Пример #1
0
def from_trackable(trackable, concrete_func, inputs, outputs, large_model):
    err_large_model = "model exceeds maximum protobuf size of 2GB. Try setting large_model."

    # Avoid errors due to bug in TF freezing
    removed_resource_to_placeholder, placeholder_to_resource, graph_captures_copy, func_captures_copy = \
        _remove_non_variable_resources_from_captures(concrete_func)

    try:
        frozen_graph = from_function(concrete_func, inputs, outputs, large_model)
    except ValueError as e:
        if any(msg in str(e) for msg in ["exceeds maximum protobuf size of 2GB", "string too long"]):
            raise ValueError(err_large_model)
        raise e

    # We might be returning the concrete_func so let's put it back in working order
    _restore_captured_resources(concrete_func, graph_captures_copy, func_captures_copy)

    table_info = get_hash_table_info(frozen_graph)
    placeholder_to_table_info = {}
    _get_hash_table_info_from_trackable(trackable, table_info,
                                        removed_resource_to_placeholder, placeholder_to_table_info)

    initialized_tables = {}
    for info in table_info:
        if info.shared_name is not None:
            h = lookup_ops.hash_table_v2(info.key_dtype, info.val_dtype, shared_name=info.shared_name)
            n = info.shared_name
        elif info.resource_input in placeholder_to_resource and info.resource_input not in placeholder_to_table_info:
            # We found a lookup op with no corresponding HashTable op, but we can associate the placeholder input
            # from the op with the resource handle from graph captures and make up a shared_name
            h = placeholder_to_resource[info.resource_input]
            n = str(uuid.uuid4()).encode()
            info.shared_name = n
            placeholder_to_table_info[info.resource_input] = info
        else:
            # Found a lookup op but the corresponding HashTable op has already been found and processed.
            continue
        try:
            k, v = lookup_ops.lookup_table_export_v2(h, info.key_dtype, info.val_dtype)
            initialized_tables[n] = (k.numpy(), v.numpy())
        except Exception:  # pylint: disable=broad-except
            logger.warning("Could not initialize table with shared_name = %r", n)

    for placeholder in removed_resource_to_placeholder.values():
        if placeholder not in placeholder_to_table_info:
            logger.error("Could not find table resource to replace placeholder %s", placeholder)

    replace_placeholders_with_tables(frozen_graph, placeholder_to_table_info)

    return frozen_graph, initialized_tables
Пример #2
0
def from_trackable(trackable, concrete_func, inputs, outputs, large_model):
    err_large_model = "model exceeds maximum protobuf size of 2GB. Try setting large_model."

    # Avoid errors due to bug in TF freezing
    removed_resource_to_placeholder, graph_captures_copy, func_captures_copy = \
        _remove_non_variable_resources_from_captures(concrete_func)

    try:
        frozen_graph = from_function(concrete_func, inputs, outputs, large_model)
    except ValueError as e:
        if any(msg in str(e) for msg in ["exceeds maximum protobuf size of 2GB", "string too long"]):
            raise ValueError(err_large_model)
        raise e

    # We might be returning the concrete_func so let's put it back in working order
    _restore_captured_resources(concrete_func, graph_captures_copy, func_captures_copy)

    table_names, key_dtypes, value_dtypes = get_hash_table_info(frozen_graph)
    placeholder_to_table_info = {}
    _get_hash_table_info_from_trackable(trackable, table_names, key_dtypes, value_dtypes,
                                        removed_resource_to_placeholder, placeholder_to_table_info)

    initialized_tables = {}
    for n, k_dtype, val_dtype in zip(table_names, key_dtypes, value_dtypes):
        h = lookup_ops.hash_table_v2(k_dtype, val_dtype, shared_name=n)
        try:
            k, v = lookup_ops.lookup_table_export_v2(h, k_dtype, val_dtype)
            initialized_tables[n] = (k.numpy(), v.numpy())
        except Exception:  # pylint: disable=broad-except
            logger.warning("Could not initialize table with shared_name = %r", n)

    for placeholder in removed_resource_to_placeholder.values():
        if placeholder not in placeholder_to_table_info:
            logger.error("Could not find table resource to replace placeholder %s", placeholder)

    replace_placeholders_with_tables(frozen_graph, placeholder_to_table_info)

    return frozen_graph, initialized_tables
Пример #3
0
def _from_saved_model_v2(model_path, input_names, output_names, tag,
                         signature_def, concrete_function_index, large_model):
    """Load tensorflow graph from saved_model."""

    wrn_no_tag = "'--tag' not specified for saved_model. Using --tag serve"
    wrn_empty_tag = "'--tag' value is empty string. Using tag =[[]]"
    wrn_sig_1 = "'--signature_def' not specified, using first signature: %s"
    err_many_sig = "Cannot load multiple signature defs in TF2.x: %s"
    err_no_call = "Model doesn't contain usable concrete functions under  __call__. Try --signature-def instead."
    err_index = "Invalid concrete_function value: %i. Valid values are [0 to %i]"
    err_no_sig = "No signatures found in model. Try --concrete_function instead."
    err_sig_nomatch = "Specified signature not in model %s"
    err_large_model = "model exceeds maximum protobuf size of 2GB. Try running with --large_model flag."

    if tag is None:
        tag = ['serve']
        logger.warning(wrn_no_tag)

    if tag == '':
        tag = [[]]
        logger.warning(wrn_empty_tag)

    utils.make_sure(len(signature_def) < 2, err_many_sig, str(signature_def))
    imported = tf.saved_model.load(model_path, tags=tag)  # pylint: disable=no-value-for-parameter

    all_sigs = imported.signatures.keys()
    valid_sigs = [s for s in all_sigs if not s.startswith("_")]
    logger.info("Signatures found in model: %s",
                "[" + ",".join(valid_sigs) + "].")

    concrete_func = None
    if concrete_function_index is not None:
        utils.make_sure(hasattr(imported, "__call__"), err_no_call)
        utils.make_sure(
            concrete_function_index < len(
                imported.__call__.concrete_functions), err_index,
            concrete_function_index,
            len(imported.__call__.concrete_functions) - 1)
        args, kwargs = imported.__call__.concrete_functions[
            concrete_function_index].structured_input_signature
        concrete_func = imported.__call__.get_concrete_function(
            *args, **kwargs)
    elif signature_def:
        utils.make_sure(signature_def[0] in valid_sigs, err_sig_nomatch,
                        signature_def[0])
        concrete_func = imported.signatures[signature_def[0]]
    else:
        utils.make_sure(len(valid_sigs) > 0, err_no_sig)
        logger.warning(wrn_sig_1, valid_sigs[0])
        concrete_func = imported.signatures[valid_sigs[0]]

    tensors_to_rename = {}
    if input_names is None:
        inputs = [
            tensor.name for tensor in concrete_func.inputs
            if tensor.dtype != tf.dtypes.resource
        ]
        if concrete_func.structured_input_signature is not None:
            args, kwargs = concrete_func.structured_input_signature
            structured_inputs = [
                t.name for t in args if isinstance(t, tf.TensorSpec)
            ] + sorted(kwargs.keys())
            structured_inputs = set(inp + ":0" for inp in structured_inputs)
            if any(inp in structured_inputs for inp in inputs):
                inputs = [inp for inp in inputs if inp in structured_inputs]
    else:
        inputs = input_names

    if output_names is None:
        outputs = [
            tensor.name for tensor in concrete_func.outputs
            if tensor.dtype != tf.dtypes.resource
        ]
        if isinstance(concrete_func.structured_outputs, dict):
            # outputs are sorted, sort structured_outputs the same way
            structured_outputs = sorted(
                concrete_func.structured_outputs.keys())
            tensors_to_rename.update(zip(outputs, structured_outputs))
            logger.info("Output names: %r", structured_outputs)
        else:
            logger.info("Output names: %r", outputs)
    else:
        outputs = output_names
        logger.info(
            "Outputs not left as None; will use provided names not structured output names."
        )

    # Avoid errors due to bug in TF freezing
    removed_resource_to_placeholder, graph_captures_copy, func_captures_copy = \
        _remove_non_variable_resources_from_captures(concrete_func)

    try:
        frozen_graph = from_function(concrete_func, inputs, outputs,
                                     large_model)
    except ValueError as e:
        if any(msg in str(e) for msg in
               ["exceeds maximum protobuf size of 2GB", "string too long"]):
            raise ValueError(err_large_model)
        raise e

    # We might be returning the concrete_func so let's put it back in working order
    _restore_captured_resources(concrete_func, graph_captures_copy,
                                func_captures_copy)

    table_names, key_dtypes, value_dtypes = get_hash_table_info(frozen_graph)
    placeholder_to_table_info = {}
    _get_hash_table_info_from_trackable(imported, table_names, key_dtypes,
                                        value_dtypes,
                                        removed_resource_to_placeholder,
                                        placeholder_to_table_info)

    initialized_tables = {}
    for n, k_dtype, val_dtype in zip(table_names, key_dtypes, value_dtypes):
        h = lookup_ops.hash_table_v2(k_dtype, val_dtype, shared_name=n)
        try:
            k, v = lookup_ops.lookup_table_export_v2(h, k_dtype, val_dtype)
            initialized_tables[n] = (k.numpy(), v.numpy())
        except Exception:  # pylint: disable=broad-except
            logger.warning("Could not initialize table with shared_name = %r",
                           n)

    for placeholder in removed_resource_to_placeholder.values():
        if placeholder not in placeholder_to_table_info:
            logger.error(
                "Could not find table resource to replace placeholder %s",
                placeholder)

    replace_placeholders_with_tables(frozen_graph, placeholder_to_table_info)

    return frozen_graph, inputs, outputs, concrete_func, imported, initialized_tables, tensors_to_rename
Пример #4
0
def _from_saved_model_v2(model_path, input_names, output_names, tag,
                         signature_def, concrete_function_index, large_model):
    """Load tensorflow graph from saved_model."""

    wrn_no_tag = "'--tag' not specified for saved_model. Using --tag serve"
    wrn_empty_tag = "'--tag' value is empty string. Using tag =[[]]"
    wrn_sig_1 = "'--signature_def' not specified, using first signature: %s"
    err_many_sig = "Cannot load multiple signature defs in TF2.x: %s"
    err_no_call = "Model doesn't contain usable concrete functions under  __call__. Try --signature-def instead."
    err_index = "Invalid concrete_function value: %i. Valid values are [0 to %i]"
    err_no_sig = "No signatures found in model. Try --concrete_function instead."
    err_sig_nomatch = "Specified signature not in model %s"
    err_large_model = "model exceeds maximum protobuf size of 2GB. Try running with --large_model flag."

    if tag is None:
        tag = ['serve']
        logger.warning(wrn_no_tag)

    if tag == '':
        tag = [[]]
        logger.warning(wrn_empty_tag)

    utils.make_sure(len(signature_def) < 2, err_many_sig, str(signature_def))
    imported = tf.saved_model.load(model_path, tags=tag)  # pylint: disable=no-value-for-parameter

    all_sigs = imported.signatures.keys()
    valid_sigs = [s for s in all_sigs if not s.startswith("_")]
    logger.info("Signatures found in model: %s",
                "[" + ",".join(valid_sigs) + "].")

    concrete_func = None
    if concrete_function_index is not None:
        utils.make_sure(hasattr(imported, "__call__"), err_no_call)
        utils.make_sure(
            concrete_function_index < len(
                imported.__call__.concrete_functions), err_index,
            concrete_function_index,
            len(imported.__call__.concrete_functions) - 1)
        sig = imported.__call__.concrete_functions[
            concrete_function_index].structured_input_signature[0]
        concrete_func = imported.__call__.get_concrete_function(*sig)
    elif signature_def:
        utils.make_sure(signature_def[0] in valid_sigs, err_sig_nomatch,
                        signature_def[0])
        concrete_func = imported.signatures[signature_def[0]]
    else:
        utils.make_sure(len(valid_sigs) > 0, err_no_sig)
        logger.warning(wrn_sig_1, valid_sigs[0])
        concrete_func = imported.signatures[valid_sigs[0]]

    inputs = [
        tensor.name for tensor in concrete_func.inputs
        if tensor.dtype != tf.dtypes.resource
    ]
    outputs = [
        tensor.name for tensor in concrete_func.outputs
        if tensor.dtype != tf.dtypes.resource
    ]

    # filter by user specified inputs/outputs
    if input_names:
        inputs = list(set(input_names) & set(inputs))
    if output_names:
        outputs = list(set(output_names) & set(outputs))

    # Avoid errors due to bug in TF freezing
    removed_resource_to_placeholder, graph_captures_copy, func_captures_copy = \
        _remove_non_variable_resources_from_captures(concrete_func)

    try:
        frozen_graph = from_function(concrete_func, inputs, outputs,
                                     large_model)
    except ValueError as e:
        if any(msg in str(e) for msg in
               ["exceeds maximum protobuf size of 2GB", "string too long"]):
            raise ValueError(err_large_model)
        raise e

    # We might be returning the concrete_func so let's put it back in working order
    _restore_captured_resources(concrete_func, graph_captures_copy,
                                func_captures_copy)

    table_names, key_dtypes, value_dtypes = get_hash_table_info(frozen_graph)
    placeholder_to_table_info = {}
    if hasattr(imported, '_table') and hasattr(imported._table,
                                               '_create_resource'):  # pylint: disable=protected-access
        # Add tables from saved_model table initializers
        # pylint: disable=protected-access
        initializer = imported._table._create_resource.concrete_functions[
            0].function_def
        new_names, new_k_dtypes, new_v_dtypes = get_hash_table_info(
            initializer.node_def)
        table_names.extend(new_names)
        key_dtypes.extend(new_k_dtypes)
        value_dtypes.extend(new_v_dtypes)
        table_handle = id(imported._table.resource_handle)
        if table_handle in removed_resource_to_placeholder and len(
                new_names) == 1:
            table_info = (new_names[0], new_k_dtypes[0], new_v_dtypes[0])
            placeholder_to_table_info[
                removed_resource_to_placeholder[table_handle]] = table_info

    initialized_tables = {}
    for n, k_dtype, val_dtype in zip(table_names, key_dtypes, value_dtypes):
        h = lookup_ops.hash_table_v2(k_dtype, val_dtype, shared_name=n)
        try:
            k, v = lookup_ops.lookup_table_export_v2(h, k_dtype, val_dtype)
            initialized_tables[n] = (k.numpy(), v.numpy())
        except Exception:  # pylint: disable=broad-except
            logger.warning("Could not initialize table with shared_name = %r",
                           n)

    replace_placeholders_with_tables(frozen_graph, placeholder_to_table_info)

    return frozen_graph, inputs, outputs, concrete_func, imported, initialized_tables