Пример #1
0
def cal_chi2_config(config,
                    adapter,
                    data,
                    phsp,
                    data_idx,
                    bg=None,
                    data_cut=None):
    if data_cut is None:
        data_cut = np.array([data_index(data, idx) for idx in data_idx])
    amp_weight = config.get_amplitude()(phsp).numpy()
    phsp_cut = np.array([data_index(phsp, idx) for idx in data_idx])
    phsp_slice = np.concatenate([np.array(phsp_cut**2), [amp_weight]], axis=0)
    phsps = adapter.split_data(phsp_slice)
    datas = adapter.split_data(data_cut**2)
    bound = adapter.get_bounds()
    if bg is not None:
        bg_weight = config._get_bg_weight(display=False)[0][0]
        bg_cut = np.array([data_index(bg, idx) for idx in data_idx])
        bgs = adapter.split_data(bg_cut**2)
        int_norm = (data_cut.shape[-1] -
                    bg_cut.shape[-1] * bg_weight) / np.sum(amp_weight)
    else:
        int_norm = data_cut.shape[-1] / np.sum(amp_weight)
    print("int norm:", int_norm)
    numbers = []
    for i, bnd in enumerate(bound):
        min_x, min_y = bnd[0]
        max_x, max_y = bnd[1]
        ndata = datas[i].shape[-1]
        nmc = np.sum(phsps[i][2]) * int_norm
        if bg is not None:
            nmc += bgs[i].shape[-1] * bg_weight
        numbers.append((ndata, nmc))
    return cal_chi2(numbers, config.get_ndf())
Пример #2
0
def main():
    config = ConfigLoader("config.yml")
    config.set_params("final_params.json")
    amp = config.get_amplitude()

    data = config.get_data("data_origin")[0]
    phsp = config.get_data("phsp_plot")[0]
    phsp_re = config.get_data("phsp_plot_re")[0]

    print("data loaded")
    amps = amp(phsp_re)
    pw = amp.partial_weight(phsp_re)

    re_weight = phsp_re["weight"]
    re_size = config.resolution_size
    amps = sum_resolution(amps, re_weight, re_size)
    pw = [sum_resolution(i, re_weight, re_size) for i in pw]

    m_idx = config.get_data_index("mass", "R_BC")
    m_phsp = data_index(phsp, m_idx).numpy()
    m_data = data_index(data, m_idx).numpy()

    m_min, m_max = np.min(m_phsp), np.max(m_phsp)

    scale = m_data.shape[0] / np.sum(amps)

    get_hist = lambda m, w: Hist1D.histogram(
        m, weights=w, range=(m_min, m_max), bins=100)

    data_hist = get_hist(m_data, None)
    phsp_hist = get_hist(m_phsp, scale * amps)
    pw_hist = []
    for i in pw:
        pw_hist.append(get_hist(m_phsp, scale * i))

    ax2 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
    ax = plt.subplot2grid((4, 1), (0, 0), rowspan=3, sharex=ax2)
    data_hist.draw_error(ax, label="data")
    phsp_hist.draw(ax, label="fit")

    for i, j in zip(pw_hist, config.get_decay()):
        i.draw_kde(ax, label=str(j.inner[0]))

    (data_hist - phsp_hist).draw_pull(ax2)
    ax.set_ylim((1, None))
    ax.legend()
    ax.set_yscale("log")
    ax.set_ylabel("Events/{:.1f} MeV".format((m_max - m_min) * 10))
    ax2.set_xlabel("M( R_BC )")
    ax2.set_ylabel("pull")
    ax2.set_xlim((1.3, 1.7))
    ax2.set_ylim((-5, 5))
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.savefig("m_R_BC_fit.png")
Пример #3
0
def main():
    config = ConfigLoader("config.yml")
    data = config.get_data("data")[0]
    phsp = config.get_data("phsp")[0]
    bg = config.get_data("bg")[0]
    config.set_params("final_params.json")

    mbc_idx = config.get_data_index("mass",
                                    "R_BC")  # ("particle", "(D, K)", "m")
    mbd_idx = config.get_data_index("mass",
                                    "R_BD")  # ("particle", "(D0, K, pi)", "m")
    data_idx = [mbc_idx, mbd_idx]

    data_cut = np.array([data_index(data, idx) for idx in data_idx])
    adapter = AdaptiveBound(data_cut**2, [[2, 2], [3, 3], [2, 2]])
    bound = adapter.get_bounds()

    cal_chi2_config(config,
                    adapter,
                    data,
                    phsp,
                    data_idx,
                    bg=bg,
                    data_cut=data_cut)
    draw_dalitz(data_cut, bound)
Пример #4
0
def main():
    config = ConfigLoader("config.yml")
    decay = config.get_amplitude().decay_group
    data = config.get_data("phsp")
    ret = []
    for i in data:
        cached_amp = build_angle_amp_matrix(decay, i)
        ret.append(data_to_numpy(cached_amp))

    idx = config.get_data_index("angle", "R_BC/B")
    ang = data_index(data[0], idx)

    np.savez("phsp.npz", ret)

    for k, v in ret[0].items():
        for i, amp in enumerate(v):
            w = np.abs(amp)**2
            w = np.sum(np.reshape(w, (amp.shape[0], -1)), axis=-1)
            plt.hist(
                np.cos(ang["beta"]),
                weights=w,
                bins=20,
                histtype="step",
                label="{}: {}".format(k, i),
            )
    plt.savefig("angle_costheta.png")
Пример #5
0
def main():
    sigma = 0.005

    config = ConfigLoader("config.yml")
    decay = config.get_decay()
    m0 = decay.top.get_mass()
    m1, m2, m3 = [i.get_mass() for i in decay.outs]

    print("mass: ", m0, " -> ", m1, m2, m3)

    phsp = PhaseSpaceGenerator(m0, [m1, m2, m3])
    p1, p2, p3 = phsp.generate(100000)

    angle = cal_angle_from_momentum({"B": p1, "C": p2, "D": p3}, decay)
    amp = config.get_amplitude()

    m_idx = config.get_data_index("mass", "R_BC")
    m_BC = data_index(angle, m_idx)
    R_BC = decay.get_particle("R_BC1")
    m_R, g_R = R_BC.get_mass(), R_BC.get_width()

    # import matplotlib.pyplot as plt
    # x = np.linspace(1.3, 1.7, 1000)
    # amp = R_BC.get_amp({"m": x}).numpy()
    # plt.plot(x, np.abs(amp)**2)
    # plt.show()

    print("mass: ", m_R, "width: ", g_R)
    amp_s2 = resolution_bw(m_BC, m_R, g_R, sigma, m1 + m2, m0 - m3)

    print("|A|*R: ", amp_s2)
    cut_data = simple_selection(angle, amp_s2)

    ps = [data_index(cut_data, ("particle", i, "p")).numpy() for i in "BCD"]
    np.savetxt("data/data_origin.dat",
               np.transpose(ps, (1, 0, 2)).reshape((-1, 4)))

    p1, p2, p3 = phsp.generate(100000)
    np.savetxt("data/phsp.dat",
               np.transpose([p1, p2, p3], (1, 0, 2)).reshape((-1, 4)))

    p1, p2, p3 = phsp.generate(50000)
    np.savetxt(
        "data/phsp_plot.dat",
        np.transpose([p1, p2, p3], (1, 0, 2)).reshape((-1, 4)),
    )
Пример #6
0
def main():
    Nbins = 64
    config = ConfigLoader("config.yml")
    # config = MultiConfig(["config.yml"]).configs[0]
    config.set_params("final_params.json")
    name = "R_BC"
    idx = config.get_data_index("mass", "R_BC")
    # idx_costheta = (*config.get_data_index("angle", "DstD/D*"), "beta")

    datas, phsps, bgs, _ = config.get_all_data()
    amp = config.get_amplitude()
    get_data = lambda x: data_index(x, idx).numpy()
    # get_data = lambda x: np.cos(data_index(x, idx_costheta).numpy())
    plot_mass(amp, datas, bgs, phsps, get_data, name, Nbins)
Пример #7
0
def cal_chi2(self, read_data=None, bins=[[2, 2]] * 3, mass=["R_BD", "R_CD"]):
    if read_data is None:
        data_idx = [self.get_data_index("mass", i) for i in mass]
        read_data = lambda a: np.array(
            [data_index(a, idx)**2 for idx in data_idx])
    data, bg, phsp, _ = self.get_all_data()
    bg_weight = self._get_bg_weight()[0]
    all_data = data_merge(*data)
    all_data_cut = read_data(
        all_data)  # np.array([data_index(a, idx) for idx in data_idx])
    adapter = AdaptiveBound(all_data_cut, bins)
    numbers = [
        self.cal_bins_numbers(adapter, i, j, read_data, k, l)
        for i, j, k, l in zip(data, phsp, bg, bg_weight)
    ]
    numbers = np.array(numbers)
    numbers = np.sum(numbers, axis=0)
    return cal_chi2_o(numbers, self.get_ndf())
Пример #8
0
m_A, m_B, m_C, m_D = 1.8, 0.18, 0.18, 0.18
p1, p2, p3 = PhaseSpaceGenerator(m_A, [m_B, m_C, m_D]).generate(100000)

# %%
# and the calculate helicity angle from the data

from tf_pwa.cal_angle import cal_angle_from_momentum

data = cal_angle_from_momentum({b: p1, c: p2, d: p3}, decay_group)

# %%
# we can index mass from data as

from tf_pwa.data import data_index

m_bd = data_index(data, ("particle", "(B, D)", "m"))
# m_bc = data_index(data, ("particle", "(B, C)", "m"))
m_cd = data_index(data, ("particle", "(C, D)", "m"))

# %%
# .. note::
#     If DecayGroup do not include resonant of (B, C), the data will not include its mass too.
#     We can use different DecayGroup for cal_angle and AmplitudeModel
#     when they have the same initial and final particle.
#
# The amplitde square is calculated by amplitude model simply as

amp_s2 = amp(data)

# %%
# Now by using matplotlib we can get the Dalitz plot as
Пример #9
0
def main():
    Nbins = 72
    config = ConfigLoader("config.yml")
    config.set_params("final_params.json")
    error_matrix = np.load("error_matrix.npy")

    idx = config.get_data_index("mass", "R_BC")

    datas = config.get_data("data")
    phsps = config.get_data("phsp")
    bgs = config.get_data("bg")
    amp = config.get_amplitude()
    var = amp.trainable_variables

    get_data = lambda x: data_index(x, idx).numpy()

    m_all = np.concatenate([get_data(i) for i in datas])

    m_min = np.min(m_all) - 0.1
    m_max = np.max(m_all) + 0.1
    binning = np.linspace(m_min, m_max, Nbins + 1)

    get_hist = lambda x, w: Hist1D.histogram(
        get_data(x), bins=Nbins, range=(m_min, m_max), weights=w
    )

    data_hist = [get_hist(i, i.get("weight")) for i in datas]
    bg_hist = [get_hist(i, np.abs(i.get("weight"))) for i in bgs]

    phsp_hist = []
    for dh, bh, phsp in zip(data_hist, bg_hist, phsps):
        m_phsp = data_index(phsp, idx).numpy()

        y_frac, grads, w_error2 = binning_gradient(
            binning, amp, phsp, m_phsp, var
        )
        error2 = np.einsum("ij,jk,ik->i", grads, error_matrix, grads)
        # error parameters and error from integration sample weights
        yerr = np.sqrt(error2 + w_error2)

        n_fit = dh.get_count() - bh.get_count()
        phsp_hist.append(n_fit * Hist1D(binning, y_frac, yerr))

    total_data = reduce(operator.add, data_hist)
    ax = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
    total_data.draw(ax, label="data")
    total_data.draw_error(ax)
    total_bg = reduce(operator.add, bg_hist)
    total_bg.draw_bar(ax, label="back ground", color="grey", alpha=0.5)
    total_fit = reduce(operator.add, phsp_hist + bg_hist)
    total_fit.draw(ax, label="fit")
    total_fit.draw_error(ax)
    ax.set_ylim((0, None))
    ax.set_xlim((m_min, m_max))
    ax.legend()
    ax.set_ylabel(f"Events/ {(m_max-m_min)/Nbins:.3f} GeV")
    ax2 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
    (total_data - total_fit).draw_pull(ax2)
    plt.setp(ax.get_xticklabels(), visible=False)
    ax2.set_ylim((-5, 5))
    ax2.set_xlim((m_min, m_max))
    ax2.axhline(0, c="black", ls="-")
    ax2.axhline(-3, c="r", ls="--")
    ax2.axhline(3, c="r", ls="--")
    ax2.set_xlabel("$M(BC)$/GeV", loc="right")
    plt.savefig("fit_full_error.png")
Пример #10
0
def test_plot(init_params):

    import matplotlib

    matplotlib.rcParams["figure.figsize"] = [10, 10]  # for square canvas
    matplotlib.rcParams["figure.subplot.left"] = 0.05
    matplotlib.rcParams["figure.subplot.bottom"] = 0.05
    matplotlib.rcParams["figure.subplot.right"] = 0.95
    matplotlib.rcParams["figure.subplot.top"] = 0.95
    matplotlib.rcParams["font.size"] = 5
    config, amp, data, weight, pw, pw_if = get_data(
        init_params=init_params)  # init_params=get_params())

    m_DsDst = data_index(data,
                         config.plot_params.get_data_index("mass", "R_BC"))
    m_DsK = data_index(data, config.plot_params.get_data_index("mass", "R_BD"))
    m_DstK = data_index(data,
                        config.plot_params.get_data_index("mass", "R_CD"))

    val = m_DsDst

    sw = np.sum(weight) / weight.shape[0]
    print(sw)
    # plt.hist(val, weights=[sw]*weight.shape[0], bins=100, label="PHSP")
    # plt.hist(val, weights=weight, bins=100, label="data")
    label = amp.chains_particle()
    label = [str(i[0]) for i in label]  #
    n_label = len(label)
    for i, w in zip(label, pw):
        print(i, np.sum(w) / sw)

    if n_label % 2 == 0:
        a, b = n_label // 2, n_label - 1
    else:
        a, b = (n_label - 1) // 2, n_label
    fig = plt.figure(figsize=(4, 3))
    for i, j in enumerate(combinations(range(n_label), 2)):
        # ax = plt.subplot(a,b,i+1)
        plt.clf()
        ax = plt.subplot(1, 1, 1)
        ax.hist(val,
                weights=pw[j[0]],
                bins=100,
                histtype="step",
                label=label[j[0]])
        ax.hist(val,
                weights=pw[j[1]],
                bins=100,
                histtype="step",
                label=label[j[1]])
        x, y, _ = ax.hist(
            val,
            weights=pw_if[j],
            bins=100,
            histtype="step",
            label=label[j[0]] + "+" + label[j[1]],
        )
        ax.hist(
            val,
            weights=pw_if[j] - pw[j[0]] - pw[j[1]],
            bins=100,
            histtype="step",
            label=label[j[0]] + "x" + label[j[1]],
        )
        ax.plot(y, np.zeros_like(y))
        ax.legend(loc="upper right")
        # ax.set_ylim((None, np.max(y) *1.2))
        ax.set_title("M(DsD*)")
        plt.savefig("fig/fig_{}_{}.pdf".format(*j))