def test_unmasked_constrained_viterbi_tags(self): # TODO: using BILUO tag scheme instead of BIO. # So that, transition from tags to end can be tested. raw_constraints = np.array([ # O B-X I-X B-Y I-Y start end [ 1, 1, 0, 1, 0, 0, 1], # O [ 1, 1, 1, 1, 0, 0, 1], # B-X [ 1, 1, 1, 1, 0, 0, 1], # I-X [ 1, 1, 0, 1, 1, 0, 1], # B-Y [ 1, 1, 0, 1, 1, 0, 1], # I-Y [ 1, 1, 0, 1, 0, 0, 0], # start [ 0, 0, 0, 0, 0, 0, 0], # end ]) constraints = np.argwhere(raw_constraints > 0).tolist() # transitions = np.array([ # # O B-X I-X B-Y I-Y # [ 0.1, 0.2, 0.3, 0.4, 0.5], # O # [ 0.8, 0.3, 0.1, 0.7, 0.9], # B-X # [ -0.3, 2.1, -5.6, 3.4, 4.0], # I-X # [ 0.2, 0.4, 0.6, -0.3, -0.4], # B-Y # [ 1.0, 1.0, 1.0, 1.0, 1.0] # I-Y # ]) transitions = np.ones([5, 5]) # transitions_from_start = np.array( # # O B-X I-X B-Y I-Y # [ 0.1, 0.2, 0.3, 0.4, 0.6] # start # ) transitions_from_start = np.ones(5) # transitions_to_end = np.array( # [ # # end # -0.1, # O # -0.2, # B-X # 0.3, # I-X # -0.4, # B-Y # -0.4 # I-Y # ] # ) transitions_to_end = np.ones(5) logits = np.array([ [ # constraint transition from start to tags # O B-X I-X B-Y I-Y [ 0., .1, 1., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 1., 0., 0.] ], [ # constraint transition from tags to tags # O B-X I-X B-Y I-Y [ 0., 1., 0., 0., 0.], [ 0., 0., .1, 1., 0.], [ 0., 0., 1., 0., 0.] ] ]) crf = CRF( units=5, use_kernel=False, # disable kernel transform chain_initializer=initializers.Constant(transitions), use_boundary=True, # left_boundary_initializer=initializers.Constant(transitions_from_start), # right_boundary_initializer=initializers.Constant(transitions_to_end), transition_constraint=constraints, name="crf_layer" ) crf.left_boundary = crf.add_weight( shape=(5,), name="left_boundary", initializer=initializers.Constant(self.transitions_from_start), ) crf.right_boundary = crf.add_weight( shape=(5,), name="right_boundary", initializer=initializers.Constant(self.transitions_to_end), ) crf_loss_instance = ConditionalRandomFieldLoss() model = Sequential() model.add(layers.Input(shape=(3, 5))) model.add(crf) model.compile('adam', loss={"crf_layer": crf_loss_instance}) for layer in model.layers: print(layer.get_config()) print(dict(zip(layer.weights, layer.get_weights()))) # Get just the tags from each tuple of (tags, score). viterbi_tags = model.predict(logits) # Now the tags should respect the constraints expected_tags = [ [1, 2, 2], # B-X I-X I-X [1, 2, 2] # B-X I-X I-X ] # if constrain not work it should be: # [ # [2, 4, 3], # [2, 3, 0] # ] # test assert np.testing.assert_equal(viterbi_tags, expected_tags)
class TestConditionalRandomField(unittest.TestCase): def setUp(self): super().setUp() self.logits = np.array([ [[0, 0, .5, .5, .2], [0, 0, .3, .3, .1], [0, 0, .9, 10, 1]], [[0, 0, .2, .5, .2], [0, 0, 3, .3, .1], [0, 0, .9, 1, 1]], ]) self.tags = np.array([ [2, 3, 4], [3, 2, 2] ]) self.transitions = np.array([ [0.1, 0.2, 0.3, 0.4, 0.5], [0.8, 0.3, 0.1, 0.7, 0.9], [-0.3, 2.1, -5.6, 3.4, 4.0], [0.2, 0.4, 0.6, -0.3, -0.4], [1.0, 1.0, 1.0, 1.0, 1.0] ]) self.transitions_from_start = np.array([0.1, 0.2, 0.3, 0.4, 0.6]) self.transitions_to_end = np.array([-0.1, -0.2, 0.3, -0.4, -0.4]) # Use the CRF Module with fixed transitions to compute the log_likelihood self.crf = CRF( units=5, use_kernel=False, # disable kernel transform chain_initializer=initializers.Constant(self.transitions), use_boundary=True, # left_boundary_initializer=initializers.Constant(self.transitions_from_start), # right_boundary_initializer=initializers.Constant(self.transitions_to_end), name="crf_layer" ) self.crf.left_boundary = self.crf.add_weight( shape=(self.crf.units,), name="left_boundary", initializer=initializers.Constant(self.transitions_from_start), ) self.crf.right_boundary = self.crf.add_weight( shape=(self.crf.units,), name="right_boundary", initializer=initializers.Constant(self.transitions_to_end), ) def score(self, logits, tags): """ Computes the likelihood score for the given sequence of tags, given the provided logits (and the transition weights in the CRF model) """ # Start with transitions from START and to END total = self.transitions_from_start[tags[0]] + self.transitions_to_end[tags[-1]] # Add in all the intermediate transitions for tag, next_tag in zip(tags, tags[1:]): total += self.transitions[tag, next_tag] # Add in the logits for the observed tags for logit, tag in zip(logits, tags): total += logit[tag] return total # def test_forward_works_without_mask(self): # log_likelihood = self.crf(self.logits, self.tags).item() # # # Now compute the log-likelihood manually # manual_log_likelihood = 0.0 # # # For each instance, manually compute the numerator # # (which is just the score for the logits and actual tags) # # and the denominator # # (which is the log-sum-exp of the scores for the logits across all possible tags) # for logits_i, tags_i in zip(self.logits, self.tags): # numerator = self.score(logits_i.detach(), tags_i.detach()) # all_scores = [self.score(logits_i.detach(), tags_j) # for tags_j in itertools.product(range(5), repeat=3)] # denominator = math.log(sum(math.exp(score) for score in all_scores)) # # And include them in the manual calculation. # manual_log_likelihood += numerator - denominator # # # The manually computed log likelihood should equal the result of crf.forward. # assert manual_log_likelihood.item() == approx(log_likelihood) @pytest.mark.skip("constrain is not supported yet") def test_constrained_viterbi_tags(self): constraints = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4), (4, 0)} # Add the transitions to the end tag # and from the start tag. for i in range(5): constraints.add((5, i)) constraints.add((i, 6)) mask = np.array([ [1, 1, 1], [1, 1, 0] ]) crf = CRF( units=5, use_kernel=False, # disable kernel transform chain_initializer=initializers.Constant(self.transitions), use_boundary=True, # left_boundary_initializer=initializers.Constant(self.transitions_from_start), # right_boundary_initializer=initializers.Constant(self.transitions_to_end), transition_constraint=constraints, name="crf_layer" ) crf.left_boundary = crf.add_weight( shape=(5,), name="left_boundary", initializer=initializers.Constant(self.transitions_from_start), ) crf.right_boundary = crf.add_weight( shape=(5,), name="right_boundary", initializer=initializers.Constant(self.transitions_to_end), ) crf_loss_instance = ConditionalRandomFieldLoss() model = Sequential() model.add(layers.Input(shape=(3, 5))) model.add(MockMasking(mask_shape=(2, 3), mask_value=mask)) model.add(crf) model.compile('adam', loss={"crf_layer": crf_loss_instance}) for layer in model.layers: print(layer.get_config()) print(dict(zip(layer.weights, layer.get_weights()))) # Get just the tags from each tuple of (tags, score). viterbi_tags = model.predict(self.logits) # Now the tags should respect the constraints expected_tags = [ [2, 3, 3], [2, 3, 0] ] # if constrain not work it should be: # [ # [2, 4, 3], # [2, 3, 0] # ] # test assert np.testing.assert_equal(viterbi_tags, expected_tags) @pytest.mark.skip("constrain is not supported yet") def test_unmasked_constrained_viterbi_tags(self): # TODO: using BILUO tag scheme instead of BIO. # So that, transition from tags to end can be tested. raw_constraints = np.array([ # O B-X I-X B-Y I-Y start end [ 1, 1, 0, 1, 0, 0, 1], # O [ 1, 1, 1, 1, 0, 0, 1], # B-X [ 1, 1, 1, 1, 0, 0, 1], # I-X [ 1, 1, 0, 1, 1, 0, 1], # B-Y [ 1, 1, 0, 1, 1, 0, 1], # I-Y [ 1, 1, 0, 1, 0, 0, 0], # start [ 0, 0, 0, 0, 0, 0, 0], # end ]) constraints = np.argwhere(raw_constraints > 0).tolist() # transitions = np.array([ # # O B-X I-X B-Y I-Y # [ 0.1, 0.2, 0.3, 0.4, 0.5], # O # [ 0.8, 0.3, 0.1, 0.7, 0.9], # B-X # [ -0.3, 2.1, -5.6, 3.4, 4.0], # I-X # [ 0.2, 0.4, 0.6, -0.3, -0.4], # B-Y # [ 1.0, 1.0, 1.0, 1.0, 1.0] # I-Y # ]) transitions = np.ones([5, 5]) # transitions_from_start = np.array( # # O B-X I-X B-Y I-Y # [ 0.1, 0.2, 0.3, 0.4, 0.6] # start # ) transitions_from_start = np.ones(5) # transitions_to_end = np.array( # [ # # end # -0.1, # O # -0.2, # B-X # 0.3, # I-X # -0.4, # B-Y # -0.4 # I-Y # ] # ) transitions_to_end = np.ones(5) logits = np.array([ [ # constraint transition from start to tags # O B-X I-X B-Y I-Y [ 0., .1, 1., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 1., 0., 0.] ], [ # constraint transition from tags to tags # O B-X I-X B-Y I-Y [ 0., 1., 0., 0., 0.], [ 0., 0., .1, 1., 0.], [ 0., 0., 1., 0., 0.] ] ]) crf = CRF( units=5, use_kernel=False, # disable kernel transform chain_initializer=initializers.Constant(transitions), use_boundary=True, # left_boundary_initializer=initializers.Constant(transitions_from_start), # right_boundary_initializer=initializers.Constant(transitions_to_end), transition_constraint=constraints, name="crf_layer" ) crf.left_boundary = crf.add_weight( shape=(5,), name="left_boundary", initializer=initializers.Constant(self.transitions_from_start), ) crf.right_boundary = crf.add_weight( shape=(5,), name="right_boundary", initializer=initializers.Constant(self.transitions_to_end), ) crf_loss_instance = ConditionalRandomFieldLoss() model = Sequential() model.add(layers.Input(shape=(3, 5))) model.add(crf) model.compile('adam', loss={"crf_layer": crf_loss_instance}) for layer in model.layers: print(layer.get_config()) print(dict(zip(layer.weights, layer.get_weights()))) # Get just the tags from each tuple of (tags, score). viterbi_tags = model.predict(logits) # Now the tags should respect the constraints expected_tags = [ [1, 2, 2], # B-X I-X I-X [1, 2, 2] # B-X I-X I-X ] # if constrain not work it should be: # [ # [2, 4, 3], # [2, 3, 0] # ] # test assert np.testing.assert_equal(viterbi_tags, expected_tags)
def test_constrained_viterbi_tags(self): constraints = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4), (4, 0)} # Add the transitions to the end tag # and from the start tag. for i in range(5): constraints.add((5, i)) constraints.add((i, 6)) mask = np.array([ [1, 1, 1], [1, 1, 0] ]) crf = CRF( units=5, use_kernel=False, # disable kernel transform chain_initializer=initializers.Constant(self.transitions), use_boundary=True, # left_boundary_initializer=initializers.Constant(self.transitions_from_start), # right_boundary_initializer=initializers.Constant(self.transitions_to_end), transition_constraint=constraints, name="crf_layer" ) crf.left_boundary = crf.add_weight( shape=(5,), name="left_boundary", initializer=initializers.Constant(self.transitions_from_start), ) crf.right_boundary = crf.add_weight( shape=(5,), name="right_boundary", initializer=initializers.Constant(self.transitions_to_end), ) crf_loss_instance = ConditionalRandomFieldLoss() model = Sequential() model.add(layers.Input(shape=(3, 5))) model.add(MockMasking(mask_shape=(2, 3), mask_value=mask)) model.add(crf) model.compile('adam', loss={"crf_layer": crf_loss_instance}) for layer in model.layers: print(layer.get_config()) print(dict(zip(layer.weights, layer.get_weights()))) # Get just the tags from each tuple of (tags, score). viterbi_tags = model.predict(self.logits) # Now the tags should respect the constraints expected_tags = [ [2, 3, 3], [2, 3, 0] ] # if constrain not work it should be: # [ # [2, 4, 3], # [2, 3, 0] # ] # test assert np.testing.assert_equal(viterbi_tags, expected_tags)