentiment.polarity}, '
            f'NBA = {naive_bayes_analyser.sentiment.p_pos} WHERE VIDEO_ID = \'{row[1]}\''
        )
Пример #7
0
def sentiment_analysis(text, nb=False):
    if nb:
        sa = TextBlob(text, analyzer=NaiveBayesAnalyzer()).sentiment
        return {
            "class": sa.classification,
            "p_pos": sa.p_pos,
            "p_neg": sa.p_neg
        }
    sa = TextBlob(text).sentiment
    sa_class = "pos" if sa.polarity >= 0 else "neg"
    return {
        "class": sa_class,
        "polarity": sa.polarity,
        "subjectivity": sa.subjectivity
    }
Пример #8
0
	naive = load_naiveclassifier()
else:
	naive = NaiveBayesClassifier(train)
	save_naiveclassifier(naive)
print "Naive Bayes Trained"

if os.path.exists('/home/lakeesh10/Documents/projectdemo/decisiontree_classifier.pickle'):
	decision = load_decisionclassifier()
else:
	decision = DecisionTreeClassifier(train)
	save_decisionclassifier(decision)
print "Decision Tree Trained"

print("Naive Bayes : ",naive.classify("fried chip good and crunchy dig thattaco tropical omg so eyeopening"))
#print(decision.classify("fried chip good and crunchy dig thattaco tropical omg so eyeopening"))
cl=NaiveBayesAnalyzer()
print (cl.analyze("fried chip good and crunchy dig thattaco tropical omg so eyeopening"))
blob = TextBlob("fried chip good and crunchy dig thattaco tropical omg so eyeopening")
polarity=0
i=0
for sentence in blob.sentences:
	polarity=polarity+sentence.sentiment.polarity
	i=i+1
polarity=polarity/i 
print(polarity)

negids = movie_reviews.fileids('neg')
posids = movie_reviews.fileids('pos')
 
negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
Пример #9
0
                                 tweet_text)

    return map_user_to_tweets


if __name__ == '__main__':

    text_tweet = "This is Rachel Crooks. In 2005 she accused Donald Trump of kissing her on the mouth without her permission.  Now she is running for the state legislature in Ohio. https://t.co/BiFKQe6WVh"

    normal = "RT @realDonaldTrump: Justice Ginsburg of the U.S. Supreme Court has embarrassed all by making very dumb political statements about me. Her…"
    text = "RT @gitagatubixi #Trump Sing along with us: 🎶Better not do us wrong!🎺 https://t.co/NPhXbfZ92g"
    pp = preprocess_tweet_text_advanced(text)
    # re.sub(r'RT @[^ ]*?:', '', text, count=1, flags=re.MULTILINE)
    tt = preprocess_tweet_text_advanced(text_tweet)

    blobber = Blobber(analyzer=NaiveBayesAnalyzer())
    words_number, polarity, subjectivity, tag = stanford_nltk_blob_analysis(
        text_tweet, blobber)
    x = 5

    tweets_texts_list = [
        'RT Trump Sing along with us: 🎶Better not do us wrong!🎺',
        'RT Trump Sing along with us: 🎶Better not do us wrong!🎺',
        'RT LorettoRegina Trump Sing along with us: 🎶We honor our veterans!🎺',
        'RT WilliamRolar Trump Sing along with us: 🎶Be bad, you’ll get banned!🎺'
    ]
    session, embedded_placeholder, placeholder = prepare_tensorflow_graph_and_session(
    )
    check_message_similatiry(session, embedded_placeholder, placeholder,
                             tweets_texts_list, 0.8)