Пример #1
0
def score(full):
    st.header(textstat.flesch_reading_ease(full))
    st.write('Flesch Reading Ease Score')
    text = """90-100 Very Easy,70-79 Fairly Easy,60-69 Standard,50-59Fairly Difficult,30-49 Difficult,0-29 Very 
    Confusing """
    st.write(text, key=1)

    st.header(textstat.smog_index(full))
    st.write('Smog Index Score')
    text = "Returns the SMOG index of the given text.This is a grade formula in that a score of 9.3 means that a ninth " \
           "grader would be able to read the document.Texts of fewer than 30 sentences are statistically invalid, " \
           "because the SMOG formula was normed on 30-sentence samples. textstat requires at least 3 sentences for a " \
           "result. "
    st.write(text, key=2)

    st.header(textstat.dale_chall_readability_score(full))
    st.write('Dale Chall Readability Score')
    text = """Different from other tests, since it uses a lookup table of the most commonly used 3000 English words. 
            Thus it returns the grade level using the New Dale-Chall Formula.
            4.9 or lower	average 4th-grade student or lower
            5.0–5.9	average 5th or 6th-grade student
            6.0–6.9	average 7th or 8th-grade student
            7.0–7.9	average 9th or 10th-grade student
            8.0–8.9	average 11th or 12th-grade student
            9.0–9.9	average 13th to 15th-grade (college) student"""
    st.write(text, key=3)
Пример #2
0
def get_stats(text):
    fre = textstat.flesch_reading_ease(text)
    smog = textstat.smog_index(text)
    fkg = textstat.flesch_kincaid_grade(text)
    cli = textstat.coleman_liau_index(text)
    ari = textstat.automated_readability_index(text)
    dcr = textstat.dale_chall_readability_score(text)
    diff_words = textstat.difficult_words(text)
    lwf = textstat.linsear_write_formula(text)
    gunn_fog = textstat.gunning_fog(text)
    consolidated_score = textstat.text_standard(text)

    doc_length = len(text)  # think about excluding spaces?
    quote_count = text.count('"')

    stats = {
        "flesch_reading_ease": fre,
        "smog_index": smog,
        "flesch_kincaid_grade": fkg,
        "coleman_liau_index": cli,
        "automated_readability_index": ari,
        "dale_chall_readability_score": dcr,
        "difficult_words": diff_words,
        "linsear_write_formula": lwf,
        "gunning_fog": gunn_fog,
        "consolidated_score": consolidated_score,
        "doc_length": doc_length,
        "quote_count": quote_count
    }
    return stats
Пример #3
0
def get_readability_score(text, metric="flesch"):
    global tknzr, DIFFICULT

    text = text.replace("’", "'")

    # https://pypi.org/project/textstat/
    if metric == "flesch":
        return textstat.flesch_reading_ease(text)
    elif metric == "smog":
        return textstat.smog_index(text)
    elif metric == "coleman_liau_index":
        return textstat.coleman_liau_index(text)
    elif metric == "automated_readability_index":
        return textstat.automated_readability_index(text)
    elif metric == "dale_chall_readability_score":
        return textstat.dale_chall_readability_score(text)
    elif metric == "difficult_words":
        nb_difficult = 0
        nb_easy = 0
        for w in set(tknzr.tokenize(text.lower())):
            if w not in EASY_WORDS and len(w) >= 6:
                nb_difficult += 1
            else:
                nb_easy += 1
        return 100 * nb_difficult / (nb_difficult + nb_easy)
        #return textstat.difficult_words(text)#/len(text.split())
    elif metric == "linsear_write_formula":
        return textstat.linsear_write_formula(text)
    elif metric == "gunning_fog":
        return textstat.gunning_fog(text)
    elif metric == "avg_word_length":
        words = tknzr.tokenize(text)
        words = [w for w in words if w not in misc_utils.PUNCT]
        if len(words) == 0: return 0
        return np.average([len(w) for w in words])
Пример #4
0
def readability(queries):
    scores = pd.DataFrame(columns=[
        'Flesch', 'Smog', 'Flesch grade', 'Coleman', 'Automated', 'Dale',
        'Difficult', 'Linsear', 'Gunning', 'Text Standard'
    ])

    scores = {
        'Flesch': [],
        'Smog': [],
        'Flesch grade': [],
        'Coleman': [],
        'Automated': [],
        'Dale': [],
        'Difficult': [],
        'Linsear': [],
        'Gunning': [],
        'Text Standard': []
    }
    for line in queries:
        # results = readability.getmeasures(line, lang='en')
        # frescores.append(results['readability grades']['FleschReadingEase'])
        # line = 'yao family wines . yao family wines is a napa valley producer founded in 2011 by yao ming , the chinese-born , five-time nba all star . now retired from the houston rockets , yao ming is the majority owner in yao family wines , which has entered the wine market with a luxury cabernet sauvignon sourced from napa valley vineyards .'
        scores['Flesch'].append(textstat.flesch_reading_ease(line))
        scores['Smog'].append(textstat.smog_index(line))
        scores['Flesch grade'].append(textstat.flesch_kincaid_grade(line))
        scores['Coleman'].append(textstat.coleman_liau_index(line))
        scores['Automated'].append(textstat.automated_readability_index(line))
        scores['Dale'].append(textstat.dale_chall_readability_score(line))
        scores['Difficult'].append(textstat.difficult_words(line))
        scores['Linsear'].append(textstat.linsear_write_formula(line))
        scores['Gunning'].append(textstat.gunning_fog(line))
        scores['Text Standard'].append(
            textstat.text_standard(line, float_output=True))

    return scores
    def readability_measures(self, as_dict=False):
        """
        Return the BOFIR score as well as other classic readability formulas for the paragraph.
        
        Parameters
        ----------
        as_dict : boolean
            Defines if output is a dataframe or dict
            
        Returns
        -------
        d: DataFrame
            DataFrame with the BOFIR score and additional readability measures
            
        """
        flesch = self.flesch
        smog = textstat.smog_index(self.paragraph)
        dale_chall = textstat.dale_chall_readability_score(self.paragraph)
        fog = textstat.gunning_fog(self.paragraph)
        bofir_5cat = self.bofir(cat5=True)
        bofir_3cat = self.bofir(cat5=False)

        d = {
            'bofir_5cat': bofir_5cat,
            'bofir_3cat': bofir_3cat,
            'fog': fog,
            'dale_chall': dale_chall,
            'smog': smog,
            'flesch': flesch
        }

        if as_dict:
            return d
        else:
            return pd.DataFrame(d, index=['readability_score'])
Пример #6
0
def getReadabilityMetrics(test_data):
    '''
        for a given article IN TEXT FORMAT, returns its readability metrics
        Uses textstat library, please install it
    '''
    metric = {
        "flesch_reading_ease":
        textstat.flesch_reading_ease(test_data),
        "smog_index":
        textstat.smog_index(test_data),
        "flesch_kincaid_grade":
        textstat.flesch_kincaid_grade(test_data),
        "coleman_liau_index":
        textstat.coleman_liau_index(test_data),
        "automated_readability_index":
        textstat.automated_readability_index(test_data),
        "dale_chall_readability_score":
        textstat.dale_chall_readability_score(test_data),
        "difficult_words":
        textstat.difficult_words(test_data),
        "linsear_write_formula":
        textstat.linsear_write_formula(test_data),
        "gunning_fog":
        textstat.gunning_fog(test_data),
        "text_standard":
        textstat.text_standard(test_data)
    }
    return metric
Пример #7
0
def get_readibility(text, metric="flesch_kincaid_grade"):
    """
    Return a score which reveals a piece of text's readability level.
    Reference: https://chartbeat-labs.github.io/textacy/getting_started/quickstart.html
               https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests
    """
    if metric == "flesch_kincaid_grade":
        result = textstat.flesch_kincaid_grade(text)
    elif metric == "flesch_reading_ease":
        result = textstat.flesch_reading_ease(text)
    elif metric == "smog_index":
        result = textstat.smog_index(text)
    elif metric == "coleman_liau_index":
        result = textstat.coleman_liau_index(text)
    elif metric == "automated_readability_index":
        result = textstat.automated_readability_index(text)
    elif metric == "dale_chall_readability_score":
        result = textstat.dale_chall_readability_score(text)
    elif metric == "difficult_words":
        result = textstat.difficult_words(text)
    elif metric == "linsear_write_formula":
        result = textstat.linsear_write_formula(text)
    elif metric == "gunning_fog":
        result = textstat.gunning_fog(text)
    elif metric == "text_standard":
        result = textstat.text_standard(text)
    else:
        print("ERROR: Please select correct metric!")
        result = None
    return result
Пример #8
0
def analyze():
    print(request)
    str_to_read = request.data.decode("utf-8").strip()

    report = {
        "flesch-reading-ease":
        textstat.flesch_reading_ease(str_to_read),
        "smog-index":
        textstat.smog_index(str_to_read),
        "flesch-kincaid-grade":
        textstat.flesch_kincaid_grade(str_to_read),
        "coleman-liau-index":
        textstat.coleman_liau_index(str_to_read),
        "automated-readability-index":
        textstat.automated_readability_index(str_to_read),
        "dale-chall-readability-score":
        textstat.dale_chall_readability_score(str_to_read),
        "difficult-words":
        textstat.difficult_words(str_to_read),
        "linsear-write-formula":
        textstat.linsear_write_formula(str_to_read),
        "gunning-fog":
        textstat.gunning_fog(str_to_read),
        "text-standard":
        textstat.text_standard(str_to_read)
    }
    return decorate_response(jsonify(report))
Пример #9
0
def read_metrics(text_clean):

    table = {}

    #table['flesch'] = textstat.flesch_reading_ease(text_clean)
    #table['flesch_kincaid'] = textstat.flesch_kincaid_grade(text_clean)
    table['fog'] = textstat.gunning_fog(text_clean)
    table['smog'] = textstat.smog_index(text_clean)
    table['ari'] = textstat.automated_readability_index(text_clean)
    table['coleman_liau'] = textstat.coleman_liau_index(text_clean)

    r_read_mets = quanteda.textstat_readability(text_clean, measure='all')
    table['ari_r'] = float(r_read_mets[1].r_repr())
    table['rix_r'] = float(r_read_mets[35].r_repr())
    table['Coleman_Liau_Grade_R'] = float(r_read_mets[9].r_repr())
    table['Coleman_Liau_Short_R'] = float(r_read_mets[10].r_repr())
    table['Danielson_Bryan_R'] = float(r_read_mets[14].r_repr())
    table['Dickes_Steiwer_R'] = float(r_read_mets[16].r_repr())
    table['ELF_R'] = float(r_read_mets[18].r_repr())
    table['Farr_Jenkins_Paterson_R'] = float(r_read_mets[19].r_repr())
    table['flesch_R'] = float(r_read_mets[20].r_repr())
    table['flesh_kincaid_R'] = float(r_read_mets[22].r_repr())
    table['FORCAST_R'] = float(r_read_mets[26].r_repr())
    table['Fucks_R'] = float(r_read_mets[28].r_repr())
    table['FOG_R'] = float(r_read_mets[23].r_repr())
    table['Linsear_Write_R'] = float(r_read_mets[29].r_repr())
    table['nWS_R'] = float(r_read_mets[31].r_repr())
    table['SMOG_R'] = float(r_read_mets[37].r_repr())
    table['Strain_R'] = float(r_read_mets[43].r_repr())
    table['Wheeler_Smith_R'] = float(r_read_mets[46].r_repr())

    return table
Пример #10
0
def score(text):
    a = textstat.flesch_reading_ease(text)
    b = textstat.flesch_kincaid_grade(text)
    c = textstat.gunning_fog(text)
    d = textstat.smog_index(text)
    e = textstat.coleman_liau_index(text)
    f = textstat.automated_readability_index(text)
    return a, b, c, d, e, f
def do_datas():
    # logging.info('do_datas')

    ########### Save text statistics
    ##### 1. nw 2. nvocab 3. nsyllable 4.nsentence 5. tone 6. readability
    ## 1. nw
    nw.append(len(words))
    ## 2. nvocab
    nvocab.append(len(vocab))
    ## 3. syllable
    n = textstat.syllable_count(contents)
    nsyllable.append(n)
    ## 4. sentence
    n = textstat.sentence_count(contents)
    nsentence.append(n)
    ## 5. tone
    ### LM dictionary
    n_neg_lm.append(count_occurrence(words, lm_neg))
    n_pos_lm.append(count_occurrence(words, lm_pos))
    n_uctt_lm.append(count_occurrence(words, lm_uctt))
    n_lit_lm.append(count_occurrence(words, lm_lit))
    n_cstr_lm.append(count_occurrence(words, lm_cstr))
    n_modal1_lm.append(count_occurrence(words, lm_modal1))
    n_modal2_lm.append(count_occurrence(words, lm_modal2))
    n_modal3_lm.append(count_occurrence(words, lm_modal3))
    n_negation_lm.append(count_negation(words, lm_pos, gt_negation))
    ### General Inquirer dictionary
    n_neg_gi.append(count_occurrence(words, gi_neg))
    n_pos_gi.append(count_occurrence(words, gi_pos))
    n_negation_gi.append(count_negation(words, gi_pos, gt_negation))
    ### Henry dictionary
    n_neg_hr.append(count_occurrence(words, hr_neg))
    n_pos_hr.append(count_occurrence(words, hr_pos))
    n_negation_hr.append(count_negation(words, gi_pos, gt_negation))
    ## 4. readability
    fre_i = textstat.flesch_reading_ease(contents)
    if fre_i > 100:
        fre_i = 100
    if fre_i < 0:
        fre_i = float('NaN')
    fre.append(fre_i)
    fkg_i = textstat.flesch_kincaid_grade(contents)
    if fkg_i < 0:
        fkg_i = float('NaN')
    fkg.append(fkg_i)
    # RIX
    cl_i = textstat.coleman_liau_index(contents)
    if cl_i < 0:
        cl_i = float('NaN')
    cl.append(cl_i)
    f = textstat.gunning_fog(contents)
    fog.append(f)
    f = textstat.automated_readability_index(contents)
    ari.append(f)
    f = textstat.smog_index(contents)
    smog.append(f)
Пример #12
0
    def score(self, strText):
        self.automated_readability_index = textstat.automated_readability_index(
            strText)
        self.str_automated_readability_index = self.grade(
            self.automated_readability_index)

        self.coleman_liau_index = textstat.coleman_liau_index(strText)
        self.str_coleman_liau_index = self.grade(self.coleman_liau_index)

        self.dale_chall_readability_score = textstat.dale_chall_readability_score(
            strText)
        if self.dale_chall_readability_score >= 9.0:
            self.str_dale_chall_readability_score = ' | ' + '13th to 15th grade (college)'
        elif self.dale_chall_readability_score >= 8.0:
            self.str_dale_chall_readability_score = ' | ' + '11th to 12th grade'
        elif self.dale_chall_readability_score >= 7.0:
            self.str_dale_chall_readability_score = ' | ' + '9th to 10th grade'
        elif self.dale_chall_readability_score >= 6.0:
            self.str_dale_chall_readability_score = ' | ' + '7th to 8th grade'
        elif self.dale_chall_readability_score >= 5.0:
            self.str_dale_chall_readability_score = ' | ' + '5th to 6th grade'
        else:
            self.str_dale_chall_readability_score = ' | ' + '4th grade or lower'

        self.difficult_words = textstat.difficult_words(strText)

        self.flesch_kincaid_grade = textstat.flesch_kincaid_grade(strText)
        self.str_flesch_kincaid_grade = self.grade(self.flesch_kincaid_grade)

        self.flesch_reading_ease = textstat.flesch_reading_ease(strText)
        if self.flesch_reading_ease >= 90:
            self.str_flesch_reading_ease = ' | ' + 'Very Easy'
        elif self.flesch_reading_ease >= 80:
            self.str_flesch_reading_ease = ' | ' + 'Easy'
        elif self.flesch_reading_ease >= 70:
            self.str_flesch_reading_ease = ' | ' + 'Fairly Easy'
        elif self.flesch_reading_ease >= 60:
            self.str_flesch_reading_ease = ' | ' + 'Standard'
        elif self.flesch_reading_ease >= 50:
            self.str_flesch_reading_ease = ' | ' + 'Fairly Difficult'
        elif self.flesch_reading_ease >= 30:
            self.str_flesch_reading_ease = ' | ' + 'Difficult'
        else:
            self.str_flesch_reading_ease = ' | ' + 'Very Confusing'

        self.gunning_fog = textstat.gunning_fog(strText)
        self.str_gunning_fog = self.grade(self.gunning_fog)

        self.linsear_write_formula = textstat.linsear_write_formula(strText)
        self.str_linsear_write_formula = self.grade(self.linsear_write_formula)

        self.smog_index = textstat.smog_index(strText)
        self.str_smog_index = self.grade(self.smog_index)

        self.text_standard = textstat.text_standard(strText)
Пример #13
0
def compute_readability_stats(text):
    """
    Compute reading statistics of the given text
    Reference: https://github.com/shivam5992/textstat

    Parameters
    ==========
    text: str, input section or abstract text
    """
    try:
        readability_dict = {
            'flesch_reading_ease':
            textstat.flesch_reading_ease(text),
            'smog':
            textstat.smog_index(text),
            'flesch_kincaid_grade':
            textstat.flesch_kincaid_grade(text),
            'coleman_liau_index':
            textstat.coleman_liau_index(text),
            'automated_readability_index':
            textstat.automated_readability_index(text),
            'dale_chall':
            textstat.dale_chall_readability_score(text),
            'difficult_words':
            textstat.difficult_words(text),
            'linsear_write':
            textstat.linsear_write_formula(text),
            'gunning_fog':
            textstat.gunning_fog(text),
            'text_standard':
            textstat.text_standard(text),
            'n_syllable':
            textstat.syllable_count(text),
            'avg_letter_per_word':
            textstat.avg_letter_per_word(text),
            'avg_sentence_length':
            textstat.avg_sentence_length(text)
        }
    except:
        readability_dict = {
            'flesch_reading_ease': None,
            'smog': None,
            'flesch_kincaid_grade': None,
            'coleman_liau_index': None,
            'automated_readability_index': None,
            'dale_chall': None,
            'difficult_words': None,
            'linsear_write': None,
            'gunning_fog': None,
            'text_standard': None,
            'n_syllable': None,
            'avg_letter_per_word': None,
            'avg_sentence_length': None
        }
    return readability_dict
Пример #14
0
	def getWordComplexityScore(self,tokens, i):
		# A higher score means a document takes a higher education level to read
		if (i == 1):
			score = textstat.gunning_fog(tokens)
		elif (i == 2):
		# Texts of fewer than 30 sentences are statistically invalid, because the SMOG formula was normed on 30-sentence samples.
		# textstat requires atleast 3 sentences per article for a result.
			score = textstat.smog_index(tokens)
		else:
			score = textstat.flesch_kincaid_grade(tokens)

		return score
Пример #15
0
 def generate_score(self, text):
     self.flesch_reading_grade = ts.flesch_reading_ease(text)
     self.flesch_reading_grade_consensus = readability_test_consensus(self.flesch_reading_grade, flesch_ease_grading_system)
     self.flesch_kincaid_grade = ts.flesch_kincaid_grade(text)
     self.flesch_kincaid_grade_consensus = readability_test_consensus(self.flesch_kincaid_grade, us_grade_level_system_age)
     self.dale_chall_grade = ts.dale_chall_readability_score(text)
     self.dale_chall_grade_consensus = readability_test_consensus(self.dale_chall_grade, dale_chall_system)
     self.smog_grade = ts.smog_index(text)
     self.ari_grade = ts.automated_readability_index(text)
     """  self.ari_grade_consensus = readability_test_consensus(self.ari_grade, us_grade_level_system_level) """
     self.coleman_liau_grade = ts.coleman_liau_index(text)
     pass
Пример #16
0
    def process(self, df):

        t0 = time()
        print("\n---Generating Readability Features:---\n")

        def lexical_diversity(text):
            words = nltk.tokenize.word_tokenize(text.lower())
            word_count = len(words)
            vocab_size = len(set(words))
            diversity_score = vocab_size / word_count
            return diversity_score

        def get_counts(text, word_list):
            words = nltk.tokenize.word_tokenize(text.lower())
            count = 0
            for word in words:
                if word in word_list:
                    count += 1
            return count

        df['flesch_reading_ease'] = df['articleBody'].map(lambda x: textstat.flesch_reading_ease(x))
        df['smog_index'] = df['articleBody'].map(lambda x: textstat.smog_index(x))
        df['flesch_kincaid_grade'] = df['articleBody'].map(lambda x: textstat.flesch_kincaid_grade(x))
        df['coleman_liau_index'] = df['articleBody'].map(lambda x: textstat.coleman_liau_index(x))
        df['automated_readability_index'] = df['articleBody'].map(lambda x: textstat.automated_readability_index(x))
        df['dale_chall_readability_score'] = df['articleBody'].map(lambda x: textstat.dale_chall_readability_score(x))
        df['difficult_words'] = df['articleBody'].map(lambda x: textstat.difficult_words(x))
        df['linsear_write_formula'] = df['articleBody'].map(lambda x: textstat.linsear_write_formula(x))
        df['gunning_fog'] = df['articleBody'].map(lambda x: textstat.gunning_fog(x))
        df['i_me_myself'] = df['articleBody'].apply(get_counts,args = (['i', 'me', 'myself'],))
        df['punct'] = df['articleBody'].apply(get_counts,args = ([',','.', '!', '?'],))
        df['lexical_diversity'] = df['articleBody'].apply(lexical_diversity)

        feats = ['flesch_reading_ease', 'smog_index', 'flesch_kincaid_grade',
        'coleman_liau_index', 'automated_readability_index', 
        'dale_chall_readability_score', 'difficult_words', 'linsear_write_formula',
        'gunning_fog', 'i_me_myself', 'punct', 'lexical_diversity'
        ]


        outfilename_xReadable = df[feats].values

        with open('../saved_data/read.pkl', 'wb') as outfile:
            pickle.dump(feats, outfile, -1)
            pickle.dump(outfilename_xReadable, outfile, -1)

        print ('readable features saved in read.pkl')
        
        print('\n---Readability Features is complete---')
        print("Time taken {} seconds\n".format(time() - t0))
        
        return 1
Пример #17
0
 def readability_scores(self, text):
     self.ari = textstat.automated_readability_index(text)
     self.flesch_kincaid_grade = textstat.flesch_kincaid_grade(text)
     self.coleman_liau_index = textstat.coleman_liau_index(text)
     self.dale_chall_readability_score = textstat.dale_chall_readability_score(
         text)
     self.flesch_reading_ease = textstat.flesch_reading_ease(text)
     self.gunning_fog = textstat.gunning_fog(text)
     self.linsear_write_formula = textstat.linsear_write_formula(text)
     self.lix = textstat.lix(text)
     self.rix = textstat.rix(text)
     self.smog_index = textstat.smog_index(text)
     self.text_standard = textstat.text_standard(text)
Пример #18
0
def get_readability_stats(text):
    return {
        'flesch_reading_ease': textstat.flesch_reading_ease(text),
        'smog_index': textstat.smog_index(text),
        'flesch_kincaid_grade': textstat.flesch_kincaid_grade(text),
        'coleman_liau_index': textstat.coleman_liau_index(text),
        'automated_readability_index':
        textstat.automated_readability_index(text),
        'dale_chall_readability_score':
        textstat.dale_chall_readability_score(text),
        'linsear_write_formula': textstat.linsear_write_formula(text),
        'gunning_fog': textstat.gunning_fog(text),
        'text_standard': textstat.text_standard(text, float_output=True),
    }
Пример #19
0
def analyze_vocab(text):
    return {
        'num_words': textstat.lexicon_count(text),
        'flesch_reading_ease': textstat.flesch_reading_ease(text),
        'smog_index': textstat.smog_index(text),
        'flesch_kincaid_grade': textstat.flesch_kincaid_grade(text),
        'coleman_liau_index': textstat.coleman_liau_index(text),
        'automated_readability_index':
        textstat.automated_readability_index(text),
        'dale_chall_readability_score':
        textstat.dale_chall_readability_score(text),
        'difficult_words': textstat.difficult_words(text),
        'linsear_write_formula': textstat.linsear_write_formula(text),
        'gunning_fog': textstat.gunning_fog(text),
        'text_standard': textstat.text_standard(text, float_output=True)
    }
Пример #20
0
def vocab_check(text):
    
    #Construct dictionary
    vocab_results = {'dale_chall_readability_score': dale_chall_readability_score(text),
                     'smog_index': smog_index(text), 'gunning_fog': gunning_fog(text),
                     'flesch_reading_ease': flesch_reading_ease(text),
                     'flesch_kincaid_grade': flesch_kincaid_grade(text),
                     'linsear_write_formula': linsear_write_formula(text),
                     'coleman_liau_index': coleman_liau_index(text),
                     'automated_readability_index': automated_readability_index(text),
                     'yule_vocab_richness': yule(text),
                     'total_score': text_standard(text, float_output=True)}
                     
    diff_words, easy_word_dict = difficult_words(text)
    
    return(vocab_results, diff_words, easy_word_dict)
def lisibilty(text):

    f_lis = ([
        textstat.syllable_count(str(text), lang='en_arabic'),
        textstat.lexicon_count(str(text), removepunct=True),
        textstat.sentence_count(str(text)),
        textstat.flesch_reading_ease(str(text)),
        textstat.flesch_kincaid_grade(str(text)),
        textstat.gunning_fog(str(text)),
        textstat.smog_index(str(text)),
        textstat.automated_readability_index(str(text)),
        textstat.coleman_liau_index(str(text)),
        textstat.linsear_write_formula(str(text)),
        textstat.dale_chall_readability_score(str(text))
    ])
    return f_lis
Пример #22
0
 def getWordComplexityScore(tokens, i, article):
     # A higher score means a document takes a higher education level to read
     tokenizer = RegexpTokenizer(r'\w+')
     zen_no_punc = tokenizer.tokenize(tokens)
     sentences = sentenceDictionary[article]
     if (i == 1):
         score = textstat.gunning_fog(tokens)
     elif (i == 2):
         #Texts of fewer than 30 sentences are statistically invalid, because the SMOG formula was normed on 30-sentence samples.
         # textstat requires atleast 3 sentences for a result.
         if sentences >= 3:
             score = textstat.smog_index(tokens)
         else:
             score = 0.0
     else:
         score = textstat.flesch_kincaid_grade(tokens)
     return score
Пример #23
0
def textstat_stats(text):
    difficulty = textstat.flesch_reading_ease(text)
    grade_difficulty = textstat.flesch_kincaid_grade(text)
    gfog = textstat.gunning_fog(text)
    smog = textstat.smog_index(text)
    ari = textstat.automated_readability_index(text)
    cli = textstat.coleman_liau_index(text)
    lwf = textstat.linsear_write_formula(text)
    dcrs = textstat.dale_chall_readability_score(text)
    idx = [
        'difficulty', 'grade_difficulty', 'gfog', 'smog', 'ari', 'cli', 'lwf',
        'dcrs'
    ]

    return pd.Series(
        [difficulty, grade_difficulty, gfog, smog, ari, cli, lwf, dcrs],
        index=idx)
Пример #24
0
 def get_readability_features(self):
     sent_tokens = text_tokenizer(self.raw_text,
                                  replace_url_flag=True,
                                  tokenize_sent_flag=True)
     sentences = [' '.join(sent) + '\n' for sent in sent_tokens]
     sentences = ''.join(sentences)
     self.syllable_count = textstat.syllable_count(sentences)
     self.flesch_reading_ease = textstat.flesch_reading_ease(sentences)
     self.flesch_kincaid_grade = textstat.flesch_kincaid_grade(sentences)
     self.fog_scale = textstat.gunning_fog(sentences)
     self.smog = textstat.smog_index(sentences)
     self.automated_readability = textstat.automated_readability_index(
         sentences)
     self.coleman_liau = textstat.coleman_liau_index(sentences)
     self.linsear_write = textstat.linsear_write_formula(sentences)
     self.dale_chall_readability = textstat.dale_chall_readability_score(
         sentences)
     self.text_standard = textstat.text_standard(sentences)
Пример #25
0
 def score_text(self, test_data):
     score = {}
     score['flesch_reading_ease'] = textstat.flesch_reading_ease(test_data)
     score['smog_index'] = textstat.smog_index(test_data)
     score['flesch_kincaid_grade'] = textstat.flesch_kincaid_grade(
         test_data)
     score['coleman_liau_index'] = textstat.coleman_liau_index(test_data)
     score[
         'automated_readability_index'] = textstat.automated_readability_index(
             test_data)
     score[
         'dale_chall_readability_score'] = textstat.dale_chall_readability_score(
             test_data)
     score['difficult_words'] = textstat.difficult_words(test_data)
     score['linsear_write_formula'] = textstat.linsear_write_formula(
         test_data)
     score['gunning_fog'] = textstat.gunning_fog(test_data)
     score['text_standard'] = textstat.text_standard(test_data)
     return score
Пример #26
0
    def generate_score(self, text):
        r = pyReadability(text)
        self.flesch_reading_grade = ts.flesch_reading_ease(text)
        self.flesch_reading_grade_consensus = readability_test_consensus(
            self.flesch_reading_grade, flesch_ease_grading_system)

        ## Sync with value offered by MS Word
        # self.flesch_kincaid_grade = ts.flesch_kincaid_grade(text)
        self.flesch_kincaid_grade = r.flesch_kincaid().score

        self.flesch_kincaid_grade_consensus = readability_test_consensus(
            self.flesch_kincaid_grade, us_grade_level_system_age)
        self.dale_chall_grade = ts.dale_chall_readability_score(text)
        self.dale_chall_grade_consensus = readability_test_consensus(
            self.dale_chall_grade, dale_chall_system)
        self.smog_grade = ts.smog_index(text)
        self.ari_grade = ts.automated_readability_index(text)
        """  self.ari_grade_consensus = readability_test_consensus(self.ari_grade, us_grade_level_system_level) """
        self.coleman_liau_grade = ts.coleman_liau_index(text)
        pass
Пример #27
0
    def _extract_readability_scores(self, text: Text, scores=None) -> Dict:

        output = {}
        if scores == None or 'flesch_reading_ease' in scores:
            output['flesch_reading_ease'] = textstat.flesch_reading_ease(text)

        if scores == None or 'smog_index' in scores:
            output['smog_index'] = textstat.smog_index(text)

        if scores == None or 'flesch_kincaid_grade' in scores:
            output['flesch_kincaid_grade'] = textstat.flesch_kincaid_grade(
                text)

        if scores == None or 'coleman_liau_index' in scores:
            output['coleman_liau_index'] = textstat.coleman_liau_index(text)

        if scores == None or 'automated_readability_index' in scores:
            output[
                'automated_readability_index'] = textstat.automated_readability_index(
                    text)

        if scores == None or 'dale_chall_readability_score' in scores:
            output[
                'dale_chall_readability_score'] = textstat.dale_chall_readability_score(
                    text)

        if scores == None or 'difficult_words' in scores:
            output['difficult_words'] = textstat.difficult_words(text)

        if scores == None or 'linsear_write_formula' in scores:
            output['linsear_write_formula'] = textstat.linsear_write_formula(
                text)

        if scores == None or 'gunning_fog' in scores:
            output['gunning_fog'] = textstat.gunning_fog(text)

        if scores == None or 'text_standard' in scores:
            output['text_standard'] = textstat.text_standard(text,
                                                             float_output=True)

        return output
Пример #28
0
def text_analysis(test_data):
	#flesch_reading_ease: higher scores indicate material that is easier to read. aim for >60.0
	print ('flesch_reading_ease: '+str(textstat.flesch_reading_ease(test_data)))
	#smog_index: Calculates US grade level
	print ('smog_index: '+str(textstat.smog_index(test_data)))
	#flesch_kincaid_grade: Calculates US grade level
	print ('flesch_kincaid_grade: '+str(textstat.flesch_kincaid_grade(test_data)))
	#Colman Liau: Calculates US grade level
	print ('coleman_liau_index: '+str(textstat.coleman_liau_index(test_data)))
	#automated_readability_index: Calculates US grade level
	print ('automated_readability_index: '+str(textstat.automated_readability_index(test_data)))
	#Dale Chall Readability Score: 0.1579(dificult words / words *100) + 0.0496(words/sentences)
	print ('dale_chall_readability_score: '+str(textstat.dale_chall_readability_score(test_data)))
	#number of difficult words
	print ('difficult_words: '+str(textstat.difficult_words(test_data)))
	#Linsear Write: Calculates the U.S. grade level of a text sample based on sentence length and the number of words with three or more syllables. 
	print ('linsear_write_formula: '+str(textstat.linsear_write_formula(test_data)))
	#gunning_frog: The text can be understood by someone who left full-time education at a later age than the index
	print ('gunning_fog: '+str(textstat.gunning_fog(test_data)))
	#text_standard: Calculates US grade level
	print ('text_standard: '+str(textstat.text_standard(test_data)))
def print_readability(text_to_analyse, option='short'):
    if option == 'all':
        print(
            "flesch (0-29: confusing, 30-59: Difficult, 60-69: Standard, 70-100: Easy): ",
            textstat.flesch_reading_ease(text_to_analyse))
        print("smog (years of education required): ",
              textstat.smog_index(text_to_analyse))
        print(
            "flesch kinkaid (70-100: Fairly Easy; 60-70: Plain English; 30-60: Fairly Difficult; 30-0: Very Difficult): ",
            textstat.flesch_kincaid_grade(text_to_analyse))
        print("coleman liau: ", textstat.coleman_liau_index(text_to_analyse))
        print(
            "auto read (1-4: 5-10 years age; 5-8: 10-14 y; 9-12: 14-18 y; 13-14: 18+): ",
            textstat.automated_readability_index(text_to_analyse))
        print("dale chall (< 5: kid; 5-8: scholar; 9-10: college): ",
              textstat.dale_chall_readability_score(text_to_analyse))
        print("difficult words: ", textstat.difficult_words(text_to_analyse))
        print("linsear write: ",
              textstat.linsear_write_formula(text_to_analyse))
        print("gunning fog (9-12: High-school; 13-17: College): ",
              textstat.gunning_fog(text_to_analyse))

    print("text standard (estimated school grade level): ",
          textstat.text_standard(text_to_analyse))
Пример #30
0
    def test_smog_index(self):
        index = textstat.smog_index(self.long_test)

        self.assertEqual(11.2, index)
Пример #31
0
def test_smog_index():
    index = textstat.smog_index(long_test)

    assert index == 11.2