Пример #1
0
def get_labels_seg(pcl_gt, pcl_pred, metric):
    ''' 
    Point wise correspondences between two point sets
    args:
	pcl_gt: (batch_size, n_pts, 3), gt pcl
	pcl_pred: (batch_size, n_pts, 3), predicted pcl
	metric: str, 'chamfer' or 'emd'
		metric to be considered for returning corresponding points
    returns:
	pts_match_fwd: gt to pred point-wise correspondence
		       each point in gt is mapped to nearest point in pred
	pts_match_bwd: pred to gt point-wise correspondence
		       each point in pred is mapped to nearest point in gt
	pts_match: one-to-one mapping between pred and gt, acc. to emd
    '''
    if metric == 'chamfer':
	_, pts_match_fwd, _, pts_match_bwd = tf_nndistance.nn_distance(\
			pcl_gt, pcl_pred) 
	return pts_match_fwd, pts_match_bwd
    elif metric == 'emd':
	pts_match, _ = auction_match(pcl_gt, pcl_pred)
	return pts_match
    else:
	print 'Undefined metric'
	return None 
Пример #2
0
def get_metrics(gt_pcl, pred_pcl, args):
    '''
    Obtain chamfer and emd distances between GT and predicted pcl
    args:
            gt_pcl: float, (BS,N_PTS,3); GT point cloud
            pred_pcl: float, (BS,N_PTS,3); predicted point cloud
    returns:
            dists_forward: float, (BS); forward chamfer distance
            dists_backward: float, (BS); backward chamfer distance
            chamfer_distance: float, (BS); chamfer distance
            emd: float, (BS); earth mover's distance
    '''
    dists_forward, _, dists_backward, _ = tf_nndistance.nn_distance(
        gt_pcl, pred_pcl)
    dists_forward = tf.reduce_mean(
        dists_forward, axis=1)  # (BATCH_SIZE,args.N_PTS) --> (BATCH_SIZE)
    dists_backward = tf.reduce_mean(dists_backward, axis=1)
    chamfer_distance = dists_backward + dists_forward

    X, _ = tf.meshgrid(range(args.batch_size),
                       range(args.OUTPUT_PCL_SIZE),
                       indexing='ij')
    ind, _ = auction_match(pred_pcl,
                           gt_pcl)  # Ind corresponds to points in pcl_gt
    ind = tf.stack((X, ind), -1)
    emd = tf.reduce_mean(
        tf.reduce_sum((tf.gather_nd(gt_pcl, ind) - pred_pcl)**2, axis=-1),
        axis=1
    )  # (BATCH_SIZE,args.N_PTS,3) --> (BATCH_SIZE,args.N_PTS) --> (BATCH_SIZE)
    return dists_forward, dists_backward, chamfer_distance, emd
Пример #3
0
def get_loss(reconstructed_points, original_points, type='chamfer', w=0, mu=0, sigma=0,fv=0, add_fv_loss=False):

    n_points = reconstructed_points.get_shape()[1].value
    d = tf.constant(0)
    matched_out = tf.constant(0)

    if type == 'chamfer':
        #Chamfer Distance
        s1_s2 = tf.reduce_sum(tf.reduce_min(pairwise_diff(reconstructed_points, original_points), axis=2), axis=1)
        s2_s1 = tf.reduce_sum(tf.reduce_min(pairwise_diff(original_points, reconstructed_points), axis=2), axis=1)
        loss = (s1_s2 + s2_s1)/ n_points
    elif type == 'emd':
        matchl_out, matchr_out = tf_auctionmatch.auction_match(original_points, reconstructed_points)
        matched_out = tf_sampling.gather_point(reconstructed_points, matchl_out)
        d = tf.sqrt(tf.reduce_sum(tf.square(original_points - matched_out), axis=2))
        loss = tf.reduce_sum(d,axis=1)/ n_points
    elif type=='joint':
        #Use both loss functions
        s1_s2 = tf.reduce_sum(tf.reduce_min(pairwise_diff(reconstructed_points, original_points), axis=2), axis=1)
        s2_s1 = tf.reduce_sum(tf.reduce_min(pairwise_diff(original_points, reconstructed_points), axis=2), axis=1)
        loss_chamfer = s1_s2 + s2_s1

        matchl_out, matchr_out = tf_auctionmatch.auction_match(original_points, reconstructed_points)
        matched_out = tf_sampling.gather_point(reconstructed_points, matchl_out)
        d = tf.sqrt(tf.reduce_sum(tf.square(original_points - matched_out), axis=2))
        loss_emd = tf.reduce_sum(d,axis=1)
        loss = (loss_chamfer + loss_emd) / n_points

    loss = tf.reduce_mean(loss)
    tf.summary.scalar('emd_loss', loss)

    if add_fv_loss:
        fv_rec = tf_util.get_fv_tf_no_mvn(reconstructed_points, w, mu, sigma, flatten=False)
        fv_loss = tf.nn.l2_loss(fv_rec-fv)
        tf.summary.scalar('fv_loss', fv_loss)
        loss = loss + 0.001*fv_loss





    # tf.summary.scalar('weight_decay_loss', weight_decay_loss)
    return loss, d, matched_out
def get_emd_loss(pred, pc, radius):
    """ pred: BxNxC,
        label: BxN, """
    batch_size = pred.get_shape()[0].value
    matchl_out, matchr_out = tf_auctionmatch.auction_match(pred, pc)
    matched_out = tf_sampling.gather_point(pc, matchl_out)
    dist = tf.reshape((pred - matched_out)**2, shape=(batch_size, -1))
    dist = tf.reduce_mean(dist, axis=1, keep_dims=True)
    dist_norm = dist / radius
    emd_loss = tf.reduce_mean(dist_norm)
    return emd_loss
Пример #5
0
def get_emd_dist(gt_pcl, pred_pcl):
    '''
    Calculate emd between two point clouds
    Args:
        gt_pcl: (BS,N_pts,3); GT point cloud
        pred_pcl: (BS,N_pts,3); predicted point cloud
    Returns:
        emd: (BS); averaged emd
    '''
    batch_size, num_points = (gt_pcl.shape)[:2]
    X,_ = tf.meshgrid(range(batch_size), range(num_points), indexing='ij')
    ind, _ = auction_match(pred_pcl, gt_pcl) # Ind corresponds to points in pcl_gt
    ind = tf.stack((X, ind), -1)
    emd = tf.reduce_mean(tf.reduce_sum((tf.gather_nd(gt_pcl, ind) - pred_pcl)**2, axis=-1), axis=1) # (BATCH_SIZE,NUM_POINTS,3) --> (BATCH_SIZE,NUM_POINTS) --> (BATCH_SIZE)
    return emd
Пример #6
0
def get_rec_metrics(gt_pcl, pred_pcl, batch_size=10, num_points=1024):
    '''
    Calculate chamfer and emd metrics
    args:
            gt_pcl: float, (BS,N_PTS,3); ground truth point cloud
            pred_pcl: float, (BS,N_PTS,3); predicted point cloud
    '''
    dists_forward, _, dists_backward, _ = tf_nndistance.nn_distance(gt_pcl, 
            pred_pcl)
    dists_forward = tf.reduce_mean(tf.sqrt(dists_forward), axis=1) # (B, )
    dists_backward = tf.reduce_mean(tf.sqrt(dists_backward), axis=1) # (B, )
    chamfer_distance = dists_backward + dists_forward

    X,_ = tf.meshgrid(range(batch_size), range(num_points), indexing='ij')
    ind, _ = auction_match(pred_pcl, gt_pcl) # Ind corresponds to points in pcl_gt
    print X.get_shape()
    print ind.get_shape()
    ind = tf.stack((X, ind), -1)
    print gt_pcl.get_shape()
    print ind.get_shape()
    print 
    emd = tf.reduce_mean(tf.sqrt(tf.reduce_sum((tf.gather_nd(gt_pcl, ind) - \
            pred_pcl)**2, axis=-1)), axis=1) # (BATCH_SIZE,NUM_POINTS,3) --> (BATCH_SIZE,NUM_POINTS) --> (BATCH_SIZE)
    return dists_forward, dists_backward, chamfer_distance, emd