Пример #1
0
 def testModelHasExpectedNumberOfParameters(self):
     batch_size = 5
     height, width = 299, 299
     inputs = random_ops.random_uniform((batch_size, height, width, 3))
     with arg_scope(inception_v3.inception_v3_arg_scope()):
         inception_v3.inception_v3_base(inputs)
     total_params, _ = model_analyzer.analyze_vars(
         variables_lib.get_model_variables())
     self.assertAlmostEqual(21802784, total_params)
Пример #2
0
    def testBuildAndCheckAllEndPointsUptoMixed7c(self):
        batch_size = 5
        height, width = 299, 299

        inputs = random_ops.random_uniform((batch_size, height, width, 3))
        _, end_points = inception_v3.inception_v3_base(
            inputs, final_endpoint='Mixed_7c')
        endpoints_shapes = {
            'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
            'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
            'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
            'MaxPool_3a_3x3': [batch_size, 73, 73, 64],
            'Conv2d_3b_1x1': [batch_size, 73, 73, 80],
            'Conv2d_4a_3x3': [batch_size, 71, 71, 192],
            'MaxPool_5a_3x3': [batch_size, 35, 35, 192],
            'Mixed_5b': [batch_size, 35, 35, 256],
            'Mixed_5c': [batch_size, 35, 35, 288],
            'Mixed_5d': [batch_size, 35, 35, 288],
            'Mixed_6a': [batch_size, 17, 17, 768],
            'Mixed_6b': [batch_size, 17, 17, 768],
            'Mixed_6c': [batch_size, 17, 17, 768],
            'Mixed_6d': [batch_size, 17, 17, 768],
            'Mixed_6e': [batch_size, 17, 17, 768],
            'Mixed_7a': [batch_size, 8, 8, 1280],
            'Mixed_7b': [batch_size, 8, 8, 2048],
            'Mixed_7c': [batch_size, 8, 8, 2048]
        }
        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertTrue(endpoint_name in end_points)
            self.assertListEqual(
                end_points[endpoint_name].get_shape().as_list(),
                expected_shape)
Пример #3
0
def inception_v3(nlabels, images):
    batch_norm_params = {
        "is_training": False, "trainable": True, "decay": 0.9997,
        "epsilon": 0.001,
        "variables_collections": {
            "beta": None,
            "gamma": None,
            "moving_mean": ["moving_vars"],
            "moving_variance": ["moving_vars"],
        }
    }
    weight_decay = 0.00004
    stddev = 0.1
    weights_regularizer = tf_slim.l2_regularizer(weight_decay)

    args_for_scope = (
        dict(list_ops_or_scope=[tf_slim.layers.conv2d, tf_slim.layers.fully_connected],
             weights_regularizer=weights_regularizer, trainable=True),
        dict(list_ops_or_scope=[tf_slim.layers.conv2d],
             weights_initializer=tf1.truncated_normal_initializer(stddev=stddev),
             activation_fn=tf1.nn.relu,
             normalizer_fn=tf_slim.layers.batch_norm,
             normalizer_params=batch_norm_params),
    )

    with tf1.variable_scope("InceptionV3", "InceptionV3", [images]) as scope, \
            tf_slim.arg_scope(**args_for_scope[0]), \
            tf_slim.arg_scope(**args_for_scope[1]):
        net, end_points = inception_v3_base(images, scope=scope)
        with tf1.variable_scope("logits"):
            shape = net.get_shape()
            net = tf_slim.layers.avg_pool2d(net, shape[1:3], padding="VALID",
                                    scope="pool")
            net = tf1.nn.dropout(net, 1, name='droplast')
            net = tf_slim.layers.flatten(net, scope="flatten")

    with tf1.variable_scope('output') as scope:
        weights = tf1.Variable(
            tf1.truncated_normal([2048, nlabels], mean=0.0, stddev=0.01),
            name='weights')
        biases = tf1.Variable(
            tf1.constant(0.0, shape=[nlabels], dtype=tf1.float32), name='biases')
        output = tf1.add(tf1.matmul(net, weights), biases, name=scope.name)

        tensor_name = re.sub('tower_[0-9]*/', '', output.op.name)
        tf1.summary.histogram(tensor_name + '/activations', output)
        tf1.summary.scalar(tensor_name + '/sparsity', tf1.nn.zero_fraction(output))
    return output
Пример #4
0
    def testBuildBaseNetwork(self):
        batch_size = 5
        height, width = 299, 299

        inputs = random_ops.random_uniform((batch_size, height, width, 3))
        final_endpoint, end_points = inception_v3.inception_v3_base(inputs)
        self.assertTrue(
            final_endpoint.op.name.startswith('InceptionV3/Mixed_7c'))
        self.assertListEqual(final_endpoint.get_shape().as_list(),
                             [batch_size, 8, 8, 2048])
        expected_endpoints = [
            'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
            'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
            'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a',
            'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a',
            'Mixed_7b', 'Mixed_7c'
        ]
        self.assertItemsEqual(end_points.keys(), expected_endpoints)
Пример #5
0
    def testBuildOnlyUptoFinalEndpoint(self):
        batch_size = 5
        height, width = 299, 299
        endpoints = [
            'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
            'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
            'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a',
            'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a',
            'Mixed_7b', 'Mixed_7c'
        ]

        for index, endpoint in enumerate(endpoints):
            with ops.Graph().as_default():
                inputs = random_ops.random_uniform(
                    (batch_size, height, width, 3))
                out_tensor, end_points = inception_v3.inception_v3_base(
                    inputs, final_endpoint=endpoint)
                self.assertTrue(
                    out_tensor.op.name.startswith('InceptionV3/' + endpoint))
                self.assertItemsEqual(endpoints[:index + 1], end_points)
def style_prediction(style_input_,
                     activation_names,
                     activation_depths,
                     is_training=True,
                     trainable=True,
                     inception_end_point='Mixed_6e',
                     style_prediction_bottleneck=100,
                     reuse=None):
    """Maps style images to the style embeddings (beta and gamma parameters).

  Args:
    style_input_: Tensor. Batch of style input images.
    activation_names: string. Scope names of the activations of the transformer
        network which are used to apply style normalization.
    activation_depths: Shapes of the activations of the transformer network
        which are used to apply style normalization.
    is_training: bool. Is it training phase or not?
    trainable: bool. Should the parameters be marked as trainable?
    inception_end_point: string. Specifies the endpoint to construct the
        inception_v3 network up to. This network is part of the style prediction
        network.
    style_prediction_bottleneck: int. Specifies the bottleneck size in the
        number of parameters of the style embedding.
    reuse: bool. Whether to reuse model parameters. Defaults to False.

  Returns:
    Tensor for the output of the style prediction network, Tensor for the
        bottleneck of style parameters of the style prediction network.
  """
    with tf.name_scope('style_prediction') and tf.variable_scope(
            tf.get_variable_scope(), reuse=reuse):
        with slim.arg_scope(_inception_v3_arg_scope(is_training=is_training)):
            with slim.arg_scope(
                [slim.conv2d, slim.fully_connected, slim.batch_norm],
                    trainable=trainable):
                with slim.arg_scope([slim.batch_norm, slim.dropout],
                                    is_training=is_training):
                    _, end_points = inception_v3.inception_v3_base(
                        style_input_,
                        scope='InceptionV3',
                        final_endpoint=inception_end_point)

        # Shape of feat_convlayer is (batch_size, ?, ?, depth).
        # For Mixed_6e end point, depth is 768, for input image size of 256x265
        # width and height are 14x14.
        feat_convlayer = end_points[inception_end_point]
        with tf.name_scope('bottleneck'):
            # (batch_size, 1, 1, depth).
            bottleneck_feat = tf.reduce_mean(feat_convlayer,
                                             axis=[1, 2],
                                             keep_dims=True)

        if style_prediction_bottleneck > 0:
            with slim.arg_scope([slim.conv2d],
                                activation_fn=None,
                                normalizer_fn=None,
                                trainable=trainable):
                # (batch_size, 1, 1, style_prediction_bottleneck).
                bottleneck_feat = slim.conv2d(bottleneck_feat,
                                              style_prediction_bottleneck,
                                              [1, 1])

        style_params = {}
        with tf.variable_scope('style_params'):
            for i in range(len(activation_depths)):
                with tf.variable_scope(activation_names[i], reuse=reuse):
                    with slim.arg_scope([slim.conv2d],
                                        activation_fn=None,
                                        normalizer_fn=None,
                                        trainable=trainable):

                        # Computing beta parameter of the style normalization for the
                        # activation_names[i] layer of the style transformer network.
                        # (batch_size, 1, 1, activation_depths[i])
                        beta = slim.conv2d(bottleneck_feat,
                                           activation_depths[i], [1, 1])
                        # (batch_size, activation_depths[i])
                        beta = tf.squeeze(beta, [1, 2], name='SpatialSqueeze')
                        style_params['{}/beta'.format(
                            activation_names[i])] = beta

                        # Computing gamma parameter of the style normalization for the
                        # activation_names[i] layer of the style transformer network.
                        # (batch_size, 1, 1, activation_depths[i])
                        gamma = slim.conv2d(bottleneck_feat,
                                            activation_depths[i], [1, 1])
                        # (batch_size, activation_depths[i])
                        gamma = tf.squeeze(gamma, [1, 2],
                                           name='SpatialSqueeze')
                        style_params['{}/gamma'.format(
                            activation_names[i])] = gamma

    return style_params, bottleneck_feat
Пример #7
0
def inception_v3(images,
                 trainable=True,
                 is_training=True,
                 weight_decay=0.00004,
                 stddev=0.1,
                 dropout_keep_prob=0.8,
                 use_batch_norm=True,
                 batch_norm_params=None,
                 add_summaries=True,
                 scope="InceptionV3"):
    """Builds an Inception V3 subgraph for image embeddings.

    Args:
      images: A float32 Tensor of shape [batch, height, width, channels].
      trainable: Whether the inception submodel should be trainable or not.
      is_training: Boolean indicating training mode or not.
      weight_decay: Coefficient for weight regularization.
      stddev: The standard deviation of the trunctated normal weight initializer.
      dropout_keep_prob: Dropout keep probability.
      use_batch_norm: Whether to use batch normalization.
      batch_norm_params: Parameters for batch normalization. See
        tf.contrib.layers.batch_norm for details.
      add_summaries: Whether to add activation summaries.
      scope: Optional Variable scope.

    Returns:
      end_points: A dictionary of activations from inception_v3 layers.
    """
    # Only consider the inception model to be in training mode if it's trainable.
    is_inception_model_training = trainable and is_training

    if use_batch_norm:
        # Default parameters for batch normalization.
        if not batch_norm_params:
            batch_norm_params = {
                "is_training": is_inception_model_training,
                "trainable": trainable,
                # Decay for the moving averages.
                "decay": 0.9997,
                # Epsilon to prevent 0s in variance.
                "epsilon": 0.001,
                # Collection containing the moving mean and moving variance.
                "variables_collections": {
                    "beta": None,
                    "gamma": None,
                    "moving_mean": ["moving_vars"],
                    "moving_variance": ["moving_vars"],
                }
            }
    else:
        batch_norm_params = None

    if trainable:
        weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
    else:
        weights_regularizer = None

    with tf.compat.v1.variable_scope(scope, "InceptionV3", [images]) as scope:
        with slim.arg_scope([slim.conv2d, slim.fully_connected],
                            weights_regularizer=weights_regularizer,
                            trainable=trainable):
            with slim.arg_scope([slim.conv2d],
                                weights_initializer=tf.compat.v1.
                                truncated_normal_initializer(stddev=stddev),
                                activation_fn=tf.nn.relu,
                                normalizer_fn=slim.batch_norm,
                                normalizer_params=batch_norm_params):
                net, end_points = inception_v3_base(images, scope=scope)
                with tf.compat.v1.variable_scope("logits"):
                    shape = net.get_shape()
                    net = slim.avg_pool2d(net,
                                          shape[1:3],
                                          padding="VALID",
                                          scope="pool")
                    net = slim.dropout(net,
                                       keep_prob=dropout_keep_prob,
                                       is_training=is_inception_model_training,
                                       scope="dropout")
                    net = slim.flatten(net, scope="flatten")

    # Add summaries.
    if add_summaries:
        for v in end_points.values():
            slim.summarize_activation(v)

    return net