def main(model_id): import tensorflow as tf from tf_template.model import get_builder tf.logging.set_verbosity(tf.logging.INFO) builder = get_builder('example') evaluation = builder.eval() print(evaluation)
def main(model_id): import tensorflow as tf import tf_toolbox.testing from tf_template.model import get_builder builder = get_builder(model_id) def get_train_op(): features, labels = builder.get_train_inputs() return builder.get_estimator_spec(features, labels, tf.estimator.ModeKeys.TRAIN).train_op update_ops_run = tf_toolbox.testing.do_update_ops_run(get_train_op) tf_toolbox.testing.report_train_val_changes(get_train_op) if update_ops_run: print('Update ops run :)') else: print('Update ops not run :(')
def main(model_id, skip_runs=10): import os import tensorflow as tf from tf_template.model import get_builder from tf_toolbox.profile import create_profile builder = get_builder(model_id) def graph_fn(): mode = tf.estimator.ModeKeys.TRAIN features, labels = builder.get_inputs(mode) spec = builder.get_estimator_spec(features, labels, mode) return spec.train_op folder = os.path.join(os.path.realpath(os.path.dirname(__file__)), '_profiles') if not os.path.isdir(folder): os.makedirs(folder) filename = os.path.join(folder, '%s.json' % model_id) create_profile(graph_fn, filename, skip_runs)
def main(model_id, mode): from tf_template.model import get_builder builder = get_builder(model_id) builder.vis_inputs()
def main(model_id): import tensorflow as tf from tf_template.model import get_builder tf.logging.set_verbosity(tf.logging.INFO) builder = get_builder('example') builder.vis_predictions()
def main(model_id, max_steps): import tensorflow as tf from tf_template.model import get_builder tf.logging.set_verbosity(tf.logging.INFO) builder = get_builder('example') builder.train(max_steps=max_steps)