print( '====================================Revovering Model====================================' ) ckpt = None if FLAGS.last_ckpt is not None: ckpt = tf.train.latest_checkpoint(FLAGS.last_ckpt) if ckpt is not None: # set up save configuration eval_loader.restore(eval_session, ckpt) print('Recovering From {}'.format(ckpt)) elif FLAGS.pretrained_ckpts is not None: print('No previous Model Found in {}'.format(ckpt)) # pre-train priority higher with eval_graph.as_default(): eval_session.run(tf.global_variables_initializer()) partial_restore_op = partial_restore(tf.global_variables(), FLAGS.pretrained_ckpts) eval_session.run(partial_restore_op) print('Recovering From Pretrained Model {}'.format(FLAGS.pretrained_ckpts)) else: print('Training From Scartch TvT') with eval_graph.as_default(): eval_session.run(tf.global_variables_initializer()) print( '====================================RUNNING!====================================' ) try: print( "====================================Start of Eval==============================================" ) with eval_graph.as_default():
# for i in (tf.global_variables()): # print(i.name) if __name__ == '__main__': sess = tf.Session() # inputs = tf.placeholder(name='inputs', shape=[16, 224, 224, 3], dtype=tf.float32) # inputs = tf.random_uniform((1, 224, 224, 3),dtype=tf.float32) inputs = tf.placeholder(shape=[1, 224, 224, 3], dtype=tf.float32, name='inputs') # in_array = sess.run(tf.Print(inputs,[inputs])) # np.save("input.npy",in_array) # np.savetxt("input.txt",in_array.reshape(224*224,3)) with arg_scope(mobilenet_v1_arg_scope()): nets, end_points = mobilenet_v1(inputs) partial_restore_op = partial_restore( sess, tf.global_variables(), '/mnt/disk/jiabao/mobilenet_v1_1/mobilenet_v1_1.0_224.ckpt') sess.run(partial_restore_op) out_array = sess.run(nets, feed_dict={inputs: np.load('input.npy')}) print(np.mean(out_array), np.var(out_array)) np.savetxt("output_1.txt", out_array) print('=' * 8) # sess.run(partial_restore_op) # print('Recovering From Pretrained Model ') sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore( sess=sess, save_path='/mnt/disk/jiabao/mobilenet_v1_1/mobilenet_v1_1.0_224.ckpt')