Пример #1
0
def test_scores_zero(content, style):
    """Scores must be zero if inputs vary on different dimensions.
    """
    content[:, 0], style[:, 1] = 0.0, 0.0
    matcher = FeatureMatcher(content, style)
    matcher.compare_features_matrix(split=2)
    assert pytest.approx(0.0) == matcher.repro_target.scores.max()
    assert pytest.approx(0.0) == matcher.repro_sources.scores.max()
Пример #2
0
def test_scores_one(content, style):
    """Scores must be one if inputs only vary on one dimension.
    """
    content[:, 0], style[:, 0] = 0.0, 0.0
    matcher = FeatureMatcher(content, style)
    matcher.compare_features_matrix(split=2)
    assert pytest.approx(1.0) == matcher.repro_target.scores.min()
    assert pytest.approx(1.0) == matcher.repro_sources.scores.min()
Пример #3
0
def test_scores_range_matrix(target, source):
    """Determine that the scores of random patches are in correct range.
    """
    matcher = FeatureMatcher(target, source)
    matcher.compare_features_matrix(split=2)
    assert matcher.repro_target.scores.min() >= 0.0
    assert matcher.repro_target.scores.max() <= 1.0
    assert matcher.repro_sources.scores.min() >= 0.0
    assert matcher.repro_sources.scores.max() <= 1.0
Пример #4
0
def test_scores_identity(array):
    """The score of the identity operation with linear indices should be one.
    """
    matcher = FeatureMatcher(array, array)
    matcher.repro_target.from_linear(array.shape)
    matcher.repro_sources.from_linear(array.shape)
    matcher.compare_features_matrix(split=2)

    assert pytest.approx(1.0) == matcher.repro_target.scores.min()
    assert pytest.approx(1.0) == matcher.repro_sources.scores.min()
Пример #5
0
def test_compare_random_converges(target, source):
    """Determine that the scores of random patches are in correct range.
    """
    matcher1 = FeatureMatcher(target, source)
    matcher1.compare_features_matrix(split=2)

    matcher2 = FeatureMatcher(target, source)
    for _ in range(500):
        matcher2.compare_features_random(split=2)
        missing = (
            (matcher1.repro_target.indices != matcher2.repro_target.indices).sum()
            + (matcher1.repro_sources.indices != matcher2.repro_sources.indices).sum()
        )
        if missing == 0:
            break

    assert (matcher1.repro_target.indices != matcher2.repro_target.indices).sum() <= 2
    assert pytest.approx(0.0, abs=1e-6) == torch.dist(
        matcher1.repro_target.scores, matcher2.repro_target.scores
    )

    assert matcher2.repro_sources.indices.min() != -1
    assert (matcher1.repro_sources.indices != matcher2.repro_sources.indices).sum() <= 2
    assert pytest.approx(0.0, abs=1e-6) == torch.dist(
        matcher1.repro_sources.scores, matcher2.repro_sources.scores
    )
Пример #6
0
def test_nearest_neighbor_vs_matcher(content, style):
    """The score of the identity operation with linear indices should be one.
    """

    matcher = FeatureMatcher(content, style)
    matcher.compare_features_matrix(split=1)

    ida, idb = nearest_neighbors_1d(content.flatten(2),
                                    style.flatten(2),
                                    split=1)

    ima = (matcher.repro_target.indices[:, 0] * style.shape[2] +
           matcher.repro_target.indices[:, 1])
    assert (ima.flatten(1) != ida).sum() == 0

    imb = (matcher.repro_sources.indices[:, 0] * content.shape[2] +
           matcher.repro_sources.indices[:, 1])
    assert (imb.flatten(1) != idb).sum() == 0
Пример #7
0
def test_indices_symmetry_matrix(content, style):
    """The indices of the symmerical operation must be equal.
    """
    matcher1 = FeatureMatcher(content, style)
    matcher2 = FeatureMatcher(style, content)

    matcher1.compare_features_matrix(split=2)
    matcher2.compare_features_matrix(split=2)

    assert (matcher1.repro_target.indices != matcher2.repro_sources.indices).sum() <= 2
    assert (matcher1.repro_sources.indices != matcher2.repro_target.indices).sum() <= 2
Пример #8
0
def test_compare_inverse_symmetrical(array):
    """Check that doing the identity comparison also projects the inverse
    coordinates into the other buffer.
    """
    matcher = FeatureMatcher(array, array)
    matcher.repro_target.from_linear(array.shape)
    matcher.repro_sources.indices.zero_()
    matcher.compare_features_identity()
    matcher.compare_features_inverse(split=1)

    assert (matcher.repro_target.indices !=
            matcher.repro_sources.indices).sum() == 0

    matcher.repro_target.indices.zero_()
    matcher.repro_target.scores.fill_(float("-inf"))
    matcher.compare_features_identity()
    matcher.compare_features_inverse(split=1)

    assert (matcher.repro_target.indices !=
            matcher.repro_sources.indices).sum() == 0
Пример #9
0
def test_indices_same_rotate(content, style):
    """The score of the identity operation with linear indices should be one.
    """
    matcher1 = FeatureMatcher(content, style)
    matcher1.compare_features_matrix(split=2)

    matcher2 = FeatureMatcher(content, style.permute(0, 1, 3, 2))
    matcher2.compare_features_matrix(split=2)

    assert (matcher1.repro_target.indices[:, 0] !=
            matcher2.repro_target.indices[:, 1]).sum() <= 1
    assert (matcher2.repro_target.indices[:, 1] !=
            matcher1.repro_target.indices[:, 0]).sum() <= 1
Пример #10
0
def test_scatter_2d_single_float(array):
    matcher = FeatureMatcher(array, array)
    matcher.repro_target.scores.zero_()

    indices = torch.ones(size=(1, 2, 1, 1), dtype=torch.int64)
    values = torch.full((1, 1, 1, 1), 2.34, dtype=torch.float32)

    torch_scatter_2d(matcher.repro_target.scores, indices, values)

    assert matcher.repro_target.scores[:, :, 1, 1] == 2.34
    assert matcher.repro_target.scores[:, :, 0, 0] == 0.0
Пример #11
0
def test_indices_same_split(content, style):
    """The score of the identity operation with linear indices should be one.
    """
    matcher = FeatureMatcher(content, style)
    matcher.compare_features_matrix(split=1)
    target_indices = matcher.repro_target.indices.clone()
    source_indices = matcher.repro_sources.indices.clone()

    for split in [2, 4, 8]:
        matcher.update_target(content)
        matcher.compare_features_matrix(split=split)

        assert (target_indices != matcher.repro_target.indices).sum() <= 2
        assert (source_indices != matcher.repro_sources.indices).sum() <= 2
Пример #12
0
def test_propagate_up_left(array):
    """Propagating the identity transformation expects indices to propagate
    one cell at a time, here up and towards the left.
    """
    y, x = array.shape[-2:]
    matcher = FeatureMatcher(array, array)
    indices, scores = matcher.repro_target.indices, matcher.repro_target.scores
    indices.zero_()

    indices[:, 0, -1, -1] = y - 1
    indices[:, 1, -1, -1] = x - 1
    scores[:, 0, -1, -1] = 1.0

    matcher.compare_features_nearby(radius=1, split=2)
    assert (
        indices[:, :, y - 2, x - 1] == torch.tensor([y - 2, x - 1], dtype=torch.long)
    ).all()
    assert (
        indices[:, :, y - 1, x - 2] == torch.tensor([y - 1, x - 2], dtype=torch.long)
    ).all()

    matcher.compare_features_nearby(radius=1, split=2)
    assert (
        indices[:, :, y - 2, x - 2] == torch.tensor([y - 2, x - 2], dtype=torch.long)
    ).all()
Пример #13
0
def test_scatter_2d_single_long(array):
    matcher = FeatureMatcher(array, array)
    matcher.repro_target.indices.zero_()

    indices = torch.ones(size=(1, 2, 1, 1), dtype=torch.int64)
    values = torch.tensor([[234, 345]], dtype=torch.int64).view(1, 2, 1, 1)

    torch_scatter_2d(matcher.repro_target.indices, indices, values)

    assert (matcher.repro_target.indices == 234).sum() == 1
    assert (matcher.repro_target.indices == 345).sum() == 1
    assert matcher.repro_target.indices[:, 0, 1, 1] == 234
    assert matcher.repro_target.indices[:, 1, 1, 1] == 345
    assert matcher.repro_target.indices[:, :, 0, 0].max() == 0
Пример #14
0
def test_compare_inverse_asymmetrical(content, style):
    """Check that doing the identity comparison also projects the inverse
    coordinates into the other buffer.
    """

    # Set corner pixel as identical, so it matches 100%.
    content[:, :, -1, -1] = style[:, :, -1, -1]

    matcher = FeatureMatcher(content, style)
    matcher.repro_target.from_linear(style.shape)
    matcher.repro_sources.indices.zero_()
    matcher.compare_features_identity()
    matcher.compare_features_inverse(split=2)

    assert matcher.repro_sources.indices.max() > 0

    matcher.repro_sources.from_linear(content.shape)
    matcher.repro_target.indices.zero_()
    matcher.repro_target.scores.zero_()
    matcher.compare_features_identity()
    matcher.compare_features_inverse(split=2)

    assert matcher.repro_target.indices.max() > 0
Пример #15
0
def test_scores_improve(content, style):
    """Scores must be one if inputs only vary on one dimension.
    """
    matcher = FeatureMatcher(content, style)
    matcher.compare_features_identity()
    before = matcher.repro_target.scores.sum()
    matcher.compare_features_random(times=1)
    after = matcher.repro_target.scores.sum()
    event("equal? %i" % int(after == before))
    assert after >= before
Пример #16
0
def test_scores_target_bias_matrix(array):
    matcher = FeatureMatcher(torch.cat([array, array], dim=2), array)

    matcher.repro_sources.biases[:, :, 11:] = 1.0
    matcher.repro_sources.scores.zero_()
    matcher.compare_features_matrix(split=2)
    assert (matcher.repro_sources.indices[:, 0] >= 11).all()

    matcher.repro_sources.biases[:, :, 11:] = 0.0
    matcher.repro_sources.biases[:, :, :11] = 1.0
    matcher.repro_sources.scores.zero_()
    matcher.compare_features_matrix(split=2)
    assert (matcher.repro_sources.indices[:, 0] < 11).all()
Пример #17
0
def test_scores_source_bias_matrix(array):
    matcher = FeatureMatcher(array, torch.cat([array, array], dim=2))

    matcher.repro_target.biases[:, :, 9:] = 1.0
    matcher.repro_target.scores.zero_()
    matcher.compare_features_matrix(split=2)
    assert (matcher.repro_target.indices[:, 0] >= 9).all()

    matcher.repro_target.biases[:, :, 9:] = 0.0
    matcher.repro_target.biases[:, :, :9] = 1.0
    matcher.repro_target.scores.zero_()
    matcher.compare_features_matrix(split=2)
    assert (matcher.repro_target.indices[:, 0] < 9).all()
Пример #18
0
def test_indices_symmetry_random(content, style):
    """The indices of the symmerical operation must be the same.
    """
    matcher1 = FeatureMatcher(content, style)
    matcher2 = FeatureMatcher(style, content)

    for _ in range(25):
        matcher1.compare_features_random()
        matcher2.compare_features_random()

        missing = sum(
            [
                (matcher1.repro_target.indices != matcher2.repro_sources.indices).sum(),
                (matcher1.repro_sources.indices != matcher2.repro_target.indices).sum(),
            ]
        )
        if missing == 0:
            break

    assert (matcher1.repro_target.indices != matcher2.repro_sources.indices).sum() <= 2
    assert (matcher1.repro_sources.indices != matcher2.repro_target.indices).sum() <= 2
Пример #19
0
def test_propagate_down_right(array):
    """Propagating the identity transformation expects indices to propagate
    one cell at a time, this time down and towards the right.
    """
    matcher = FeatureMatcher(array, array)
    indices = matcher.repro_target.indices
    indices.zero_()

    matcher.compare_features_nearby(radius=1, split=2)
    assert (indices[:, :, 1, 0] == torch.tensor([1, 0], dtype=torch.long)).all()
    assert (indices[:, :, 0, 1] == torch.tensor([0, 1], dtype=torch.long)).all()

    matcher.compare_features_nearby(radius=1, split=2)
    assert (indices[:, :, 1, 1] == torch.tensor([1, 1], dtype=torch.long)).all()
Пример #20
0
def test_scores_source_bias_random(array):
    matcher = FeatureMatcher(array, torch.cat([array, array], dim=2))

    matcher.repro_target.biases[:, :, 8:] = 1.0
    matcher.repro_target.scores.fill_(-1.0)
    for _ in range(10):
        matcher.compare_features_random(split=2)
    assert (matcher.repro_target.indices[:, 0] >= 8).all()

    matcher.repro_target.biases[:, :, 8:] = 0.0
    matcher.repro_target.biases[:, :, :8] = 1.0
    matcher.repro_target.scores.fill_(-1.0)
    for _ in range(10):
        matcher.compare_features_random(split=2)
    assert (matcher.repro_target.indices[:, 0] < 8).all()
Пример #21
0
def test_scores_target_bias_random(array):
    matcher = FeatureMatcher(torch.cat([array, array], dim=2), array)

    matcher.repro_sources.biases[:, :, 12:] = 1.0
    matcher.repro_sources.scores.fill_(-1.0)
    for _ in range(10):
        matcher.compare_features_random(split=2)
    assert (matcher.repro_sources.indices[:, 0] >= 12).all()

    matcher.repro_sources.biases[:, :, 12:] = 0.0
    matcher.repro_sources.biases[:, :, :12] = 1.0
    matcher.repro_sources.scores.fill_(-1.0)
    for _ in range(10):
        matcher.compare_features_random(split=2)
    assert (matcher.repro_sources.indices[:, 0] < 12).all()
Пример #22
0
def test_scores_reconstruct(target, source):
    """Scores must be one if inputs only vary on one dimension.
    """
    matcher = FeatureMatcher(target, source)
    matcher.compare_features_matrix()

    recons_target = matcher.reconstruct_target()
    score = cosine_similarity_vector_1d(target, recons_target)
    assert pytest.approx(0.0, abs=1e-6) == abs(
        score.mean() - matcher.repro_target.scores.mean()
    )

    recons_source = matcher.reconstruct_source()
    score = cosine_similarity_vector_1d(source, recons_source)
    assert pytest.approx(0.0, abs=1e-6) == abs(
        score.mean() - matcher.repro_sources.scores.mean()
    )