def convert_to_tflite(self, graph_def, feed_dict, outputs):
        if not feed_dict:
            return None  # Can't make TFlite model with no inputs
        tf_reset_default_graph()
        with tf_session() as sess:
            tf.import_graph_def(graph_def, name='')
            sess_inputs = [
                sess.graph.get_tensor_by_name(k) for k in feed_dict.keys()
            ]
            sess_outputs = [sess.graph.get_tensor_by_name(n) for n in outputs]
            converter = tf_lite.TFLiteConverter.from_session(
                sess, sess_inputs, sess_outputs)
            #converter.optimizations = [tf.lite.Optimize.DEFAULT]

            from tensorflow.lite.python.convert import ConverterError
            try:
                tflite_model = converter.convert()
                tflite_path = os.path.join(self.test_data_directory,
                                           self._testMethodName + ".tflite")
                dir_name = os.path.dirname(tflite_path)
                if dir_name:
                    os.makedirs(dir_name, exist_ok=True)
                with open(tflite_path, 'wb') as f:
                    f.write(tflite_model)
                return tflite_path
            except ConverterError:
                return None
Пример #2
0
    def test_tensor_data(self):
        tensors = {
            "empty_tensor": np.array([], dtype=np.float32),
            "multi_dim_empty_tensor": np.array([[], []], dtype=np.float32),
            "scalar": np.array(1., dtype=np.float32),
            "one_item_array": np.array([1.], dtype=np.float32),
            "normal_array": np.array([[1., 2.], [2., 3.]], dtype=np.float32)
        }
        tf_reset_default_graph()
        with tf_session() as sess:
            for n, data in tensors.items():
                tf.constant(data, dtype=tf.float32, name=n)

        for tf_node in sess.graph.get_operations():
            name = tf_node.name
            self.assertTrue(name in tensors.keys())

            self.assertTrue("value" in tf_node.node_def.attr)
            # convert to onnx tensor value
            tensor_value = tf_utils.tf_to_onnx_tensor(
                tf_utils.get_tf_node_attr(tf_node, "value"),
                name=utils.port_name(tf_node.name))
            attr = helper.make_attribute("value", tensor_value)
            # same as node.get_tensor_value(is_list=False)
            actual = numpy_helper.to_array(helper.get_attribute_value(attr))

            expected = tensors[name]

            self.assertTrue(np.array_equal(expected, actual))
Пример #3
0
    def _run_test_case(self, input_names_with_port, output_names_with_port):
        try:
            tf.compat.v1.disable_eager_execution()
        except:  # pylint: disable=bare-except
            pass
        graph_def = None
        with tf_session() as sess:
            # freeze graph
            origin_graph = sess.graph
            variables_lib.global_variables_initializer().run()
            output_name_without_port = [
                n.split(':')[0] for n in output_names_with_port
            ]
            graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_name_without_port)

        tf_reset_default_graph()
        tf.import_graph_def(graph_def, name='')

        # optimize graph
        graph_def = tf_optimize(input_names_with_port, output_names_with_port,
                                sess.graph_def, True)

        with tf_session() as sess:
            if self.config.is_debug_mode:
                if not os.path.exists(self.test_data_directory):
                    os.makedirs(self.test_data_directory)
                model_path = os.path.join(
                    self.test_data_directory,
                    self._testMethodName + "_after_tf_optimize.pb")
                utils.save_protobuf(model_path, graph_def)
                self.logger.debug("created file  %s", model_path)

        tf_reset_default_graph()
        tf.import_graph_def(graph_def, name='')

        with tf_session() as sess:
            inferred_graph = infer_shape_for_graph(sess.graph)
            # compare each operation
            for op in origin_graph.get_operations():
                inferred_op = None
                try:
                    inferred_op = inferred_graph.get_operation_by_name(op.name)
                except KeyError:
                    continue
                self._compare_shape_for_op(op, inferred_op)
Пример #4
0
def from_graph_def(graph_def, name=None, input_names=None, output_names=None, opset=None, custom_ops=None,
                   custom_op_handlers=None, custom_rewriter=None, inputs_as_nchw=None, extra_opset=None,
                   shape_override=None, target=None, large_model=False, tensors_to_rename=None, output_path=None):
    """Returns a ONNX model_proto for a tensorflow graphdef.

    Args:
        graph_def: the graphdef we want to convert
        input_names: list of input names
        output_names: list of output names
        name: A name for the graph
        opset: the opset to be used for the ONNX model, default is the latest
        target: list of workarounds applied to help certain platforms
        custom_op_handlers: dictionary of custom ops handlers
        custom_rewriter: list of custom graph rewriters
        extra_opset: list of extra opset's, for example the opset's used by custom ops
        shape_override: dict with inputs that override the shapes given by tensorflow
        inputs_as_nchw: transpose inputs in list from nchw to nhwc
        large_model: use the ONNX external tensor storage format
        output_path: save model to output_path

    Returns:
        An ONNX model_proto and an external_tensor_storage dict.
    """
    if not input_names:
        raise ValueError("input_names needs to be provided")
    if not output_names:
        raise ValueError("output_names needs to be provided")
    if not name:
        name = "unknown"
    initialized_tables = None

    with tf.device("/cpu:0"):
        with tf.Graph().as_default() as tf_graph:
            with tf_loader.tf_session(graph=tf_graph) as sess:
                tf.import_graph_def(graph_def, name='')
                frozen_graph = tf_loader.freeze_session(sess, input_names=input_names, output_names=output_names)
                input_names = tf_loader.inputs_without_resource(sess, input_names)
                frozen_graph = tf_loader.tf_optimize(input_names, output_names, graph_def)

    model_proto, external_tensor_storage = _convert_common(
        frozen_graph,
        name=name,
        continue_on_error=True,
        target=None,
        opset=opset,
        custom_op_handlers=custom_ops,
        extra_opset=extra_opset,
        shape_override=shape_override,
        input_names=input_names,
        output_names=output_names,
        inputs_as_nchw=inputs_as_nchw,
        large_model=large_model,
        tensors_to_rename=tensors_to_rename,
        initialized_tables=initialized_tables,
        output_path=output_path)

    return model_proto, external_tensor_storage
    def test_parse_tflite_graph(self):

        def func(a, b, c):
            alpha = tf.constant(1.1, dtype=tf.float32)
            beta = tf.constant(2.3, dtype=tf.float32)
            mul1 = tf.multiply(alpha, tf.matmul(a, b))
            mul2 = tf.multiply(beta, c)
            x_ = mul1 + mul2
            return tf.identity(x_, name="output")

        inp_shapes = [[2, 3], [3, 1], [2, 1]]
        inp_dtypes = [tf.float32, tf.float32, tf.float32]
        names = ['a', 'b', 'c']
        names_with_port = ['a:0', 'b:0', 'c:0']
        output_names = ['output']
        output_names_with_port = ['output:0']

        input_tensors = [tf.TensorSpec(shape=s, dtype=d, name=n) for s, d, n in zip(inp_shapes, inp_dtypes, names)]

        concrete_func = tf.function(func, input_signature=tuple(input_tensors))
        concrete_func = concrete_func.get_concrete_function()
        graph_def = from_function(concrete_func,
                                  input_names=names_with_port,
                                  output_names=output_names_with_port)
        with tf_session() as sess:
            tf.import_graph_def(graph_def, name='')
            sess_inputs = [sess.graph.get_tensor_by_name(k) for k in names_with_port]
            sess_outputs = [sess.graph.get_tensor_by_name(n) for n in output_names_with_port]
            converter = tf.compat.v1.lite.TFLiteConverter.from_session(sess, sess_inputs, sess_outputs)

        tflite_model = converter.convert()
        tflite_path = os.path.join(self.test_data_directory, self._testMethodName + ".tflite")
        dir_name = os.path.dirname(tflite_path)
        tflite_model = converter.convert()
        os.makedirs(dir_name, exist_ok=True)
        with open(tflite_path, 'wb') as f:
            f.write(tflite_model)

        tflite_graphs, opcodes_map, model, tensor_shapes = read_tflite_model(tflite_path)
        self.assertEqual(1, len(tflite_graphs))
        onnx_nodes, op_cnt, attr_cnt, output_shapes, dtypes, inputs, outputs, _ = \
            parse_tflite_graph(tflite_graphs[0], opcodes_map, model, tensor_shapes_override=tensor_shapes)
        self.assertEqual(2, op_cnt['MUL'])
        self.assertEqual(1, op_cnt['ADD'])
        self.assertEqual(1, op_cnt['FULLY_CONNECTED'])

        self.assertEqual(1, attr_cnt['WeightsFormat'])
        self.assertEqual(names, inputs)
        self.assertEqual(output_names, outputs)

        for name, shape, dtype in zip(names, inp_shapes, inp_dtypes):
            self.assertEqual(shape, output_shapes[name])
            self.assertEqual(dtype, dtypes[name])

        self.assertTrue(len(onnx_nodes) >= 4)
Пример #6
0
def compute_const_folding_using_tf(g, const_node_values, graph_outputs):
    """Find nodes with constant inputs and compute their values using TF"""
    if const_node_values is None:
        const_node_values = {}
    graph_outputs = set(graph_outputs)
    from tf2onnxnightly.tf_loader import tf_session, tf_placeholder  # pylint: disable=import-outside-toplevel

    ops = g.get_operations()
    outputs_to_values = {}
    outputs_to_dtypes = {}
    outputs_to_shapes = {}
    shape_node_outputs = {}

    def is_small_shape(x):
        return np.product(x) <= 1000

    def is_huge_shape(x):
        return np.product(x) >= 1000000

    for node in ops:
        # Load values of constants. Use const_node_values if possible
        if node.type in ["Const", "ConstV2"]:
            tensor = node.node_def.attr["value"].tensor
            if node.name in const_node_values:
                tensor.tensor_content = const_node_values[node.name]
            outputs_to_values[node.outputs[0].name] = get_tf_tensor_data(
                tensor)
            outputs_to_dtypes[node.outputs[0].name] = node.outputs[0].dtype
        for out in node.outputs:
            outputs_to_shapes[out.name] = get_tf_tensor_shape(out)

    for node in ops:
        if node.type == "Shape":
            shape = outputs_to_shapes.get(node.inputs[0].name)
            if shape is not None:
                shape_node_outputs[node.outputs[0].name] = shape

    unneeded_outputs = set()
    progress = True
    while progress:
        progress = False
        for node in ops:
            # Find ops with constant inputs and compute their values
            input_names = [i.name for i in node.inputs]
            output_names = [i.name for i in node.outputs]
            if node.type == 'StridedSlice' and input_names[0] in shape_node_outputs \
                                           and output_names[0] not in outputs_to_values:
                shape = shape_node_outputs[input_names[0]]
                i = get_index_from_strided_slice_of_shape(
                    node, outputs_to_values)
                if i is not None and 0 <= i < len(
                        shape) and shape[i] is not None:
                    np_dtype = map_onnx_to_numpy_type(
                        map_tf_dtype(node.outputs[0].dtype))
                    outputs_to_values[output_names[0]] = np.array(
                        shape[i], dtype=np_dtype)
                    outputs_to_dtypes[
                        node.outputs[0].name] = node.outputs[0].dtype
                    progress = True
            can_fold = node.type not in [
                'Enter', 'Placeholder', 'PlaceholderWithDefault'
            ]
            can_fold = can_fold and not node.type.startswith('Random')
            can_fold = can_fold and len(input_names) > 0 and all(
                inp in outputs_to_values for inp in input_names)
            # We can only fold nodes with a single output
            can_fold = can_fold and len(
                output_names) == 1 and output_names[0] not in outputs_to_values
            # Skip if value already computed, used, and discarded
            can_fold = can_fold and output_names[
                0] not in unneeded_outputs and output_names[
                    0] not in graph_outputs
            if can_fold:
                # Make a mini graph containing just the node to fold
                g2 = tf.Graph()
                with g2.as_default():
                    for inp in input_names:
                        tf_placeholder(outputs_to_dtypes[inp],
                                       name=inp.split(':')[0])
                    mini_graph_def = g2.as_graph_def()
                    mini_graph_def.node.append(node.node_def)
                g3 = tf.Graph()
                with g3.as_default():
                    feed_dict = {}
                    inp_shapes = []
                    for inp in input_names:
                        inp_np = outputs_to_values[inp]
                        feed_dict[inp] = inp_np
                        inp_shapes.append(inp_np.shape)
                    try:
                        with tf_session() as sess:
                            tf.import_graph_def(mini_graph_def, name='')
                            results = sess.run(output_names,
                                               feed_dict=feed_dict)
                        if is_huge_shape(results[0].shape) and all(
                                is_small_shape(inp) for inp in inp_shapes):
                            logger.debug(
                                "Skipping folding of node %s since result shape %s is much larger "
                                "than input shapes %s", node.name,
                                results[0].shape, inp_shapes)
                        else:
                            outputs_to_values[output_names[0]] = results[0]
                            outputs_to_dtypes[
                                output_names[0]] = node.outputs[0].dtype
                            progress = True
                    except Exception:  # pylint: disable=broad-except
                        logger.debug("Could not fold node %s", node.name)
        unneeded_outputs.update(outputs_to_values.keys())
        for node in ops:
            # Mark values we need to keep
            input_names = [i.name for i in node.inputs]
            output_names = [i.name for i in node.outputs]
            if len(output_names) == 1 and output_names[0] in outputs_to_values:
                continue
            for i in input_names:
                if i in unneeded_outputs:
                    unneeded_outputs.remove(i)
        for node in unneeded_outputs:
            # Remove unneeded values to prevent memory usage explosion
            if node in outputs_to_values:
                del outputs_to_values[node]
                del outputs_to_dtypes[node]

    for node in ops:
        # We don't need the constants any more
        if node.type in ["Const", "ConstV2"
                         ] and node.outputs[0].name in outputs_to_values:
            del outputs_to_values[node.outputs[0].name]
            del outputs_to_dtypes[node.outputs[0].name]

    logger.info("Computed %d values for constant folding",
                len(outputs_to_values))
    return outputs_to_values, outputs_to_dtypes
    def run_test_case(self,
                      func,
                      feed_dict,
                      input_names_with_port,
                      output_names_with_port,
                      rtol=1e-07,
                      atol=1e-5,
                      convert_var_to_const=True,
                      constant_fold=True,
                      check_value=True,
                      check_shape=True,
                      check_dtype=True,
                      process_args=None,
                      onnx_feed_dict=None,
                      graph_validator=None,
                      as_session=False,
                      large_model=False,
                      premade_placeholders=False):
        test_tf = not self.config.skip_tf_tests
        test_tflite = not self.config.skip_tflite_tests
        run_tfl_consistency_test = test_tf and test_tflite and self.config.run_tfl_consistency_test
        # optional - passed to process_tf_graph
        if process_args is None:
            process_args = {}
        # optional - pass distinct feed_dict to onnx runtime
        if onnx_feed_dict is None:
            onnx_feed_dict = feed_dict
        input_names_with_port = list(feed_dict)
        tf_reset_default_graph()
        if tf_lite is None:
            test_tflite = False
        g = None

        expected, graph_def, initialized_tables = \
            self.freeze_and_run_tf(func, feed_dict, output_names_with_port, as_session,
                                   premade_placeholders, large_model, constant_fold)

        if test_tflite:
            tflite_path = self.convert_to_tflite(graph_def, feed_dict,
                                                 output_names_with_port)
            test_tflite = tflite_path is not None

        if test_tf:
            tf_reset_default_graph()
            with tf_session() as sess:
                const_node_values = None
                if large_model:
                    const_node_values = compress_graph_def(graph_def)
                tf.import_graph_def(graph_def, name='')

                g = process_tf_graph(sess.graph,
                                     opset=self.config.opset,
                                     input_names=list(feed_dict.keys()),
                                     output_names=output_names_with_port,
                                     target=self.config.target,
                                     const_node_values=const_node_values,
                                     initialized_tables=initialized_tables,
                                     **process_args)
                g = optimizer.optimize_graph(g, catch_errors=False)
                actual = self.run_backend(g, output_names_with_port,
                                          onnx_feed_dict, large_model)

            self.assert_results_equal(expected, actual, rtol, atol,
                                      check_value, check_shape, check_dtype)

            if graph_validator:
                self.assertTrue(graph_validator(g))

        if test_tflite:
            tfl_results, tfl_outputs = self.run_tflite(tflite_path, feed_dict)
            test_tflite = tfl_results is not None

        if test_tflite:
            if run_tfl_consistency_test:
                self.assert_results_equal(expected, tfl_results, rtol, atol,
                                          check_value, check_shape,
                                          check_dtype)

            tfl_process_args = process_args.copy()
            if 'inputs_as_nchw' in tfl_process_args:
                nchw_inps_with_port = tfl_process_args['inputs_as_nchw']
                tfl_process_args['inputs_as_nchw'] = [
                    i.split(':')[0] for i in nchw_inps_with_port
                ]
            input_names_without_port = [
                inp.split(':')[0] for inp in feed_dict.keys()
            ]

            g = process_tf_graph(None,
                                 opset=self.config.opset,
                                 input_names=input_names_without_port,
                                 output_names=tfl_outputs,
                                 target=self.config.target,
                                 tflite_path=tflite_path,
                                 **tfl_process_args)
            g = optimizer.optimize_graph(g)
            onnx_feed_dict_without_port = {
                k.split(':')[0]: v
                for k, v in onnx_feed_dict.items()
            }
            onnx_from_tfl_res = self.run_backend(g,
                                                 tfl_outputs,
                                                 onnx_feed_dict_without_port,
                                                 postfix="_from_tflite")

            self.assert_results_equal(tfl_results, onnx_from_tfl_res, rtol,
                                      atol, check_value, check_shape,
                                      check_dtype)

            if graph_validator:
                self.assertTrue(graph_validator(g))

        if g is None:
            raise unittest.SkipTest("Both tf and tflite marked to skip")
        return g
    def freeze_and_run_tf(self, func, feed_dict, outputs, as_session,
                          premade_placeholders, large_model, constant_fold):
        np.random.seed(1)  # Make it reproducible.
        clean_feed_dict = {utils.node_name(k): v for k, v in feed_dict.items()}
        if is_tf2() and not as_session:
            #
            # use eager to execute the tensorflow func
            #
            # numpy doesn't work for all ops, make it tf.Tensor()
            input_tensors = [
                tf.TensorSpec(shape=v.shape,
                              dtype=tf.as_dtype(v.dtype),
                              name=utils.node_name(k))
                for k, v in feed_dict.items()
            ]
            input_list = [
                tf.convert_to_tensor(v,
                                     dtype=tf.as_dtype(v.dtype),
                                     name=utils.node_name(k))
                for k, v in feed_dict.items()
            ]
            tf.random.set_seed(1)
            result = func(*input_list)
            if isinstance(result, (list, tuple)):
                # list or tuple
                result = [x.numpy() for x in result]
            else:
                # single result
                result = [result.numpy()]

            # now make the eager functions a graph
            concrete_func = tf.function(func,
                                        input_signature=tuple(input_tensors))
            concrete_func = concrete_func.get_concrete_function()
            graph_def = from_function(concrete_func,
                                      input_names=list(feed_dict.keys()),
                                      output_names=outputs,
                                      large_model=large_model)
            initialized_tables = None
        else:
            #
            # use graph to execute the tensorflow func
            #
            with tf_session() as sess:
                tf_set_random_seed(1)
                input_list = []
                if not premade_placeholders:
                    for k, v in clean_feed_dict.items():
                        input_list.append(
                            tf_placeholder(name=k,
                                           shape=v.shape,
                                           dtype=tf.as_dtype(v.dtype)))
                func(*input_list)
                variables_lib.global_variables_initializer().run()
                tf_tables_initializer().run()

                output_dict = []
                for out_name in outputs:
                    output_dict.append(sess.graph.get_tensor_by_name(out_name))
                result = sess.run(output_dict, feed_dict=feed_dict)
                graph_def = freeze_session(sess,
                                           input_names=list(feed_dict.keys()),
                                           output_names=outputs)
                table_names, key_dtypes, value_dtypes = get_hash_table_info(
                    graph_def)
                initialized_tables = {}
                for n, k_dtype, val_dtype in zip(table_names, key_dtypes,
                                                 value_dtypes):
                    h = lookup_ops.hash_table_v2(k_dtype,
                                                 val_dtype,
                                                 shared_name=n)
                    k, v = lookup_ops.lookup_table_export_v2(
                        h, k_dtype, val_dtype)
                    initialized_tables[n] = (sess.run(k), sess.run(v))

            tf_reset_default_graph()
            with tf_session() as sess:
                tf.import_graph_def(graph_def, name='')
                graph_def = tf_optimize(list(feed_dict.keys()),
                                        outputs,
                                        graph_def,
                                        fold_constant=constant_fold)

        model_path = os.path.join(
            self.test_data_directory,
            self._testMethodName + "_after_tf_optimize.pb")
        utils.save_protobuf(model_path, graph_def)
        self.logger.debug("created file  %s", model_path)
        return result, graph_def, initialized_tables
    def run_test(self,
                 name,
                 backend="caffe2",
                 onnx_file=None,
                 opset=None,
                 extra_opset=None,
                 perf=None,
                 fold_const=None):
        """Run complete test against backend."""
        self.perf = perf

        # get the model
        if self.url:
            _, dir_name = self.download_model()
            logger.info("Downloaded to %s", dir_name)
            model_path = os.path.join(
                dir_name, self.local) if self.local != "." else dir_name
        else:
            model_path = self.local

        logger.info("Load model from %s", model_path)
        input_names = list(self.input_names.keys())
        initialized_tables = {}
        outputs = self.output_names
        tflite_path = None
        to_rename = None
        if self.model_type in ["checkpoint"]:
            graph_def, input_names, outputs = tf_loader.from_checkpoint(
                model_path, input_names, outputs)
        elif self.model_type in ["saved_model"]:
            loaded = tf_loader.from_saved_model(
                model_path,
                None,
                None,
                self.tag,
                self.signatures,
                self.concrete_function,
                self.large_model,
                return_concrete_func=not self.run_tf_frozen,
                return_initialized_tables=True,
                return_tensors_to_rename=True)
            if not self.run_tf_frozen:
                # Must maintain ref to imported since concrete_func uses weak refs
                # pylint: disable=unused-variable
                graph_def, input_names, outputs, concrete_func, imported, initialized_tables, to_rename = loaded
            else:
                graph_def, input_names, outputs, initialized_tables, to_rename = loaded
        elif self.model_type in ["keras"]:
            graph_def, input_names, outputs = tf_loader.from_keras(
                model_path, input_names, outputs)
        elif self.model_type in ["tflite"]:
            tflite_path = model_path
            graph_def = None
        else:
            graph_def, input_names, outputs = tf_loader.from_graphdef(
                model_path, input_names, outputs)

        if utils.is_debug_mode():
            utils.save_protobuf(
                os.path.join(TEMP_DIR, name + "_after_tf_optimize.pb"),
                graph_def)

        if tflite_path is not None:
            inputs = {}
            for k in input_names:
                v = self.input_names[k]
                inputs[k] = self.make_input(v)

            interpreter = tf.lite.Interpreter(tflite_path)
            input_details = interpreter.get_input_details()
            output_details = interpreter.get_output_details()
            input_name_to_index = {
                n['name'].split(':')[0]: n['index']
                for n in input_details
            }
            for k, v in inputs.items():
                interpreter.resize_tensor_input(input_name_to_index[k],
                                                v.shape)
            interpreter.allocate_tensors()

            def run_tflite():
                for k, v in inputs.items():
                    interpreter.set_tensor(input_name_to_index[k], v)
                interpreter.invoke()
                result = [
                    interpreter.get_tensor(output['index'])
                    for output in output_details
                ]
                return result

            tf_results = run_tflite()
            if self.perf:
                logger.info("Running TFLite perf")
                start = time.time()
                for _ in range(PERFITER):
                    _ = run_tflite()
                self.tf_runtime = time.time() - start
            logger.info("TFLite OK")

        if not self.run_tf_frozen:
            inputs = {}
            for k in input_names:
                v = self.input_names[k]
                inputs[k.split(":")[0]] = tf.constant(self.make_input(v))
            tf_func = tf.function(concrete_func)
            logger.info("Running TF")
            tf_results_d = tf_func(**inputs)
            # If there is only a single output a dict might not be returned
            if isinstance(tf_results_d, tf.Tensor):
                tf_results = [tf_results_d]
            else:
                tf_results = [
                    tf_results_d[k] for k in sorted(tf_results_d.keys())
                ]
            tf_results = [tf_res.numpy() for tf_res in tf_results]
            if self.perf:
                logger.info("Running TF perf")
                start = time.time()
                for _ in range(PERFITER):
                    _ = concrete_func(**inputs)
                self.tf_runtime = time.time() - start
            logger.info("TensorFlow OK")

        shape_override = {}
        const_node_values = None
        tf_graph = None

        if graph_def is not None:
            inputs = {}
            tf_reset_default_graph()

            with tf.Graph().as_default() as tf_graph:
                from tf2onnxnightly.tf_utils import compress_graph_def
                if self.large_model:
                    const_node_values = compress_graph_def(graph_def)
                tf.import_graph_def(graph_def, name='')

            with tf_session(graph=tf_graph) as sess:
                # create the input data
                for k in input_names:
                    v = self.input_names[k]
                    t = sess.graph.get_tensor_by_name(k)
                    expected_dtype = tf.as_dtype(t.dtype).name
                    if isinstance(v, six.text_type) and v.startswith("np."):
                        np_value = eval(v)  # pylint: disable=eval-used
                        if expected_dtype != np_value.dtype:
                            logger.warning(
                                "dtype mismatch for input %s: expected=%s, actual=%s",
                                k, expected_dtype, np_value.dtype)
                        inputs[k] = np_value.astype(expected_dtype)
                    else:
                        if expected_dtype == "string":
                            inputs[k] = self.make_input(v).astype(
                                np.str).astype(np.object)
                        else:
                            inputs[k] = self.make_input(v).astype(
                                expected_dtype)

                if self.force_input_shape:
                    for k, v in inputs.items():
                        shape_override[k] = list(v.shape)

                # run the model with tensorflow
                if self.skip_tensorflow:
                    logger.info("TensorFlow SKIPPED")
                elif self.run_tf_frozen:
                    tf_results = self.run_tensorflow(sess, inputs)
                    logger.info("TensorFlow OK")
                tf_graph = sess.graph

        model_proto = None
        if self.skip_conversion:
            if self.large_model:
                external_tensor_storage = ExternalTensorStorage()
                model_proto = utils.model_proto_from_zip(
                    self.converted_model, external_tensor_storage)
            else:
                external_tensor_storage = None
                model_proto = utils.model_proto_from_file(self.converted_model)
            logger.info("ONNX loaded from file")
        else:
            try:
                # convert model to onnx
                onnx_graph = self.to_onnx(
                    tf_graph,
                    opset=opset,
                    extra_opset=extra_opset,
                    shape_override=shape_override,
                    input_names=inputs.keys(),
                    const_node_values=const_node_values,
                    initialized_tables=initialized_tables,
                    tflite_path=tflite_path,
                    tensors_to_rename=to_rename)
                onnx_graph = optimizer.optimize_graph(onnx_graph)
                print("ONNX", onnx_graph.dump_node_statistics())
                external_tensor_storage = ExternalTensorStorage(
                ) if self.large_model else None
                model_proto = onnx_graph.make_model(
                    "converted from tf2onnx",
                    external_tensor_storage=external_tensor_storage)
                logger.info("To_ONNX, OK")
                if onnx_file:
                    self.create_onnx_file(name, model_proto, inputs, onnx_file,
                                          external_tensor_storage)
                if self.converted_model:
                    if self.large_model:
                        utils.save_onnx_zip(self.converted_model, model_proto,
                                            external_tensor_storage)
                    else:
                        utils.save_protobuf(self.converted_model, model_proto)
                    logger.info("Created %s", self.converted_model)

            except Exception:
                logger.error("To_ONNX FAIL", exc_info=1)
                return False

        try:
            onnx_results = None
            if backend == "caffe2":
                onnx_results = self.run_caffe2(name, model_proto, inputs)
            elif backend == "onnxruntime":
                if to_rename is None:
                    struc_outputs = self.output_names
                else:
                    struc_outputs = [
                        to_rename.get(k, k) for k in self.output_names
                    ]
                onnx_results = self.run_onnxruntime(name, model_proto, inputs,
                                                    struc_outputs,
                                                    external_tensor_storage)
            else:
                raise ValueError("unknown backend")
            logger.info("Run_ONNX OK")

            try:
                if self.skip_tensorflow:
                    logger.info("Results: skipped tensorflow")
                else:
                    if self.check_only_shape:
                        for tf_res, onnx_res in zip(tf_results, onnx_results):
                            np.testing.assert_array_equal(
                                tf_res.shape, onnx_res.shape)
                    else:
                        for tf_res, onnx_res in zip(tf_results, onnx_results):
                            good_cnt = np.count_nonzero(
                                np.isclose(tf_res,
                                           onnx_res,
                                           rtol=self.rtol,
                                           atol=self.atol))
                            bad_cnt = tf_res.size - good_cnt
                            if bad_cnt > self.ptol / 100 * tf_res.size:
                                # Prints a nice error message with stats
                                np.testing.assert_allclose(tf_res,
                                                           onnx_res,
                                                           rtol=self.rtol,
                                                           atol=self.atol)
                    logger.info("Results: OK")
                return True
            except Exception:
                logger.error("Results", exc_info=1)

        except Exception:
            logger.error("Run_ONNX FAIL", exc_info=1)

        return False