Пример #1
0
    def __batching_data(self, image, glabels, format, filename, gbboxes,
                        gdifficults, gclasses, glocalisations, gscores):

        #we will want to batch original glabels and gbboxes
        #this information is still useful even if they are padded after dequeuing
        dynamic_pad = True
        batch_shape = [1, 1, 1, 1, 1] + [
            len(gclasses), len(glocalisations),
            len(gscores)
        ]
        tensors = [
            image, filename, glabels, gbboxes, gdifficults, gclasses,
            glocalisations, gscores
        ]
        #Batch the samples
        if self.is_training_data:
            self.num_preprocessing_threads = 1
        else:
            # to make sure data is fectched in sequence during evaluation
            self.num_preprocessing_threads = 1

        #tf.train.batch accepts only list of tensors, this batch shape can used to
        #flatten the list in list, and later on convet it back to list in list.
        batch = tf.train.batch(tf_utils.reshape_list(tensors),
                               batch_size=self.batch_size,
                               num_threads=self.num_preprocessing_threads,
                               dynamic_pad=dynamic_pad,
                               capacity=5 * self.batch_size)

        #convert it back to the list in list format which allows us to easily use later on
        batch = tf_utils.reshape_list(batch, batch_shape)
        return batch
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            # 批次的图片、类别、位置与置信度
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            # Construct SSD network.
            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            # Add loss function.
            ssd_net.losses(logits,
                           localisations,
                           b_gclasses,
                           b_glocalisations,
                           b_gscores,
                           match_threshold=FLAGS.match_threshold,
                           negative_ratio=FLAGS.negative_ratio,
                           alpha=FLAGS.loss_alpha,
                           label_smoothing=FLAGS.label_smoothing)
            return end_points
Пример #3
0
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)  # 重整list

            # Construct SSD network.
            # 这个实例方法会返回之前定义的函数ssd_arg_scope(允许修改两个参数)
            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                # predictions: (BS, H, W, 4, 21)
                # localisations: (BS, H, W, 4, 4)
                # logits: (BS, H, W, 4, 21)
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)

            # Add loss function.
            ssd_net.losses(
                logits,
                localisations,
                b_gclasses,
                b_glocalisations,
                b_gscores,
                match_threshold=FLAGS.match_threshold,  # .5
                negative_ratio=FLAGS.negative_ratio,  # 3
                alpha=FLAGS.loss_alpha,  # 1
                label_smoothing=FLAGS.label_smoothing)  # .0
            return end_points
Пример #4
0
        def clone_fn(batch_queue):

            #Allows data parallelism by creating multiple
            #clones of network_fn.

            # Dequeue batch.
            batch_shape = [1] + [len(anchors)] * 3
            b_image, b_glocalisations, b_glabels, b_glinks = \
             tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            if FLAGS.data_format == 'NHWC':
                b_image = b_image
            else:
                b_image = tf.transpose(b_image, perm=(0, 3, 1, 2))
            # Construct SSD network.
            arg_scope = net.arg_scope(weight_decay=FLAGS.weight_decay,
                                      data_format=FLAGS.data_format)
            with slim.arg_scope(arg_scope):
                localisations, logits, linkslogits, end_points = \
                 net.net(b_image, is_training=True, use_batch=FLAGS.use_batch)
            # Add loss function.
            net.losses(logits,
                       localisations,
                       linkslogits,
                       b_glocalisations,
                       b_glabels,
                       b_glinks,
                       negative_ratio=FLAGS.negative_ratio,
                       alpha1=FLAGS.alpha1,
                       alpha2=FLAGS.alpha2,
                       label_smoothing=FLAGS.label_smoothing)
            return end_points
        def clone_fn(batch_queue):

            #Allows data parallelism by creating multiple
            #clones of network_fn.

            # Dequeue batch.
            batch_shape = [1] * 3
            b_image, b_glocalisations, b_gscores = \
             tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)
            # Construct SSD network.
            arg_scope = net.arg_scope(weight_decay=FLAGS.weight_decay,
                                      data_format=FLAGS.data_format)
            with slim.arg_scope(arg_scope):
                localisations, logits, end_points = \
                 net.net(b_image, is_training=True, use_batch=FLAGS.use_batch)
            # Add loss function.
            net.losses(logits,
                       localisations,
                       b_glocalisations,
                       b_gscores,
                       negative_ratio=FLAGS.negative_ratio,
                       use_hard_neg=FLAGS.use_hard_neg,
                       alpha=FLAGS.loss_alpha,
                       label_smoothing=FLAGS.label_smoothing)
            return end_points
Пример #6
0
def get_batch(dataset_dir,
			  num_readers,
			  batch_size,
			  out_shape,
			  net,
			  anchors,
			  num_preprocessing_threads,
			  file_pattern = '*.tfrecord',
			  is_training = True):
	
	dataset = sythtextprovider.get_datasets(dataset_dir,file_pattern = file_pattern)

	provider = slim.dataset_data_provider.DatasetDataProvider(
				dataset,
				num_readers=num_readers,
				common_queue_capacity=20 * batch_size,
				common_queue_min=10 * batch_size,
				shuffle=True)
	
	[image, shape, glabels, gbboxes] = provider.get(['image', 'shape',
											 'object/label',
											 'object/bbox'])

	image, glabels, gbboxes,num = \
	ssd_vgg_preprocessing.preprocess_image(image,  glabels,gbboxes, 
											out_shape,is_training=is_training)

	gclasses, glocalisations, gscores = \
	net.bboxes_encode( glabels, gbboxes, anchors, num)

	batch_shape = [1] + [len(anchors)] * 3


	r = tf.train.batch(
		tf_utils.reshape_list([image, gclasses, glocalisations, gscores]),
		batch_size=batch_size,
		num_threads=num_preprocessing_threads,
		capacity=5 * batch_size)

	b_image, b_gclasses, b_glocalisations, b_gscores= \
		tf_utils.reshape_list(r, batch_shape)

	return [b_image, b_gclasses, b_glocalisations, b_gscores]
Пример #7
0
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            # Construct SSD network.
            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay)
            with slim.arg_scope(arg_scope):
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            # Add loss function.
            ssd_net.losses(logits, localisations,
                           b_gclasses, b_glocalisations, b_gscores,
                           label_smoothing=FLAGS.label_smoothing)
            return end_points
Пример #8
0
def _parser_fn(record, split_name, img_shape):
    # Features in Pascal VOC TFRecords.
    # refer to slim.tfexample_decoder.BoundingBox
    keys_to_features = {
        'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
        'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
        'image/height': tf.FixedLenFeature([1], tf.int64),
        'image/width': tf.FixedLenFeature([1], tf.int64),
        'image/channels': tf.FixedLenFeature([1], tf.int64),
        'image/shape': tf.FixedLenFeature([3], tf.int64),
        'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64),
        'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64),
        'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64),
    }
    features = tf.parse_single_example(record, keys_to_features)

    # image = tf.decode_(features['image/encoded'], tf.float32)
    # image = tf.reshape(image, img_shape)
    image = tf.image.decode_jpeg(features['image/encoded'],channels=3)
    xmin = features['image/object/bbox/xmin'].values # since the original is tf sparse tensor, .value convert to Tensor
    ymin = features['image/object/bbox/ymin'].values
    xmax = features['image/object/bbox/xmax'].values
    ymax = features['image/object/bbox/ymax'].values
    bboxes = tf.stack([xmin,ymin,xmax,ymax],axis=-1)
    labels = features['image/object/bbox/label'].values
    if split_name == 'train':
        image, labels, bboxes = ssd_vgg_preprocessing.preprocess_for_train(image,labels,bboxes,img_shape)
    else:
        image, labels, bboxes = ssd_vgg_preprocessing.preprocess_for_eval(image, labels, bboxes,img_shape)
    net = model.get_model()
    arm_anchor_labels, arm_anchor_loc, arm_anchor_scores = net.get_prematched_anchors(img_shape,labels,bboxes)
    output = tf_utils.reshape_list([image, labels, bboxes, arm_anchor_labels, arm_anchor_loc, arm_anchor_scores])
    # print('*'*20)
    # for i,out in enumerate(output):
    #     print(i,out.get_shape().as_list())
    # print('*'*20)
    return output
Пример #9
0
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            # Construct SSD network.
            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            # Add loss function.
            ssd_net.losses(logits, localisations,
                           b_gclasses, b_glocalisations, b_gscores,
                           match_threshold=FLAGS.match_threshold,
                           negative_ratio=FLAGS.negative_ratio,
                           alpha=FLAGS.loss_alpha,
                           label_smoothing=FLAGS.label_smoothing)
            return end_points
Пример #10
0
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            '''
            ssd的核心代码在这一块,我们可以看到
            1)编码真实的标签,相当于y_label:gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            2) b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)
            3)得到输出,相当于得到y_pred: predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            4)计算损失: predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            '''
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            # Construct SSD network.

            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            # Add loss function.
            ssd_net.losses(logits,
                           localisations,
                           b_gclasses,
                           b_glocalisations,
                           b_gscores,
                           match_threshold=FLAGS.match_threshold,
                           negative_ratio=FLAGS.negative_ratio,
                           alpha=FLAGS.loss_alpha,
                           label_smoothing=FLAGS.label_smoothing)
            return end_points
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.Graph().as_default():

        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,
            clone_on_cpu=FLAGS.clone_on_cpu,
            replica_id=0,
            num_replicas=1,
            num_ps_tasks=0)

        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        ssd_class = nets_factory.get_network(FLAGS.model_name)
        ssd_params = ssd_class.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_class(ssd_params)
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.train_dir)

        with tf.device(deploy_config.inputs_device()):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    num_readers=FLAGS.num_readers,
                    common_queue_capacity=20 * FLAGS.batch_size,
                    common_queue_min=10 * FLAGS.batch_size,
                    shuffle=True)
            [image, shape, glabels, gbboxes] = provider.get(
                ['image', 'shape', 'object/label', 'object/bbox'])
            image, glabels, gbboxes = \
                image_preprocessing_fn(image, glabels, gbboxes,
                                       out_shape=ssd_shape,
                                       data_format=DATA_FORMAT)
            gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] + [len(ssd_anchors)] * 3

            r = tf.train.batch(tf_utils.reshape_list(
                [image, gclasses, glocalisations, gscores]),
                               batch_size=FLAGS.batch_size,
                               num_threads=FLAGS.num_preprocessing_threads,
                               capacity=5 * FLAGS.batch_size)
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(r, batch_shape)

            batch_queue = slim.prefetch_queue.prefetch_queue(
                tf_utils.reshape_list(
                    [b_image, b_gclasses, b_glocalisations, b_gscores]),
                capacity=2 * deploy_config.num_clones)

        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            ssd_net.losses(logits,
                           localisations,
                           b_gclasses,
                           b_glocalisations,
                           b_gscores,
                           match_threshold=FLAGS.match_threshold,
                           negative_ratio=FLAGS.negative_ratio,
                           alpha=FLAGS.loss_alpha,
                           label_smoothing=FLAGS.label_smoothing)
            return end_points

        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        clones = model_deploy.create_clones(deploy_config, clone_fn,
                                            [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(
                tf.summary.scalar('sparsity/' + end_point,
                                  tf.nn.zero_fraction(x)))
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))
        for loss in tf.get_collection('EXTRA_LOSSES', first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        if FLAGS.moving_average_decay:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        with tf.device(deploy_config.optimizer_device()):
            learning_rate = tf_utils.configure_learning_rate(
                FLAGS, dataset.num_samples, global_step)
            optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if FLAGS.moving_average_decay:
            update_ops.append(
                variable_averages.apply(moving_average_variables))

        variables_to_train = tf_utils.get_variables_to_train(FLAGS)

        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones, optimizer, var_list=variables_to_train)
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)
        update_op = tf.group(*update_ops)
        train_tensor = control_flow_ops.with_dependencies([update_op],
                                                          total_loss,
                                                          name='train_op')

        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)
        saver = tf.train.Saver(max_to_keep=5,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)
        slim.learning.train(train_tensor,
                            logdir=FLAGS.train_dir,
                            master='',
                            is_chief=True,
                            init_fn=tf_utils.get_init_fn(FLAGS),
                            summary_op=summary_op,
                            number_of_steps=FLAGS.max_number_of_steps,
                            log_every_n_steps=FLAGS.log_every_n_steps,
                            save_summaries_secs=FLAGS.save_summaries_secs,
                            saver=saver,
                            save_interval_secs=FLAGS.save_interval_secs,
                            session_config=config,
                            sync_optimizer=None)
Пример #12
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError('You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()

        # =================================================================== #
        # Dataset + SSD model + Pre-processing
        # =================================================================== #
        dataset = dataset_factory.get_dataset(
            FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

        # Get the SSD network and its anchors.
        ssd_class = nets_factory.get_network(FLAGS.model_name)
        ssd_params = ssd_class.default_params._replace(num_classes=FLAGS.num_classes)
        ssd_net = ssd_class(ssd_params)

        # Evaluation shape and associated anchors.
        # eval_image_size
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.eval_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device('/cpu:0'):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    common_queue_capacity=2 * FLAGS.batch_size,
                    common_queue_min=FLAGS.batch_size,
                    shuffle=False)
            # Get for SSD network: image, labels, bboxes.
            [image, shape, glabels, gbboxes] = provider.get(['image', 'shape',
                                                             'object/label',
                                                             'object/bbox'])
            if FLAGS.remove_difficult:
                [gdifficult] = provider.get(['object/difficult'])
            else:
                gdifficult = None

            # Pre-processing image, labels and bboxes.
            image, glabels, gbboxes, gbbox_img = \
                image_preprocessing_fn(image, glabels, gbboxes,
                                       out_shape=ssd_shape,
                                       data_format=DATA_FORMAT,
                                       resize=FLAGS.eval_resize,
                                       difficults=gdifficult)

            # Encode groundtruth labels and bboxes.
            gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] * 4 + [len(ssd_anchors)] * 3

            # Evaluation batch.
            r = tf.train.batch(
                tf_utils.reshape_list([image, glabels, gbboxes, gbbox_img,
                                       gclasses, glocalisations, gscores]),
                batch_size=FLAGS.batch_size,
                num_threads=FLAGS.num_preprocessing_threads,
                capacity=5 * FLAGS.batch_size,
                dynamic_pad=True)
            (b_image, b_glabels, b_gbboxes, b_gbbox_img, b_gclasses,
             b_glocalisations, b_gscores) = tf_utils.reshape_list(r, batch_shape)

        # =================================================================== #
        # SSD Network + Ouputs decoding.
        # =================================================================== #
        dict_metrics = {}
        arg_scope = ssd_net.arg_scope(data_format=DATA_FORMAT)
        with slim.arg_scope(arg_scope):
            predictions, localisations, logits, end_points = \
                ssd_net.net(b_image, is_training=False)
        # Add losses functions.
        ssd_net.losses(logits, localisations,
                       b_gclasses, b_glocalisations, b_gscores)

        # Performing post-processing on CPU: loop-intensive, usually more efficient.
        with tf.device('/cpu:0'):
            # Detected objects from SSD output.
            localisations = ssd_net.bboxes_decode(localisations, ssd_anchors)
            rclasses, rscores, rbboxes = \
                ssd_net.detected_bboxes(predictions, localisations,
                                        select_threshold=FLAGS.select_threshold,
                                        nms_threshold=FLAGS.nms_threshold,
                                        clipping_bbox=b_gbbox_img,
                                        top_k=FLAGS.select_top_k)

            # Compute TP and FP statistics.
            n_gbboxes, tp_tensor, fp_tensor = \
                tfe.bboxes_matching_batch(rclasses, rscores, rbboxes,
                                          b_glabels, b_gbboxes,
                                          matching_threshold=FLAGS.matching_threshold)

        # Variables to restore: moving avg. or normal weights.
        if FLAGS.moving_average_decay:
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore(
                slim.get_model_variables())
            variables_to_restore[tf_global_step.op.name] = tf_global_step
        else:
            variables_to_restore = slim.get_variables_to_restore()

        # =================================================================== #
        # Evaluation metrics.
        # =================================================================== #
        with tf.device('/cpu:0'):
            dict_metrics = {}
            # First add all losses.
            for loss in tf.get_collection(tf.GraphKeys.LOSSES):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)
            # Extra losses as well.
            for loss in tf.get_collection('EXTRA_LOSSES'):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)

            # Add metrics to summaries and Print on screen.
            for name, metric in dict_metrics.items():
                # summary_name = 'eval/%s' % name
                summary_name = name
                op = tf.summary.scalar(summary_name, metric[0], collections=[])
                # op = tf.Print(op, [metric[0]], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # Precision / recall arrays metrics.
            dict_metrics['precision_recall'] = \
                tfe.streaming_precision_recall_arrays(n_gbboxes, rclasses, rscores,
                                                      tp_tensor, fp_tensor)

        # Add to summaries precision/recall values.
        metric_val = dict_metrics['precision_recall'][0]
        l_precisions = tfe.precision_recall_values(LIST_RECALLS,
                                                   metric_val[0],
                                                   metric_val[1])
        for i, v in enumerate(l_precisions):
            summary_name = 'eval/precision_at_recall_%.2f' % LIST_RECALLS[i]
            op = tf.summary.scalar(summary_name, v, collections=[])
            op = tf.Print(op, [v], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # Compute Average Precision (Pascal 2012).
        ap = tfe.average_precision_voc12(metric_val[0], metric_val[1])
        summary_name = 'eval/average_precision_voc12'
        op = tf.summary.scalar(summary_name, ap, collections=[])
        op = tf.Print(op, [ap], summary_name)
        tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # Compute Average Precision (Pascal 2007).
        ap = tfe.average_precision_voc07(metric_val[0], metric_val[1])
        summary_name = 'eval/average_precision_voc07'
        op = tf.summary.scalar(summary_name, ap, collections=[])
        op = tf.Print(op, [ap], summary_name)
        tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # Split into values and updates ops.
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(dict_metrics)

        # =================================================================== #
        # Evaluation loop.
        # =================================================================== #
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
        # Number of batches...
        if FLAGS.max_num_batches:
            num_batches = FLAGS.max_num_batches
        else:
            num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size))

        if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
            checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
        else:
            checkpoint_path = FLAGS.checkpoint_path

        start = time.clock()
        tf.logging.info('Evaluating %s' % checkpoint_path)
        slim.evaluation.evaluate_once(
            master=FLAGS.master,
            checkpoint_path=checkpoint_path,
            logdir=FLAGS.eval_dir,
            num_evals=num_batches,
            eval_op=list(names_to_updates.values()),
            variables_to_restore=variables_to_restore,
            session_config=config)
        # Log time spent.
        elapsed = time.clock()
        elapsed = elapsed - start
        print('Time spent : %.3f seconds.' % elapsed)
        print('Time spent per BATCH: %.3f seconds.' % (elapsed / num_batches))
Пример #13
0
def main(_):
    if not FLAGS.data_dir:
        raise ValueError('You must supply the dataset directory with --data_dir')
    num_gpus = FLAGS.num_gpus
    if num_gpus < 1: num_gpus = 1

    # ps_spec = FLAGS.ps_hosts.split(",")
    # worker_spec = FLAGS.worker_hosts.split(",")
    # num_workers = len(worker_spec)
    # cluster = tf.train.ClusterSpec({
    #     "ps": ps_spec,
    #     "worker": worker_spec})
    # server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
    # if FLAGS.job_name == "ps":
    #     with tf.device("/cpu:0"):
    #         server.join()
    #     return

    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.device('/cpu:0'):
        global_step = slim.create_global_step()

        # Select the dataset.
        dataset = dataset_factory.get_dataset(
            FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.data_dir)

        # Get the RON network and its anchors.
        ron_class = nets_factory.get_network(FLAGS.model_name)
        ron_params = ron_class.default_params._replace(num_classes=FLAGS.num_classes)
        ron_net = ron_class(ron_params)
        ron_shape = ron_net.params.img_shape
        ron_anchors = ron_net.anchors(ron_shape)

        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=120 * FLAGS.batch_size * num_gpus,
                common_queue_min=80 * FLAGS.batch_size * num_gpus,
                shuffle=True)
        # Get for RON network: image, labels, bboxes.
        # (ymin, xmin, ymax, xmax) fro gbboxes
        [image, shape, glabels, gbboxes, isdifficult] = provider.get(['image', 'shape',
                                                         'object/label',
                                                         'object/bbox',
                                                         'object/difficult'])
        isdifficult_mask =tf.cond(tf.reduce_sum(tf.cast(tf.logical_not(tf.equal(tf.ones_like(isdifficult), isdifficult)), tf.float32)) < 1., lambda : tf.one_hot(0, tf.shape(isdifficult)[0], on_value=True, off_value=False, dtype=tf.bool), lambda : isdifficult < tf.ones_like(isdifficult))

        glabels = tf.boolean_mask(glabels, isdifficult_mask)
        gbboxes = tf.boolean_mask(gbboxes, isdifficult_mask)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        # Pre-processing image, labels and bboxes.
        image, glabels, gbboxes = image_preprocessing_fn(image, glabels, gbboxes,
                                   out_shape=ron_shape,
                                   data_format=DATA_FORMAT)
        # Encode groundtruth labels and bboxes.
        # glocalisations is our regression object
        # gclasses is the ground_trutuh label
        # gscores is the the jaccard score with ground_truth
        gclasses, glocalisations, gscores = \
            ron_net.bboxes_encode(glabels, gbboxes, ron_anchors, positive_threshold=FLAGS.match_threshold, ignore_threshold=FLAGS.neg_threshold)

        # each size of the batch elements
        # include one image, three others(gclasses, glocalisations, gscores)
        batch_shape = [1] + [len(ron_anchors)] * 3

        # Training batches and queue.
        r = tf.train.batch(
            tf_utils.reshape_list([image, gclasses, glocalisations, gscores]),
            batch_size=FLAGS.batch_size * num_gpus,
            num_threads=FLAGS.num_preprocessing_threads,
            capacity=120 * FLAGS.batch_size * num_gpus)
        all_batch = tf_utils.reshape_list(r, batch_shape)
        b_image = tf.split(all_batch[0], num_or_size_splits=num_gpus, axis=0)
        _b_gclasses = [tf.split(b, num_or_size_splits=num_gpus, axis=0) for b in all_batch[1]]
        b_gclasses = [_ for _ in zip(*_b_gclasses)]
        _b_glocalisations = [tf.split(b, num_or_size_splits=num_gpus, axis=0) for b in all_batch[2]]
        b_glocalisations = [_ for _ in zip(*_b_glocalisations)]
        _b_gscores = [tf.split(b, num_or_size_splits=num_gpus, axis=0) for b in all_batch[3]]
        b_gscores = [_ for _ in zip(*_b_gscores)]

    # Gather initial summaries.
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    # =================================================================== #
    # Configure the optimization procedure.
    # =================================================================== #
    learning_rate = tf_utils.configure_learning_rate(FLAGS,
                                                     dataset.num_samples,
                                                     global_step)
    optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
    summaries.add(tf.summary.scalar('learning_rate', learning_rate))

    # Construct RON network.
    arg_scope = ron_net.arg_scope(weight_decay=FLAGS.weight_decay, data_format=DATA_FORMAT)

    reuse_variables = False
    tower_grads = []
    loss_list = []
    with slim.arg_scope(arg_scope):
        for index in range(num_gpus):
            with tf.device('/gpu:%d' % index):
                predictions, logits, objness_pred, objness_logits, localisations, end_points = ron_net.net(b_image[index], is_training=True, reuse = reuse_variables)
                # Add loss function.
                ron_net.losses(logits, localisations, objness_logits, objness_pred,
                               b_gclasses[index], b_glocalisations[index], b_gscores[index],
                               match_threshold = FLAGS.match_threshold,
                               neg_threshold = FLAGS.neg_threshold,
                               objness_threshold = FLAGS.objectness_thres,
                               negative_ratio=FLAGS.negative_ratio,
                               alpha=FLAGS.loss_alpha,
                               beta=FLAGS.loss_beta,
                               label_smoothing=FLAGS.label_smoothing)
                reuse_variables = True
                # and returns a train_tensor and summary_op
                loss = tf.losses.get_total_loss()
                loss_list.append(loss)
                # Variables to train.
                variables_to_train = tf_utils.get_variables_to_train(FLAGS)
                # Create gradient updates.
                grads = optimizer.compute_gradients(loss, variables_to_train)
                tower_grads.append(grads)

    reduce_grads = average_gradients(tower_grads)
    total_loss = tf.reduce_mean(tf.stack(loss_list, axis=0), axis=0)
    # Add total_loss to summary.
    summaries.add(tf.summary.scalar('total_loss', total_loss))
    # =================================================================== #
    # Configure the moving averages.
    # =================================================================== #
    if FLAGS.moving_average_decay:
        moving_average_variables = slim.get_model_variables()
        variable_averages = tf.train.ExponentialMovingAverage(
            FLAGS.moving_average_decay, global_step)
    else:
        moving_average_variables, variable_averages = None, None

    if FLAGS.moving_average_decay:
        # Update ops executed locally by trainer.
        update_ops.append(variable_averages.apply(moving_average_variables))

    grad_updates = optimizer.apply_gradients(reduce_grads, global_step=global_step)
    update_ops.append(grad_updates)
    update_op = tf.group(*update_ops)
    train_tensor = control_flow_ops.with_dependencies([update_op], total_loss, name='train_op')

    # Merge all summaries together.
    summary_op = tf.summary.merge(list(summaries), name='summary_op')
    # =================================================================== #
    # Kicks off the training.
    # =================================================================== #
    config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
    saver = tf.train.Saver(max_to_keep=5,
                           keep_checkpoint_every_n_hours = FLAGS.save_interval_secs/3600.,
                           write_version=2,
                           pad_step_number=False)

    slim.learning.train(
        train_tensor,
        logdir=FLAGS.model_dir,
        master='',
        is_chief=True,
        init_fn=tf_utils.get_init_fn(FLAGS, os.path.join(FLAGS.data_dir, 'vgg_16.ckpt')),
        summary_op=summary_op,
        number_of_steps=FLAGS.max_number_of_steps,
        log_every_n_steps=FLAGS.log_every_n_steps,
        save_summaries_secs=FLAGS.save_summaries_secs,
        saver=saver,
        save_interval_secs=FLAGS.save_interval_secs,
        session_config=config,
        session_wrapper=None,
        sync_optimizer=None)
Пример #14
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError('You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.Graph().as_default():
        # Config model_deploy. Keep TF Slim Models structure.
        # Useful if want to need multiple GPUs and/or servers in the future.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,
            clone_on_cpu=FLAGS.clone_on_cpu,
            replica_id=0,
            num_replicas=1,
            num_ps_tasks=0)
        # Create global_step.
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        # Select the dataset.
        dataset = dataset_factory.get_dataset(
            FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

        # Get the SSD network and its anchors.
        ssd_class = nets_factory.get_network(FLAGS.model_name)
        ssd_params = ssd_class.default_params._replace(num_classes=FLAGS.num_classes)
        ssd_net = ssd_class(ssd_params)
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.train_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device(deploy_config.inputs_device()):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    num_readers=FLAGS.num_readers,
                    common_queue_capacity=20 * FLAGS.batch_size,
                    common_queue_min=10 * FLAGS.batch_size,
                    shuffle=True)
            # Get for SSD network: image, labels, bboxes.
            [image, shape, glabels, gbboxes] = provider.get(['image', 'shape',
                                                             'object/label',
                                                             'object/bbox'])
            # Pre-processing image, labels and bboxes.
            image, glabels, gbboxes = \
                image_preprocessing_fn(image, glabels, gbboxes,
                                       out_shape=ssd_shape,
                                       data_format=DATA_FORMAT)
            # Encode groundtruth labels and bboxes.
            gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] + [len(ssd_anchors)] * 3

            # Training batches and queue.
            r = tf.train.batch(
                tf_utils.reshape_list([image, gclasses, glocalisations, gscores]),
                batch_size=FLAGS.batch_size,
                num_threads=FLAGS.num_preprocessing_threads,
                capacity=5 * FLAGS.batch_size)
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(r, batch_shape)

            # Intermediate queueing: unique batch computation pipeline for all
            # GPUs running the training.
            batch_queue = slim.prefetch_queue.prefetch_queue(
                tf_utils.reshape_list([b_image, b_gclasses, b_glocalisations, b_gscores]),
                capacity=2 * deploy_config.num_clones)

        # =================================================================== #
        # Define the model running on every GPU.
        # =================================================================== #
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            # Construct SSD network.
            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            # Add loss function.
            ssd_net.losses(logits, localisations,
                           b_gclasses, b_glocalisations, b_gscores,
                           match_threshold=FLAGS.match_threshold,
                           negative_ratio=FLAGS.negative_ratio,
                           alpha=FLAGS.loss_alpha,
                           label_smoothing=FLAGS.label_smoothing)
            return end_points

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        # =================================================================== #
        # Add summaries from first clone.
        # =================================================================== #
        clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)
        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by network_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

        # Add summaries for end_points.
        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(tf.summary.scalar('sparsity/' + end_point,
                                            tf.nn.zero_fraction(x)))
        # Add summaries for losses and extra losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))
        for loss in tf.get_collection('EXTRA_LOSSES', first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        # =================================================================== #
        # Configure the moving averages.
        # =================================================================== #
        if FLAGS.moving_average_decay:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        # =================================================================== #
        # Configure the optimization procedure.
        # =================================================================== #
        with tf.device(deploy_config.optimizer_device()):
            learning_rate = tf_utils.configure_learning_rate(FLAGS,
                                                             dataset.num_samples,
                                                             global_step)
            optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if FLAGS.moving_average_decay:
            # Update ops executed locally by trainer.
            update_ops.append(variable_averages.apply(moving_average_variables))

        # Variables to train.
        variables_to_train = tf_utils.get_variables_to_train(FLAGS)

        # and returns a train_tensor and summary_op
        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones,
            optimizer,
            var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)
        update_op = tf.group(*update_ops)
        train_tensor = control_flow_ops.with_dependencies([update_op], total_loss,
                                                          name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                           first_clone_scope))
        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # =================================================================== #
        # Kicks off the training.
        # =================================================================== #
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)
        saver = tf.train.Saver(max_to_keep=5,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)
        slim.learning.train(
            train_tensor,
            logdir=FLAGS.train_dir,
            master='',
            is_chief=True,
            init_fn=tf_utils.get_init_fn(FLAGS),
            summary_op=summary_op,
            number_of_steps=FLAGS.max_number_of_steps,
            log_every_n_steps=FLAGS.log_every_n_steps,
            save_summaries_secs=FLAGS.save_summaries_secs,
            saver=saver,
            save_interval_secs=FLAGS.save_interval_secs,
            session_config=config,
            sync_optimizer=None)
def main(_):
    if FLAGS.train_on_cpu:
        os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
    else:
        os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu_device

    if not FLAGS.dataset_dir:
        raise ValueError(
            "You must supply the dataset directory with --dataset-dir.")

    tf.logging.set_verbosity(tf.logging.DEBUG)

    g = tf.Graph()
    with g.as_default():
        # select the dataset
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        # create global step, used for optimizer moving average decay
        with tf.device("/cpu:0"):
            global_step = tf.train.create_global_step()

        # pdb.set_trace()
        # get the ssd network and its anchors
        ssd_cls = ssd.SSDnet
        ssd_params = ssd_cls.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_cls(ssd_params)
        image_size = ssd_net.params.img_shape

        ssd_anchors = ssd_net.anchors(img_shape=image_size)

        # select the preprocessing function
        preprocessing_name = FLAGS.preprocessing_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.train_dir)

        # create a dataset provider and batches.
        with tf.device("/cpu:0"):
            with tf.name_scope(FLAGS.dataset_name + "_data_provider"):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    num_readers=FLAGS.num_readers,
                    common_queue_capacity=20 * FLAGS.batch_size,
                    common_queue_min=10 * FLAGS.batch_size,
                    shuffle=True)
                # get for ssd network: image,labels,bboxes
                [image, shape, glabels, gbboxes] = provider.get(
                    ["image", "shape", "object/label", "object/bbox"])

                # pdb.set_trace()
                # preprocessing
                image,glabels,gbboxes = \
                            image_preprocessing_fn(image,
                                                                glabels,gbboxes,
                                                                out_shape=image_size,
                                                                data_format="NHWC")

                # encode groundtruth labels and bboxes
                gclasses,glocalisations,gscores= \
                    ssd_net.bboxes_encode(glabels,gbboxes,ssd_anchors)
                batch_shape = [1] + [len(ssd_anchors)] * 3

                # training batches and queue
                r = tf.train.batch(tf_utils.reshape_list(
                    [image, gclasses, glocalisations, gscores]),
                                   batch_size=FLAGS.batch_size,
                                   num_threads=FLAGS.num_preprocessing_threads,
                                   capacity=5 * FLAGS.batch_size)
                b_image,b_gclasses,b_glocalisations,b_gscores = \
                    tf_utils.reshape_list(r,batch_shape)

                # prefetch queue
                batch_queue = slim.prefetch_queue.prefetch_queue(
                    tf_utils.reshape_list(
                        [b_image, b_gclasses, b_glocalisations, b_gscores]),
                    capacity=8)

        # dequeue batch
        b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

        # gather initial summaries
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay)
        with slim.arg_scope(arg_scope):
            predictions,localisations,logits,end_points,mobilenet_var_list = \
                    ssd_net.net(b_image,is_training=True)

        # add loss function
        ssd_net.losses(logits,
                       localisations,
                       b_gclasses,
                       b_glocalisations,
                       b_gscores,
                       match_threshold=FLAGS.match_threshold,
                       negative_ratio=FLAGS.negative_ratio,
                       alpha=FLAGS.loss_alpha,
                       label_smoothing=FLAGS.label_smoothing)

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

        # add summaries for end_points
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram("activations/" + end_point, x))
            summaries.add(
                tf.summary.scalar("sparsity/" + end_point,
                                  tf.nn.zero_fraction(x)))

        # add summaries for losses and extra losses
        for loss in tf.get_collection(tf.GraphKeys.LOSSES):
            summaries.add(tf.summary.scalar(loss.op.name, loss))
        for loss in tf.get_collection("EXTRA_LOSSES"):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        # add summaries for variables
        for var in slim.get_model_variables():
            summaries.add(tf.summary.histogram(var.op.name, var))

        # configure the moving averages
        if FLAGS.moving_average_decay:  # use moving average decay on weights variables
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        # configure the optimization procedure
        with tf.device("/cpu:0"):
            learning_rate = tf_utils.configure_learning_rate(
                FLAGS, dataset.num_samples, global_step)
            optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
            summaries.add(tf.summary.scalar("learning_rate", learning_rate))

        if FLAGS.moving_average_decay:
            # update ops executed by trainer
            update_ops.append(
                variable_averages.apply(moving_average_variables))

        # get variables to train
        variables_to_train = tf_utils.get_variables_to_train(FLAGS)

        # return a train tensor and summary op
        total_losses = tf.get_collection(tf.GraphKeys.LOSSES)
        total_loss = tf.add_n(total_losses, name="total_loss")
        summaries.add(tf.summary.scalar("total_loss", total_loss))

        # create gradient updates
        grads = optimizer.compute_gradients(total_loss,
                                            var_list=variables_to_train)
        grad_updates = optimizer.apply_gradients(grads,
                                                 global_step=global_step)
        update_ops.append(grad_updates)

        # create train op
        update_op = tf.group(*update_ops)
        train_tensor = control_flow_ops.with_dependencies([update_op],
                                                          total_loss,
                                                          name="train_op")

        # merge all summaries together
        summary_op = tf.summary.merge(list(summaries), name="summary_op")

        # start training
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction,
            allow_growth=FLAGS.allow_growth)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)
        saver = tf.train.Saver(max_to_keep=2,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)

        # create initial assignment op
        init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
            FLAGS.checkpoint_path,
            mobilenet_var_list,
            ignore_missing_vars=FLAGS.ignore_missing_vars)

        # create an initial assignment function
        for k, v in init_feed_dict.items():
            if "global_step" in k.name:
                g_step = k

        init_feed_dict[g_step] = 0  # change the global_step to zero.
        init_fn = lambda sess: sess.run(init_assign_op, init_feed_dict)

        # run training
        slim.learning.train(
            train_tensor,
            logdir=FLAGS.train_dir,
            init_fn=init_fn,
            summary_op=summary_op,
            number_of_steps=FLAGS.max_number_of_steps,
            save_summaries_secs=FLAGS.save_summaries_secs,
            save_interval_secs=FLAGS.save_interval_secs,
            session_config=config,
            saver=saver,
        )
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)

    with tf.Graph().as_default():
        ######################
        # Config model_deploy#
        ######################
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,
            clone_on_cpu=FLAGS.clone_on_cpu,
            replica_id=FLAGS.task,
            num_replicas=FLAGS.worker_replicas,
            num_ps_tasks=FLAGS.num_ps_tasks)

        # Create global_step
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        network_fn = nets_factory.get_network(FLAGS.model_name)
        params = network_fn.default_params
        params = params._replace(match_threshold=FLAGS.match_threshold)
        # initalize the net
        net = network_fn(params)
        out_shape = net.params.img_shape
        anchors = net.anchors(out_shape)

        # create batch dataset
        with tf.device(deploy_config.inputs_device()):
            b_image, b_glocalisations, b_gscores = \
            load_batch.get_batch(FLAGS.dataset_dir,
                  FLAGS.num_readers,
                  FLAGS.batch_size,
                  out_shape,
                  net,
                  anchors,
                  FLAGS,
                  file_pattern = FLAGS.file_pattern,
                  is_training = True,
                  shuffe = FLAGS.shuffle_data)
            allgscores = []
            allglocalization = []
            for i in range(len(anchors)):
                allgscores.append(tf.reshape(b_gscores[i], [-1]))
                allglocalization.append(
                    tf.reshape(b_glocalisations[i], [-1, 4]))

            b_gscores = tf.concat(allgscores, 0)
            b_glocalisations = tf.concat(allglocalization, 0)

            batch_queue = slim.prefetch_queue.prefetch_queue(
                tf_utils.reshape_list([b_image, b_glocalisations, b_gscores]),
                num_threads=8,
                capacity=16 * deploy_config.num_clones)

        # =================================================================== #
        # Define the model running on every GPU.
        # =================================================================== #
        def clone_fn(batch_queue):

            #Allows data parallelism by creating multiple
            #clones of network_fn.

            # Dequeue batch.
            batch_shape = [1] * 3
            b_image, b_glocalisations, b_gscores = \
             tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)
            # Construct SSD network.
            arg_scope = net.arg_scope(weight_decay=FLAGS.weight_decay,
                                      data_format=FLAGS.data_format)
            with slim.arg_scope(arg_scope):
                localisations, logits, end_points = \
                 net.net(b_image, is_training=True, use_batch=FLAGS.use_batch)
            # Add loss function.
            net.losses(logits,
                       localisations,
                       b_glocalisations,
                       b_gscores,
                       negative_ratio=FLAGS.negative_ratio,
                       use_hard_neg=FLAGS.use_hard_neg,
                       alpha=FLAGS.loss_alpha,
                       label_smoothing=FLAGS.label_smoothing)
            return end_points

        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        clones = model_deploy.create_clones(deploy_config, clone_fn,
                                            [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))

        for loss in tf.get_collection('EXTRA_LOSSES', first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        #################################
        # Configure the moving averages #
        #################################
        if FLAGS.moving_average_decay:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        #########################################
        # Configure the optimization procedure. #
        #########################################
        with tf.device(deploy_config.optimizer_device()):
            learning_rate = tf_utils.configure_learning_rate(
                FLAGS, FLAGS.num_samples, global_step)
            optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if FLAGS.fine_tune:
            gradient_multipliers = pickle.load(
                open('nets/multiplier_300.pkl', 'rb'))
        else:
            gradient_multipliers = None

        if FLAGS.moving_average_decay:
            # Update ops executed locally by trainer.
            update_ops.append(
                variable_averages.apply(moving_average_variables))

        # Variables to train.
        variables_to_train = tf_utils.get_variables_to_train(FLAGS)

        #  and returns a train_tensor and summary_op
        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones, optimizer, var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)

        update_op = tf.group(*update_ops)
        train_tensor = control_flow_ops.with_dependencies([update_op],
                                                          total_loss,
                                                          name='train_op')

        #train_tensor = slim.learning.create_train_op(total_loss, optimizer, gradient_multipliers=gradient_multipliers)
        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # =================================================================== #
        # Kicks off the training.
        # =================================================================== #
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction,
            allocator_type="BFC")
        config = tf.ConfigProto(
            gpu_options=gpu_options,
            log_device_placement=False,
            allow_soft_placement=True,
            inter_op_parallelism_threads=0,
            intra_op_parallelism_threads=1,
        )
        saver = tf.train.Saver(max_to_keep=5,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)

        slim.learning.train(train_tensor,
                            logdir=FLAGS.train_dir,
                            master='',
                            is_chief=True,
                            init_fn=tf_utils.get_init_fn(FLAGS),
                            summary_op=summary_op,
                            number_of_steps=FLAGS.max_number_of_steps,
                            log_every_n_steps=FLAGS.log_every_n_steps,
                            save_summaries_secs=FLAGS.save_summaries_secs,
                            saver=saver,
                            save_interval_secs=FLAGS.save_interval_secs,
                            session_config=config,
                            sync_optimizer=None)
Пример #17
0
def get_batch(dataset_dir,
              num_readers,
              batch_size,
              out_shape,
              net,
              anchors,
              FLAGS,
              file_pattern='*.tfrecord',
              is_training=True,
              shuffe=False):

    dataset = sythtextprovider.get_datasets(dataset_dir,
                                            file_pattern=file_pattern)

    provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        num_readers=num_readers,
        common_queue_capacity=512 * 16 + 20 * batch_size,
        common_queue_min=512 * 16,
        shuffle=shuffe)

    [image, shape, glabels, gbboxes, height, width] = provider.get(
        ['image', 'shape', 'object/label', 'object/bbox', 'height', 'width'])

    if is_training:
        image, glabels, gbboxes,num = \
        txt_preprocessing.preprocess_image(image,  glabels, gbboxes, height, width,
                 out_shape,use_whiten=FLAGS.use_whiten,is_training=is_training)

        glocalisations, gscores = \
         net.bboxes_encode( gbboxes, anchors, num)

        batch_shape = [1] + [len(anchors)] * 2

        r = tf.train.shuffle_batch(tf_utils.reshape_list(
            [image, glocalisations, gscores]),
                                   batch_size=batch_size,
                                   num_threads=FLAGS.num_preprocessing_threads,
                                   capacity=100 * batch_size,
                                   min_after_dequeue=50 * batch_size)

        b_image, b_glocalisations, b_gscores= \
         tf_utils.reshape_list(r, batch_shape)

        return b_image, b_glocalisations, b_gscores

    else:
        image, glabels, gbboxes,bbox_img, num = \
        txt_preprocessing.preprocess_image(image,  glabels,gbboxes, height,width,
                out_shape,use_whiten=FLAGS.use_whiten,is_training=is_training)

        glocalisations, gscores = \
         net.bboxes_encode( gbboxes, anchors, num)
        batch_shape = [1] * 4 + [len(anchors)] * 2
        r = tf.train.batch(tf_utils.reshape_list(
            [image, glabels, gbboxes, bbox_img, glocalisations, gscores]),
                           batch_size=batch_size,
                           num_threads=FLAGS.num_preprocessing_threads,
                           capacity=50 * batch_size,
                           dynamic_pad=True)

        image, glabels, gbboxes,g_bbox_img,glocalisations, gscores = \
         tf_utils.reshape_list(r, batch_shape)

        return image, glabels, gbboxes, g_bbox_img, glocalisations, gscores
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.Graph().as_default():
        # Config model_deploy. Keep TF Slim Models structure.
        # Useful if want to need multiple GPUs and/or servers in the future.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,
            clone_on_cpu=FLAGS.clone_on_cpu,
            replica_id=0,
            num_replicas=1,
            num_ps_tasks=0)
        # Create global_step.
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        # Select the dataset.
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        # Get the SSD network and its anchors.
        ssd_class = nets_factory.get_network(FLAGS.model_name)
        ssd_params = ssd_class.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_class(ssd_params)
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.train_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device(deploy_config.inputs_device()):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    num_readers=FLAGS.num_readers,
                    common_queue_capacity=20 * FLAGS.batch_size,
                    common_queue_min=10 * FLAGS.batch_size,
                    shuffle=True)
            # Get for SSD network: image, labels, bboxes.
            [image, shape, glabels, gbboxes] = provider.get(
                ['image', 'shape', 'object/label', 'object/bbox'])
            # Pre-processing image, labels and bboxes.
            image, glabels, gbboxes = \
                image_preprocessing_fn(image, glabels, gbboxes,
                                       out_shape=ssd_shape,
                                       data_format=DATA_FORMAT)
            # Encode groundtruth labels and bboxes.
            gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] + [len(ssd_anchors)] * 3
            #
            # Training batches and queue.
            r = tf.train.batch(tf_utils.reshape_list(
                [image, gclasses, glocalisations, gscores]),
                               batch_size=FLAGS.batch_size,
                               num_threads=FLAGS.num_preprocessing_threads,
                               capacity=5 * FLAGS.batch_size)
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(r, batch_shape)

            # Intermediate queueing: unique batch computation pipeline for all
            # GPUs running the training.
            batch_queue = slim.prefetch_queue.prefetch_queue(
                tf_utils.reshape_list(
                    [b_image, b_gclasses, b_glocalisations, b_gscores]),
                capacity=2 * deploy_config.num_clones)
    #
    #     # =================================================================== #
    #     # Define the model running on every GPU.
    #     # =================================================================== #

        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            # Construct SSD network.
            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
    #         # Add loss function.
            ssd_net.losses(logits,
                           localisations,
                           b_gclasses,
                           b_glocalisations,
                           b_gscores,
                           match_threshold=FLAGS.match_threshold,
                           negative_ratio=FLAGS.negative_ratio,
                           alpha=FLAGS.loss_alpha,
                           label_smoothing=FLAGS.label_smoothing)
            return end_points
Пример #19
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.Graph().as_default():

        # Create global_step.
        # with tf.device('/gpu:0'):
        global_step = slim.create_global_step()
        # ckpt = tf.train.get_checkpoint_state(os.path.dirname('./logs/checkpoint'))
        #os.path.dirname('./logs/')
        ckpt_filename = os.path.dirname(
            './logs/') + '/mobilenet_v1_1.0_224.ckpt'
        sess = tf.InteractiveSession()

        # Select the dataset.
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        dataset_kitti = dataset_factory.get_dataset('kitti',
                                                    FLAGS.dataset_split_name,
                                                    FLAGS.dataset_dir)

        # Get the SSD network and its anchors.
        ssd_class = nets_factory.get_network(FLAGS.model_name)
        ssd_params = ssd_class.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_class(ssd_params)
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=20 * FLAGS.batch_size,
                common_queue_min=10 * FLAGS.batch_size,
                shuffle=True)
        [image, shape, glabels, gbboxes
         ] = provider.get(['image', 'shape', 'object/label', 'object/bbox'])

        image, glabels, gbboxes = \
            image_preprocessing_fn(image, glabels, gbboxes, out_shape = ssd_shape, data_format = DATA_FORMAT)

        gclasses, glocalisations, gscores = \
            ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
        batch_shape = [1] + [len(ssd_anchors)] * 3

        r = tf.train.batch(tf_utils.reshape_list(
            [image, gclasses, glocalisations, gscores]),
                           batch_size=FLAGS.batch_size,
                           num_threads=FLAGS.num_preprocessing_threads,
                           capacity=5 * FLAGS.batch_size)

        b_image, b_gclasses, b_glocalisations, b_gscores = \
            tf_utils.reshape_list(r, batch_shape)

        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        summaries.add(tf.summary.image("imgs", tf.cast(b_image, tf.float32)))

        f_i = 0
        for gt_map in b_gscores:
            gt_features = tf.reduce_max(gt_map, axis=3)
            gt_features = tf.expand_dims(gt_features, -1)
            summaries.add(
                tf.summary.image("gt_map_%d" % f_i,
                                 tf.cast(gt_features, tf.float32)))
            f_i += 1
            # for festures in gt_list:
            #     summaries.add(tf.summary.image("gt_map_%d" % f_i, tf.cast(festures, tf.float32)))
            #     f_i += 1

        arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                      data_format=DATA_FORMAT)
        with slim.arg_scope(arg_scope):
            predictions, localisations, logits, end_points = \
                ssd_net.net(b_image, is_training=True)

        f_i = 0
        for predict_map in predictions:
            predict_map = predict_map[:, :, :, :, 1:]
            predict_map = tf.reduce_max(predict_map, axis=4)
            predict_map = tf.reduce_max(predict_map, axis=3)
            predict_map = tf.expand_dims(predict_map, -1)
            summaries.add(
                tf.summary.image("predicte_map_%d" % f_i,
                                 tf.cast(predict_map, tf.float32)))
            f_i += 1

        ssd_net.losses(logits,
                       localisations,
                       b_gclasses,
                       b_glocalisations,
                       b_gscores,
                       0,
                       match_threshold=FLAGS.match_threshold,
                       negative_ratio=FLAGS.negative_ratio,
                       alpha=FLAGS.loss_alpha,
                       label_smoothing=FLAGS.label_smoothing)

        # with tf.name_scope('kitti' + '_data_provider'):
        #     provider_k = slim.dataset_data_provider.DatasetDataProvider(
        #         dataset_kitti,
        #         num_readers = FLAGS.num_readers,
        #         common_queue_capacity = 20 * FLAGS.batch_size,
        #         common_queue_min = 10 * FLAGS.batch_size,
        #         shuffle = True
        #     )
        # [image_k, shape_k, glabels_k, gbboxes_k] = provider_k.get(['image', 'shape', 'object/label', 'object/bbox'])
        #
        # image_preprocessing_fn_k = preprocessing_factory.get_preprocessing('kitti', is_training=True)
        # image_k, glabels_k, gbboxes_k = \
        #     image_preprocessing_fn_k(image_k, glabels_k, gbboxes_k, out_shape = ssd_shape, data_format = DATA_FORMAT)
        #
        # gclasses_k, glocalisations_k, gscores_k = \
        #     ssd_net.bboxes_encode(glabels_k, gbboxes_k, ssd_anchors)
        # #batch_shape = [1] + [len(ssd_anchors)] * 3
        #
        # r_k = tf.train.batch(
        #     tf_utils.reshape_list([image_k, gclasses_k, glocalisations_k, gscores_k]),
        #     batch_size=FLAGS.batch_size,
        #     num_threads=FLAGS.num_preprocessing_threads,
        #     capacity= 5 * FLAGS.batch_size
        # )
        #
        # b_image_k, b_gclasses_k, b_glocalisations_k, b_gscores_k = \
        #     tf_utils.reshape_list(r_k, batch_shape)
        #
        # summaries.add(tf.summary.image("k_imgs", tf.cast(b_image_k, tf.float32)))
        #
        # f_i = 0
        # for gt_map in b_gscores_k:
        #     gt_features = tf.reduce_max(gt_map, axis=3)
        #     gt_features = tf.expand_dims(gt_features, -1)
        #     summaries.add(tf.summary.image("k_gt_map_%d" % f_i, tf.cast(gt_features, tf.float32)))
        #     f_i += 1
        #     # for festures in gt_list:
        #     #     summaries.add(tf.summary.image("gt_map_%d" % f_i, tf.cast(festures, tf.float32)))
        #     #     f_i += 1
        #
        # arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay, data_format=DATA_FORMAT)
        # with slim.arg_scope(arg_scope):
        #     predictions_k, localisations_k, logits_k, end_points_k = \
        #         ssd_net.net(b_image_k, is_training=True, reuse=True)
        #
        # f_i = 0
        # for predict_map in predictions_k:
        #     predict_map = predict_map[:, :, :, :, 1:]
        #     predict_map = tf.reduce_max(predict_map, axis=4)
        #     predict_map = tf.reduce_max(predict_map, axis=3)
        #     predict_map = tf.expand_dims(predict_map, -1)
        #     summaries.add(tf.summary.image("k_predicte_map_%d" % f_i, tf.cast(predict_map, tf.float32)))
        #     f_i += 1
        #
        # ssd_net.losses(logits_k, localisations_k, b_gclasses_k, b_glocalisations_k, b_gscores_k, 2,
        #                match_threshold=FLAGS.match_threshold,
        #                negative_ratio=FLAGS.negative_ratio,
        #                alpha=FLAGS.loss_alpha,
        #                label_smoothing=FLAGS.label_smoothing)

        #total_loss = slim.losses.get_total_loss()
        total_loss = tf.losses.get_total_loss()
        summaries.add(tf.summary.scalar('loss', total_loss))

        for loss in tf.get_collection(tf.GraphKeys.LOSSES):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        # for variable in slim.get_model_variables():
        #     summaries.add(tf.summary.histogram(variable.op.name, variable))
        for variable in tf.trainable_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        learning_rate = tf_utils.configure_learning_rate(
            FLAGS, dataset.num_samples, global_step)
        optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
        # optimizer = tf.train.AdamOptimizer(learning_rate, beta1=FLAGS.adam_beta1,
        #                                    beta2=FLAGS.adam_beta2, epsilon=FLAGS.opt_epsilon)
        #optimizer = tf.train.GradientDescentOptimizer(learning_rate)
        summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(extra_update_ops):
            train_op = slim.learning.create_train_op(total_loss,
                                                     optimizer,
                                                     summarize_gradients=False)

        summary_op = tf.summary.merge(list(summaries), name='summary_op')
        train_writer = tf.summary.FileWriter('./logs/', sess.graph)

        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)

        #variables_to_exclude = slim.get_variables_by_suffix("Adam")

        variables_to_restore = slim.get_variables_to_restore(
            exclude=["MobilenetV1/Logits", "MobilenetV1/Box", "global_step"])

        restorer = tf.train.Saver(variables_to_restore)

        saver = tf.train.Saver(max_to_keep=5,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)
        sess.run(tf.global_variables_initializer())
        restorer.restore(sess, ckpt_filename)

        # if ckpt and ckpt.model_checkpoint_path:
        #     saver.restore(sess, ckpt.model_checkpoint_path)

        i = 0
        with slim.queues.QueueRunners(sess):

            while (i < FLAGS.max_number_of_steps):
                _, summary_str = sess.run([train_op, summary_op])
                if i % 50 == 0:
                    global_step_str = global_step.eval()
                    print('%diteraton' % (global_step_str))
                    train_writer.add_summary(summary_str, global_step_str)
                if i % 100 == 0:
                    global_step_str = global_step.eval()
                    saver.save(sess, "./logs/", global_step=global_step_str)

                i += 1
Пример #20
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.Graph().as_default():

        # Create global_step.
        global_step = slim.create_global_step()
        sess = tf.InteractiveSession()
        # Select the dataset.
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        # Get the SSD network and its anchors.
        ssd_class = nets_factory.get_network(FLAGS.model_name)
        ssd_params = ssd_class.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_class(ssd_params)
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=20 * FLAGS.batch_size,
                common_queue_min=10 * FLAGS.batch_size,
                shuffle=True)
        # Get for SSD network: image, labels, bboxes.
        [image, shape, glabels, gbboxes
         ] = provider.get(['image', 'shape', 'object/label', 'object/bbox'])
        # Pre-processing image, labels and bboxes.
        image, glabels, gbboxes = \
            image_preprocessing_fn(image, glabels, gbboxes,
                                   out_shape=ssd_shape,
                                   data_format=DATA_FORMAT)
        # Encode groundtruth labels and bboxes.
        gclasses, glocalisations, gscores = \
            ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
        batch_shape = [1] + [len(ssd_anchors)] * 3

        # Training batches and queue.
        r = tf.train.batch(tf_utils.reshape_list(
            [image, gclasses, glocalisations, gscores]),
                           batch_size=FLAGS.batch_size,
                           num_threads=FLAGS.num_preprocessing_threads,
                           capacity=5 * FLAGS.batch_size)
        b_image, b_gclasses, b_glocalisations, b_gscores = \
            tf_utils.reshape_list(r, batch_shape)
        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        summaries.add(
            tf.summary.image("input_image", tf.cast(b_image, tf.float32)))
        f_i = 0
        for gt_map in b_gscores:
            gt_features = tf.reduce_max(gt_map, axis=3)
            gt_features = tf.expand_dims(gt_features, -1)
            summaries.add(
                tf.summary.image("gt_map_%d" % f_i,
                                 tf.cast(gt_features, tf.float32)))
            f_i += 1
        arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                      data_format=DATA_FORMAT)
        with slim.arg_scope(arg_scope):
            predictions, localisations, logits, end_points = \
                ssd_net.net(b_image, is_training=True)

        f_i = 0
        for predict_map in predictions:
            predict_map = predict_map[:, :, :, :, 1:]
            predict_map = tf.reduce_max(predict_map, axis=4)
            predict_map = tf.reduce_max(predict_map, axis=3)
            predict_map = tf.expand_dims(predict_map, -1)
            summaries.add(
                tf.summary.image("predicte_map_%d" % f_i,
                                 tf.cast(predict_map, tf.float32)))
            f_i += 1

        ssd_net.losses(logits,
                       localisations,
                       b_gclasses,
                       b_glocalisations,
                       b_gscores,
                       match_threshold=FLAGS.match_threshold,
                       negative_ratio=FLAGS.negative_ratio,
                       alpha=FLAGS.loss_alpha,
                       label_smoothing=FLAGS.label_smoothing)

        total_loss = tf.losses.get_total_loss()
        summaries.add(tf.summary.scalar('loss', total_loss))

        for loss in tf.get_collection(tf.GraphKeys.LOSSES):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        for variable in tf.trainable_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        with tf.name_scope('Optimizer'):
            learning_rate = tf_utils.configure_learning_rate(
                FLAGS, dataset.num_samples, global_step)
            optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
        summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(extra_update_ops):
            train_op = slim.learning.create_train_op(total_loss,
                                                     optimizer,
                                                     summarize_gradients=False)

        summary_op = tf.summary.merge(list(summaries), name='summary_op')
        train_writer = tf.summary.FileWriter('./logs/', sess.graph)

        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)

        variables_to_train = tf.trainable_variables()
        variables_to_restore = \
        tf.contrib.framework.filter_variables(variables_to_train,
                                              exclude_patterns=['_box'])
        restorer = tf.train.Saver(variables_to_restore)

        saver = tf.train.Saver(max_to_keep=5,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)
        sess.run(tf.global_variables_initializer())
        restorer.restore(sess, FLAGS.checkpoint_path)
        # get_init_fn
        i = 0
        with slim.queues.QueueRunners(sess):

            while (i < FLAGS.max_number_of_steps):
                _, summary_str = sess.run([train_op, summary_op])
                if i % 50 == 0:
                    global_step_str = global_step.eval()
                    print('%diteraton' % (global_step_str))
                    train_writer.add_summary(summary_str, global_step_str)
                if i % 100 == 0:
                    global_step_str = global_step.eval()
                    saver.save(sess, "./logs/", global_step=global_step_str)

                i += 1
Пример #21
0
def main(_):
    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.Graph().as_default():
        # Create global_step.
        global_step = slim.create_global_step()

        # Select the dataset.
        dataset = pascalvoc_2012.get_split('train', FLAGS.dataset_dir)

        # Get the SSD network and its anchors.
        ssd_class = ssd_vgg_300.SSDNet
        ssd_params = ssd_class.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_class(ssd_params)
        ssd_shape = ssd_net.params.img_shape
        # 计算所有先验框位置和大小[anchor=(x,y,h,w)....]
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.name_scope('pascalvoc_2012_data_provider'):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=20 * FLAGS.batch_size,
                common_queue_min=10 * FLAGS.batch_size,
                shuffle=True)
        # Get for SSD network: image, labels, bboxes.
        [image, shape, glabels, gbboxes
         ] = provider.get(['image', 'shape', 'object/label', 'object/bbox'])
        # Pre-processing image, labels and bboxes.
        image, glabels, gbboxes = \
            ssd_vgg_preprocessing.preprocess_image(image, glabels, gbboxes,
                                                   out_shape=ssd_shape,
                                                   data_format=DATA_FORMAT,
                                                   is_training=True)
        # Encode groundtruth labels and bboxes.
        gclasses, glocalisations, gscores = \
            ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
        batch_shape = [1] + [len(ssd_anchors)] * 3

        # Training batches and queue.
        r = tf.train.batch(tf_utils.reshape_list(
            [image, gclasses, glocalisations, gscores]),
                           batch_size=FLAGS.batch_size,
                           num_threads=FLAGS.num_preprocessing_threads,
                           capacity=5 * FLAGS.batch_size)
        b_image, b_gclasses, b_glocalisations, b_gscores = \
            tf_utils.reshape_list(r, batch_shape)

        # Intermediate queueing
        batch_queue = slim.prefetch_queue.prefetch_queue(tf_utils.reshape_list(
            [b_image, b_gclasses, b_glocalisations, b_gscores]),
                                                         capacity=2)

        # Dequeue batch.
        b_image, b_gclasses, b_glocalisations, b_gscores = \
            tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

        # Construct SSD network.
        # 读取网络中的默认参数
        arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                      data_format=DATA_FORMAT)
        with slim.arg_scope(arg_scope):
            predictions, localisations, logits, end_points = \
                ssd_net.net(b_image, is_training=True)
        # Add loss function.
        ssd_net.losses(logits,
                       localisations,
                       b_gclasses,
                       b_glocalisations,
                       b_gscores,
                       match_threshold=FLAGS.match_threshold,
                       negative_ratio=FLAGS.negative_ratio,
                       alpha=FLAGS.loss_alpha,
                       label_smoothing=0.0)

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        # =================================================================== #
        # Add summaries.
        # =================================================================== #
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

        # Add summaries for end_points.
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(
                tf.summary.scalar('sparsity/' + end_point,
                                  tf.nn.zero_fraction(x)))
        # Add summaries for losses and extra losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES):
            summaries.add(tf.summary.scalar(loss.op.name, loss))
        for loss in tf.get_collection('EXTRA_LOSSES'):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        # =================================================================== #
        # Configure the optimization procedure.
        # =================================================================== #
        learning_rate = tf_utils.configure_learning_rate(
            FLAGS, dataset.num_samples, global_step)
        optimizer = tf.train.AdamOptimizer(learning_rate,
                                           beta1=0.9,
                                           beta2=0.999,
                                           epsilon=1.0)
        summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        # Variables to train.
        variables_to_train = tf_utils.get_variables_to_train(FLAGS)

        # and returns a train_tensor and summary_op
        total_loss = tf.add_n(tf.get_collection(tf.GraphKeys.LOSSES))
        gradients = optimizer.compute_gradients(total_loss,
                                                var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)
        # 将所有的更新操作组合成一个operation
        update_op = tf.group(*update_ops)
        # 保证所有的更新操作执行后,才获取total_loss
        train_tensor = control_flow_ops.with_dependencies([update_op],
                                                          total_loss,
                                                          name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        saver = tf.train.Saver(max_to_keep=5,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)
        slim.learning.train(train_tensor,
                            logdir=FLAGS.train_dir,
                            init_fn=tf_utils.get_init_fn(FLAGS),
                            summary_op=summary_op,
                            number_of_steps=FLAGS.max_number_of_steps,
                            log_every_n_steps=FLAGS.log_every_n_steps,
                            save_summaries_secs=FLAGS.save_summaries_secs,
                            saver=saver,
                            save_interval_secs=FLAGS.save_interval_secs)
Пример #22
0
def main(_):
    if not FLAGS.data_dir:
        raise ValueError('You must supply the dataset directory with --data_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)
    #with tf.Graph().as_default():
    # with tf.Graph().as_default(), tf.device('/cpu:0'):
    with tf.device('/cpu:0'):
        global_step = slim.create_global_step()

        # Select the dataset.
        dataset = dataset_factory.get_dataset(
            FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.data_dir)

        # Get the RON network and its anchors.
        ron_class = nets_factory.get_network(FLAGS.model_name)
        ron_params = ron_class.default_params._replace(num_classes=FLAGS.num_classes)
        ron_net = ron_class(ron_params)
        ron_shape = ron_net.params.img_shape
        ron_anchors = ron_net.anchors(ron_shape)

        # for i in range(len(ron_anchors)):
        #     for j in range(len(ron_anchors[i])):
        #         print(ron_anchors[i][j].shape)

        tf_utils.print_configuration(FLAGS.__flags, ron_params,
                                     dataset.data_sources, FLAGS.model_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=120 * FLAGS.batch_size,
                common_queue_min=80 * FLAGS.batch_size,
                shuffle=True)
        # Get for RON network: image, labels, bboxes.
        # (ymin, xmin, ymax, xmax) fro gbboxes
        [image, shape, glabels, gbboxes, isdifficult] = provider.get(['image', 'shape',
                                                         'object/label',
                                                         'object/bbox',
                                                         'object/difficult'])

        #glabels = tf.cast(isdifficult < tf.ones_like(isdifficult), glabels.dtype) * glabels

        isdifficult_mask =tf.cond(tf.reduce_sum(tf.cast(tf.logical_not(tf.equal(tf.ones_like(isdifficult), isdifficult)), tf.float32)) < 1., lambda : tf.one_hot(0, tf.shape(isdifficult)[0], on_value=True, off_value=False, dtype=tf.bool), lambda : isdifficult < tf.ones_like(isdifficult))

        glabels = tf.boolean_mask(glabels, isdifficult_mask)
        gbboxes = tf.boolean_mask(gbboxes, isdifficult_mask)

        #glabels = tf.Print(glabels, [glabels,isdifficult], message='glabels: ', summarize=200)

        #### DEBUG ####
        #image = tf.Print(image, [shape, glabels, gbboxes], message='before preprocess: ', summarize=20)
        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        # Pre-processing image, labels and bboxes.
        image, glabels, gbboxes = image_preprocessing_fn(image, glabels, gbboxes,
                                   out_shape=ron_shape,
                                   data_format=DATA_FORMAT)

        #### DEBUG ####
        #image = tf.Print(image, [shape, glabels, gbboxes], message='after preprocess: ', summarize=20)

        #glabels = tf.Print(glabels, [glabels,isdifficult], message='glabels: ', summarize=200)

        # save_image_op = tf.py_func(save_image_with_bbox,
        #                             [image,
        #                             tf.reshape(tf.clip_by_value(glabels, 0, 22), [-1]),
        #                             #tf.convert_to_tensor(list(rscores.keys()), dtype=tf.int64),
        #                             tf.reshape(tf.ones_like(gbboxes), [-1]),
        #                             tf.reshape(gbboxes, [-1, 4])],
        #                             tf.int64, stateful=True)

        # Encode groundtruth labels and bboxes.
        # glocalisations is our regression object
        # gclasses is the ground_trutuh label
        # gscores is the the jaccard score with ground_truth
        gclasses, glocalisations, gscores, gbboxes = \
            ron_net.bboxes_encode(glabels, gbboxes, ron_anchors, positive_threshold=FLAGS.match_threshold, ignore_threshold=FLAGS.neg_threshold)

        #gclasses[1] = tf.Print(gclasses[1], [gclasses[1]], message='gclasses[1]: ', summarize=200)
        # save_image_op = tf.py_func(save_image_with_bbox,
        #                             [image,
        #                             tf.reshape(tf.clip_by_value(gclasses[3], 0, 22), [-1]),
        #                             #tf.convert_to_tensor(list(rscores.keys()), dtype=tf.int64),
        #                             tf.reshape(gscores[3], [-1]),
        #                             tf.reshape(gbboxes[3], [-1, 4])],
        #                             tf.int64, stateful=True)
        # save_image_op = tf.py_func(save_image_with_bbox,
        #                             [image,
        #                             tf.clip_by_value(tf.concat([tf.reshape(_, [-1]) for _ in gclasses], axis=0), 0, 22),
        #                             tf.concat([tf.reshape(_, [-1]) for _ in gscores], axis=0),
        #                             tf.concat([tf.reshape(_, [-1, 4]) for _ in gbboxes], axis=0)],
        #                             tf.int64, stateful=True)
        # each size of the batch elements
        # include one image, three others(gclasses, glocalisations, gscores)
        batch_shape = [1] + [len(ron_anchors)] * 3

        #with tf.control_dependencies([save_image_op]):
        # Training batches and queue.
        r = tf.train.batch(
            tf_utils.reshape_list([image, gclasses, glocalisations, gscores]),
            batch_size=FLAGS.batch_size,
            num_threads=FLAGS.num_preprocessing_threads,
            capacity=120 * FLAGS.batch_size)
        b_image, b_gclasses, b_glocalisations, b_gscores = \
            tf_utils.reshape_list(r, batch_shape)

        with tf.device('/gpu:0'):
            # Construct RON network.
            arg_scope = ron_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                predictions, logits, objness_pred, objness_logits, localisations, end_points = \
                    ron_net.net(b_image, is_training=True)
            # Add loss function.
            ron_net.losses(logits, localisations, objness_logits, objness_pred,
                           b_gclasses, b_glocalisations, b_gscores,
                           match_threshold = FLAGS.match_threshold,
                           neg_threshold = FLAGS.neg_threshold,
                           objness_threshold = FLAGS.objectness_thres,
                           negative_ratio=FLAGS.negative_ratio,
                           alpha=FLAGS.loss_alpha,
                           beta=FLAGS.loss_beta,
                           label_smoothing=FLAGS.label_smoothing)

            # Gather initial summaries.
            summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

            # Add summaries for losses and extra losses.
            for loss in tf.get_collection(tf.GraphKeys.LOSSES):
                summaries.add(tf.summary.scalar(loss.op.name, loss))
            for loss in tf.get_collection('EXTRA_LOSSES'):
                summaries.add(tf.summary.scalar(loss.op.name, loss))

            # =================================================================== #
            # Configure the moving averages.
            # =================================================================== #
            if FLAGS.moving_average_decay:
                moving_average_variables = slim.get_model_variables()
                variable_averages = tf.train.ExponentialMovingAverage(
                    FLAGS.moving_average_decay, global_step)
            else:
                moving_average_variables, variable_averages = None, None

            # =================================================================== #
            # Configure the optimization procedure.
            # =================================================================== #
            # learning_rate = tf_utils.configure_learning_rate(FLAGS,
            #                                                  dataset.num_samples,
            #                                                  global_step)

            lr_values = [FLAGS.learning_rate * decay for decay in [1., 0.1, 0.001]]
            learning_rate_ = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), [90000, 115000], lr_values)
            learning_rate = tf.maximum(learning_rate_, tf.constant(FLAGS.end_learning_rate, dtype=learning_rate_.dtype))


            optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)

            if FLAGS.moving_average_decay:
                # Update ops executed locally by trainer.
                update_ops.append(variable_averages.apply(moving_average_variables))
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

            # Variables to train.
            variables_to_train = tf_utils.get_variables_to_train(FLAGS)

            # and returns a train_tensor and summary_op
            total_loss = tf.losses.get_total_loss()
            # Add total_loss to summary.
            summaries.add(tf.summary.scalar('total_loss', total_loss))

            # Create gradient updates.
            grads = optimizer.compute_gradients(
                                    total_loss,
                                    variables_to_train)

            grad_updates = optimizer.apply_gradients(grads,
                                                     global_step=global_step)
            update_ops.append(grad_updates)
            update_op = tf.group(*update_ops)
            train_tensor = control_flow_ops.with_dependencies([update_op], total_loss,
                                                              name='train_op')

            # Merge all summaries together.
            summary_op = tf.summary.merge(list(summaries), name='summary_op')

            # =================================================================== #
            # Kicks off the training.
            # =================================================================== #
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction)
            config = tf.ConfigProto(allow_soft_placement=True, log_device_placement = False, intra_op_parallelism_threads = FLAGS.num_cpu_threads, inter_op_parallelism_threads = FLAGS.num_cpu_threads, gpu_options = gpu_options)

            saver = tf.train.Saver(max_to_keep=5,
                                   keep_checkpoint_every_n_hours = FLAGS.save_interval_secs/3600.,
                                   write_version=2,
                                   pad_step_number=False)
            def wrapper_debug(sess):
                sess = tf_debug.LocalCLIDebugWrapperSession(sess, thread_name_filter="MainThread$")
                sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
                return sess

            slim.learning.train(
                train_tensor,
                logdir=FLAGS.model_dir,
                master='',
                is_chief=True,
                init_fn=tf_utils.get_init_fn(FLAGS, os.path.join(FLAGS.data_dir, 'vgg_model/vgg16_reducedfc.ckpt')),#'vgg_model/vgg16_reducedfc.ckpt'
                summary_op=summary_op,
                number_of_steps=FLAGS.max_number_of_steps,
                log_every_n_steps=FLAGS.log_every_n_steps,
                save_summaries_secs=FLAGS.save_summaries_secs,
                saver=saver,
                save_interval_secs=FLAGS.save_interval_secs,
                session_config=config,
                session_wrapper=None,#wrapper_debug,#
                sync_optimizer=None)
Пример #23
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()

        # =================================================================== #
        # Dataset + SSD model + Pre-processing
        # =================================================================== #
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        # get the ssd network and its anchors
        ssd_cls = ssd.SSDnet
        ssd_params = ssd_cls.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_cls(ssd_params)
        image_size = ssd_net.params.img_shape

        # Evaluation shape and associated anchors: eval_image_size
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.eval_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device('/cpu:0'):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    common_queue_capacity=2 * FLAGS.batch_size,
                    common_queue_min=FLAGS.batch_size,
                    shuffle=False)
            # Get for SSD network: image, labels, bboxes.
            [image, shape, glabels, gbboxes] = provider.get(
                ['image', 'shape', 'object/label', 'object/bbox'])
            if FLAGS.remove_difficult:
                [gdifficults] = provider.get(['object/difficult'])
            else:
                gdifficults = tf.zeros(tf.shape(glabels), dtype=tf.int64)

            # Pre-processing image, labels and bboxes.
            image, glabels, gbboxes, gbbox_img = \
                image_preprocessing_fn(image, glabels, gbboxes,
                                       out_shape=ssd_shape,
                                       data_format=DATA_FORMAT,
                                       resize=FLAGS.eval_resize,
                                       difficults=None)

            # Encode groundtruth labels and bboxes.
            gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] * 5 + [len(ssd_anchors)] * 3

            # Evaluation batch.
            r = tf.train.batch(tf_utils.reshape_list([
                image, glabels, gbboxes, gdifficults, gbbox_img, gclasses,
                glocalisations, gscores
            ]),
                               batch_size=FLAGS.batch_size,
                               num_threads=FLAGS.num_preprocessing_threads,
                               capacity=5 * FLAGS.batch_size,
                               dynamic_pad=True)
            (b_image, b_glabels, b_gbboxes, b_gdifficults, b_gbbox_img,
             b_gclasses, b_glocalisations,
             b_gscores) = tf_utils.reshape_list(r, batch_shape)

        # =================================================================== #
        # SSD Network + Ouputs decoding.
        # =================================================================== #
        dict_metrics = {}
        arg_scope = ssd_net.arg_scope(data_format=DATA_FORMAT)
        with slim.arg_scope(arg_scope):
            predictions, localisations, logits, end_points = \
                ssd_net.net(b_image, is_training=False)
        # Add losses functions.
        # pdb.set_trace()
        ssd_net.losses(logits, localisations, b_gclasses, b_glocalisations,
                       b_gscores)

        # Performing post-processing on CPU: loop-intensive, usually more efficient.
        with tf.device('/device:CPU:0'):
            # Detected objects from SSD output.
            localisations = ssd_net.bboxes_decode(localisations, ssd_anchors)
            rscores, rbboxes = \
                ssd_net.detected_bboxes(predictions, localisations,
                                        select_threshold=FLAGS.select_threshold,
                                        nms_threshold=FLAGS.nms_threshold,
                                        clipping_bbox=None,
                                        top_k=FLAGS.select_top_k,
                                        keep_top_k=FLAGS.keep_top_k)
            # Compute TP and FP statistics.
            num_gbboxes, tp, fp, rscores = \
                tfe.bboxes_matching_batch(rscores.keys(), rscores, rbboxes,
                                          b_glabels, b_gbboxes, b_gdifficults,
                                          matching_threshold=FLAGS.matching_threshold)

        # Variables to restore: moving avg. or normal weights.
        if FLAGS.moving_average_decay:
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore(
                slim.get_model_variables())
            variables_to_restore[tf_global_step.op.name] = tf_global_step
        else:
            variables_to_restore = slim.get_variables_to_restore()

        # =================================================================== #
        # Evaluation metrics.
        # =================================================================== #
        with tf.device('/device:CPU:0'):
            dict_metrics = {}
            # First add all losses.
            for loss in tf.get_collection(tf.GraphKeys.LOSSES):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)
            # Extra losses as well.
            for loss in tf.get_collection('EXTRA_LOSSES'):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)

            # Add metrics to summaries and Print on screen.
            for name, metric in dict_metrics.items():
                # summary_name = 'eval/%s' % name
                summary_name = name
                op = tf.summary.scalar(summary_name, metric[0], collections=[])
                # op = tf.Print(op, [metric[0]], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # FP and TP metrics.
            tp_fp_metric = tfe.streaming_tp_fp_arrays(num_gbboxes, tp, fp,
                                                      rscores)
            for c in tp_fp_metric[0].keys():
                dict_metrics['tp_fp_%s' % c] = (tp_fp_metric[0][c],
                                                tp_fp_metric[1][c])

            # Add to summaries precision/recall values.
            aps_voc07 = {}
            aps_voc12 = {}
            for c in tp_fp_metric[0].keys():
                # Precison and recall values.
                prec, rec = tfe.precision_recall(*tp_fp_metric[0][c])

                # Average precision VOC07.
                v = tfe.average_precision_voc07(prec, rec)
                summary_name = 'AP_VOC07/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc07[c] = v

                # Average precision VOC12.
                v = tfe.average_precision_voc12(prec, rec)
                summary_name = 'AP_VOC12/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc12[c] = v

            # Mean average precision VOC07.
            summary_name = 'AP_VOC07/mAP'
            mAP = tf.add_n(list(aps_voc07.values())) / len(aps_voc07)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # Mean average precision VOC12.
            summary_name = 'AP_VOC12/mAP'
            mAP = tf.add_n(list(aps_voc12.values())) / len(aps_voc12)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # for i, v in enumerate(l_precisions):
        #     summary_name = 'eval/precision_at_recall_%.2f' % LIST_RECALLS[i]
        #     op = tf.summary.scalar(summary_name, v, collections=[])
        #     op = tf.Print(op, [v], summary_name)
        #     tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # Split into values and updates ops.
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(
            dict_metrics)

        # =================================================================== #
        # Evaluation loop.
        # =================================================================== #
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)
        # config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

        # Number of batches...
        if FLAGS.max_num_batches:
            num_batches = FLAGS.max_num_batches
        else:
            num_batches = math.ceil(dataset.num_samples /
                                    float(FLAGS.batch_size))

        if not FLAGS.wait_for_checkpoints:
            if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
                checkpoint_path = tf.train.latest_checkpoint(
                    FLAGS.checkpoint_path)

            else:
                checkpoint_path = os.path.join(os.getcwd(),
                                               FLAGS.checkpoint_path)
            tf.logging.info('Evaluating %s' % checkpoint_path)

            # Standard evaluation loop.
            start = time.time()
            # pdb.set_trace()
            slim.evaluation.evaluate_once(
                master=FLAGS.master,
                checkpoint_path=checkpoint_path,
                logdir=FLAGS.eval_dir,
                num_evals=num_batches,
                eval_op=flatten(list(names_to_updates.values())),
                variables_to_restore=variables_to_restore,
                session_config=config)
            # Log time spent.
            elapsed = time.time()
            elapsed = elapsed - start
            print('Time spent : %.3f seconds.' % elapsed)
            print('Time spent per BATCH: %.3f seconds.' %
                  (elapsed / num_batches))

        else:
            checkpoint_path = FLAGS.checkpoint_path
            tf.logging.info('Evaluating %s' % checkpoint_path)

            # Waiting loop.
            slim.evaluation.evaluation_loop(
                master=FLAGS.master,
                checkpoint_dir=checkpoint_path,
                logdir=FLAGS.eval_dir,
                num_evals=num_batches,
                eval_op=flatten(list(names_to_updates.values())),
                variables_to_restore=variables_to_restore,
                eval_interval_secs=60,
                max_number_of_evaluations=np.inf,
                session_config=config,
                timeout=None)
Пример #24
0
def get_batch(dataset_dir,
              num_readers,
              batch_size,
              out_shape,
              net,
              anchors,
              FLAGS,
              file_pattern='*.tfrecord',
              is_training=True,
              shuffe=False):

    dataset = sythtextprovider.get_datasets(dataset_dir,
                                            file_pattern=file_pattern)

    provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        num_readers=num_readers,
        common_queue_capacity=20 * batch_size,
        common_queue_min=10 * batch_size,
        shuffle=shuffe)

    [image, shape, glabels, gbboxes, corx, cory] = provider.get([
        'image', 'shape', 'object/label', 'object/bbox', 'object/corx',
        'object/cory'
    ])
    corx = tf.expand_dims(corx, -1)
    cory = tf.expand_dims(cory, -1)

    cord = tf.concat([corx, cory], -1)

    if is_training:
        image, glabels, gbboxes, cord, num = \
        txt_preprocessing.preprocess_image(image,  glabels,gbboxes, cord,
                   out_shape,is_training=is_training)

        glocalisations, glabels, glinks = \
         net.bboxes_encode(cord, anchors ,num)

        batch_shape = [1] + [len(anchors)] * 3

        r = tf.train.batch(
            tf_utils.reshape_list([image, glocalisations, glabels, glinks]),
            batch_size=batch_size,
            num_threads=FLAGS.num_preprocessing_threads,
            capacity=5 * batch_size,
        )

        b_image, b_glocalisations, b_glabels, b_glinks= \
         tf_utils.reshape_list(r, batch_shape)

        return b_image, b_glocalisations, b_glabels, b_glinks
    else:
        image, labels, bboxes, cord, num = \
        txt_preprocessing.preprocess_image(image,  glabels,gbboxes, cord,
                out_shape,is_training=is_training)

        glocalisations, glabels, glinks = \
         net.bboxes_encode(cord, anchors ,num)

        batch_shape = [1] * 3 + [len(anchors)] * 3

        r = tf.train.batch(
            tf_utils.reshape_list(
                [image, labels, cord, glocalisations, glabels, glinks]),
            batch_size=batch_size,
            num_threads=FLAGS.num_preprocessing_threads,
            capacity=5 * batch_size,
        )

        b_image, b_labels, b_cord, b_glocalisations, b_glabels, b_glinks= \
         tf_utils.reshape_list(r, batch_shape)

        return b_image, b_labels, b_cord, b_glocalisations, b_glabels, b_glinks
Пример #25
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError('You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()
        dataset = dataset_factory.get_dataset(
            FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

        # Get the RON network and its anchors.
        ron_class = nets_factory.get_network(FLAGS.model_name)
        ron_params = ron_class.default_params._replace(num_classes=FLAGS.num_classes)
        ron_net = ron_class(ron_params)
        ron_shape = ron_net.params.img_shape
        ron_anchors = ron_net.anchors(ron_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        tf_utils.print_configuration(FLAGS.__flags, ron_params,
                                     dataset.data_sources, FLAGS.eval_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device('/cpu:0'):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    common_queue_capacity=2 * FLAGS.batch_size,
                    common_queue_min=FLAGS.batch_size,
                    shuffle=False)
            # Get for SSD network: image, labels, bboxes.
            [image_, shape, glabels, gbboxes, gdifficults] = provider.get(['image', 'shape',
                                                         'object/label',
                                                         'object/bbox',
                                                         'object/difficult'])

            # Pre-processing image, labels and bboxes.
            image, glabels, gbboxes, gbbox_img = \
                image_preprocessing_fn(image_, glabels, gbboxes,
                                       out_shape=ron_shape,
                                       data_format=DATA_FORMAT,
                                       difficults=None)

            # Encode groundtruth labels and bboxes.
            gclasses, glocalisations, gscores, _ = \
                ron_net.bboxes_encode(glabels, gbboxes, ron_anchors)
            batch_shape = [1] * 5 + [len(ron_anchors)] * 3

            # Evaluation batch.
            r = tf.train.batch(
                tf_utils.reshape_list([image, glabels, gbboxes, gdifficults, gbbox_img,
                                       gclasses, glocalisations, gscores]),
                batch_size=FLAGS.batch_size,
                num_threads=FLAGS.num_preprocessing_threads,
                capacity=5 * FLAGS.batch_size,
                dynamic_pad=True)
            (b_image, b_glabels, b_gbboxes, b_gdifficults, b_gbbox_img, b_gclasses,
             b_glocalisations, b_gscores) = tf_utils.reshape_list(r, batch_shape)

        # =================================================================== #
        # SSD Network + Ouputs decoding.
        # =================================================================== #
        dict_metrics = {}
        arg_scope = ron_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                        is_training=False,
                                        data_format=DATA_FORMAT)

        with slim.arg_scope(arg_scope):
            predictions, logits, objness_pred, objness_logits, localisations, end_points = \
                ron_net.net(b_image, is_training=False)
        # Add loss function.
        ron_net.losses(logits, localisations, objness_logits, objness_pred,
                       b_gclasses, b_glocalisations, b_gscores,
                       match_threshold = FLAGS.match_threshold,
                       neg_threshold = FLAGS.neg_threshold,
                       objness_threshold = FLAGS.objectness_thres,
                       negative_ratio=FLAGS.negative_ratio,
                       alpha=FLAGS.loss_alpha,
                       beta=FLAGS.loss_beta,
                       label_smoothing=FLAGS.label_smoothing)

        variables_to_restore = slim.get_variables_to_restore()
        # Performing post-processing on CPU: loop-intensive, usually more efficient.
        with tf.device('/device:CPU:0'):
            # Detected objects from SSD output.
            localisations = ron_net.bboxes_decode(localisations, ron_anchors)
            filtered_predictions = []
            for i, objness in enumerate(objness_pred):
                filtered_predictions.append(tf.cast(tf.greater(objness, FLAGS.objectness_thres), tf.float32) * predictions[i])
            rscores, rbboxes = \
                ron_net.detected_bboxes(filtered_predictions, localisations,
                                        select_threshold=FLAGS.select_threshold,
                                        nms_threshold=FLAGS.nms_threshold,
                                        clipping_bbox=[0., 0., 1., 1.],
                                        top_k=FLAGS.select_top_k,
                                        keep_top_k=FLAGS.keep_top_k)
            labels_list = []
            for k, v in rscores.items():
                labels_list.append(tf.ones_like(v, tf.int32) * k)
            save_image_op = tf.py_func(save_image_with_bbox,
                                        [tf.cast(tf.squeeze(b_image, 0), tf.float32),
                                        tf.squeeze(tf.concat(labels_list, axis=1), 0),
                                        #tf.convert_to_tensor(list(rscores.keys()), dtype=tf.int64),
                                        tf.squeeze(tf.concat(list(rscores.values()), axis=1), 0),
                                        tf.squeeze(tf.concat(list(rbboxes.values()), axis=1), 0)],
                                        tf.int64, stateful=True)
            with tf.control_dependencies([save_image_op]):
                # Compute TP and FP statistics.
                num_gbboxes, tp, fp, rscores = \
                    tfe.bboxes_matching_batch(rscores.keys(), rscores, rbboxes,
                                              b_glabels, b_gbboxes, b_gdifficults,
                                              matching_threshold=0.5)



        # =================================================================== #
        # Evaluation metrics.
        # =================================================================== #
        with tf.device('/device:CPU:0'):
            dict_metrics = {}
            # First add all losses.
            for loss in tf.get_collection(tf.GraphKeys.LOSSES):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)
            # Extra losses as well.
            for loss in tf.get_collection('EXTRA_LOSSES'):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)

            # Add metrics to summaries and Print on screen.
            for name, metric in dict_metrics.items():
                # summary_name = 'eval/%s' % name
                summary_name = name
                op = tf.summary.scalar(summary_name, metric[0], collections=[])
                # op = tf.Print(op, [metric[0]], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # FP and TP metrics.
            tp_fp_metric = tfe.streaming_tp_fp_arrays(num_gbboxes, tp, fp, rscores)

            metrics_name = ('nobjects', 'ndetections', 'tp', 'fp', 'scores')
            for c in tp_fp_metric[0].keys():
                for _ in range(len(tp_fp_metric[0][c])):
                    dict_metrics['tp_fp_%s_%s' % (c, metrics_name[_])] = (tp_fp_metric[0][c][_],
                                                    tp_fp_metric[1][c][_])

            # for c in tp_fp_metric[0].keys():
            #     dict_metrics['tp_fp_%s' % c] = (tp_fp_metric[0][c],
            #                                     tp_fp_metric[1][c])

            # Add to summaries precision/recall values.
            aps_voc07 = {}
            aps_voc12 = {}
            for c in tp_fp_metric[0].keys():
                # Precison and recall values.
                prec, rec = tfe.precision_recall(*tp_fp_metric[0][c])

                # Average precision VOC07.
                v = tfe.average_precision_voc07(prec, rec)
                summary_name = 'AP_VOC07/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc07[c] = v

                # Average precision VOC12.
                v = tfe.average_precision_voc12(prec, rec)
                summary_name = 'AP_VOC12/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc12[c] = v

            # Mean average precision VOC07.
            summary_name = 'AP_VOC07/mAP'
            mAP = tf.add_n(list(aps_voc07.values())) / len(aps_voc07)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # Mean average precision VOC12.
            summary_name = 'AP_VOC12/mAP'
            mAP = tf.add_n(list(aps_voc12.values())) / len(aps_voc12)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # for i, v in enumerate(l_precisions):
        #     summary_name = 'eval/precision_at_recall_%.2f' % LIST_RECALLS[i]
        #     op = tf.summary.scalar(summary_name, v, collections=[])
        #     op = tf.Print(op, [v], summary_name)
        #     tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)


        # Split into values and updates ops.
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(dict_metrics)

        # =================================================================== #
        # Evaluation loop.
        # =================================================================== #
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
        # config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

        # Number of batches...
        num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size))

        if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
                checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
        else:
            checkpoint_path = FLAGS.checkpoint_path
        tf.logging.info('Evaluating %s' % checkpoint_path)

        # Standard evaluation loop.
        start = time.time()
        slim.evaluation.evaluate_once(
            master=FLAGS.master,
            checkpoint_path=checkpoint_path,
            logdir=FLAGS.eval_dir,
            num_evals=num_batches,
            eval_op=list(names_to_updates.values()),
            variables_to_restore=variables_to_restore,
            session_config=config)
        # Log time spent.
        elapsed = time.time()
        elapsed = elapsed - start
        print('Time spent : %.3f seconds.' % elapsed)
        print('Time spent per BATCH: %.3f seconds.' % (elapsed / num_batches))
Пример #26
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.Graph().as_default():
        # Config model_deploy. Keep TF Slim Models structure.
        # Useful if want to need multiple GPUs and/or servers in the future.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,  # 1
            clone_on_cpu=FLAGS.clone_on_cpu,  # False
            replica_id=0,
            num_replicas=1,
            num_ps_tasks=0)
        # Create global_step.
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        # Select the dataset.
        # 'pascalvoc_2012', 'train', tfr文件存储位置
        # TFR文件命名格式:'voc_2012_%s_*.tfrecord',%s使用train或者test
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        # Get the SSD network and its anchors.
        ssd_class = nets_factory.get_network(FLAGS.model_name)  # 'ssd_300_vgg'
        ssd_params = ssd_class.default_params._replace(
            num_classes=FLAGS.num_classes)  # 替换类属性为21
        ssd_net = ssd_class(ssd_params)  # 创建类实例
        ssd_shape = ssd_net.params.img_shape  # 获取类属性(300,300)
        ssd_anchors = ssd_net.anchors(ssd_shape)  # 调用类方法,创建搜素框

        # Select the preprocessing function.
        # 'ssd_300_vgg', 如果 preprocessing_name 是 None 就使用 model_name
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.train_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        # '/job:ps/device:CPU:0' 或者 '/device:CPU:0'
        with tf.device(deploy_config.inputs_device()):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,  # DatasetDataProvider 需要 slim.dataset.Dataset 做参数
                    num_readers=FLAGS.num_readers,
                    common_queue_capacity=20 * FLAGS.batch_size,
                    common_queue_min=10 * FLAGS.batch_size,
                    shuffle=True)
            # Get for SSD network: image, labels, bboxes.c
            # DatasetDataProvider可以通过TFR字段获取batch size数据
            [image, shape, glabels, gbboxes] = provider.get(
                ['image', 'shape', 'object/label', 'object/bbox'])
            # Pre-processing image, labels and bboxes.
            # 'CHW' (n,) (n, 4)
            image, glabels, gbboxes = \
                image_preprocessing_fn(image, glabels, gbboxes,
                                       out_shape=ssd_shape,  # (300,300)
                                       data_format=DATA_FORMAT)  # 'NCHW'
            # Encode groundtruth labels and bboxes.
            # f层个(m,m,k),f层个(m,m,k,4xywh),f层个(m,m,k) f层表示提取ssd特征的层的数目
            # 0-20数字,方便loss的坐标记录,IOU值
            gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] + [len(ssd_anchors)] * 3  # (1,f层,f层,f层)

            # Training batches and queue.
            r = tf.train.batch(  # 图片,中心点类别,真实框坐标,得分
                tf_utils.reshape_list(
                    [image, gclasses, glocalisations, gscores]),
                batch_size=FLAGS.batch_size,  # 32
                num_threads=FLAGS.num_preprocessing_threads,
                capacity=5 * FLAGS.batch_size)

            # pp.pprint([image, gclasses, glocalisations, gscores])
            # pp.pprint(r)

            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(r, batch_shape)

            # pp.pprint([b_image, b_gclasses, b_glocalisations, b_gscores])

            # Intermediate queueing: unique batch computation pipeline for all
            # GPUs running the training.
            batch_queue = slim.prefetch_queue.prefetch_queue(
                tf_utils.reshape_list(
                    [b_image, b_gclasses, b_glocalisations, b_gscores]),
                capacity=2 * deploy_config.num_clones)

        # =================================================================== #
        # Define the model running on every GPU.
        # =================================================================== #
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)  # 重整list

            # Construct SSD network.
            # 这个实例方法会返回之前定义的函数ssd_arg_scope(允许修改两个参数)
            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                # predictions: (BS, H, W, 4, 21)
                # localisations: (BS, H, W, 4, 4)
                # logits: (BS, H, W, 4, 21)
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)

            # Add loss function.
            ssd_net.losses(
                logits,
                localisations,
                b_gclasses,
                b_glocalisations,
                b_gscores,
                match_threshold=FLAGS.match_threshold,  # .5
                negative_ratio=FLAGS.negative_ratio,  # 3
                alpha=FLAGS.loss_alpha,  # 1
                label_smoothing=FLAGS.label_smoothing)  # .0
            return end_points

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        # =================================================================== #
        # Add summaries from first clone.
        # =================================================================== #
        clones = model_deploy.create_clones(deploy_config, clone_fn,
                                            [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)
        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by network_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        # Add summaries for end_points.
        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(
                tf.summary.scalar('sparsity/' + end_point,
                                  tf.nn.zero_fraction(x)))
        # Add summaries for losses and extra losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))
        for loss in tf.get_collection('EXTRA_LOSSES', first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        # =================================================================== #
        # Configure the moving averages.
        # =================================================================== #
        if FLAGS.moving_average_decay:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        # =================================================================== #
        # Configure the optimization procedure.
        # =================================================================== #
        with tf.device(deploy_config.optimizer_device()):
            learning_rate = tf_utils.configure_learning_rate(
                FLAGS, dataset.num_samples, global_step)
            optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if FLAGS.moving_average_decay:
            # Update ops executed locally by trainer.
            update_ops.append(
                variable_averages.apply(moving_average_variables))

        # Variables to train.
        variables_to_train = tf_utils.get_variables_to_train(FLAGS)

        # and returns a train_tensor and summary_op#
        # total_loss 并不参与优化,仅记录用
        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones, optimizer, var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)
        update_op = tf.group(*update_ops)
        train_tensor = control_flow_ops.with_dependencies([update_op],
                                                          total_loss,
                                                          name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # =================================================================== #
        # Kicks off the training.
        # =================================================================== #
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)
        saver = tf.train.Saver(max_to_keep=5,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)
        slim.learning.train(
            train_tensor,
            logdir=FLAGS.train_dir,
            master='',
            is_chief=True,
            init_fn=tf_utils.get_init_fn(FLAGS),  # 看函数实现就明白了
            summary_op=summary_op,  # tf.summary.merge节点
            number_of_steps=FLAGS.max_number_of_steps,  # 训练step
            log_every_n_steps=FLAGS.log_every_n_steps,  # 每次model保存step间隔
            save_summaries_secs=FLAGS.save_summaries_secs,  # 每次summary时间间隔
            saver=saver,  # tf.train.Saver节点
            save_interval_secs=FLAGS.save_interval_secs,
            session_config=config,  # sess参数
            sync_optimizer=None)
Пример #27
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.DEBUG)
    with tf.Graph().as_default():
        # Config model_deploy. Keep TF Slim Models structure.
        # Useful if want to need multiple GPUs and/or servers in the future.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,
            clone_on_cpu=FLAGS.clone_on_cpu,
            replica_id=0,
            num_replicas=1,
            num_ps_tasks=0)
        # Create global_step.
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        # Select the dataset.
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        # Get the SSD network and its anchors.
        ssd_class = nets_factory.get_network(FLAGS.model_name)
        ssd_params = ssd_class.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_class(ssd_params)
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.train_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device(deploy_config.inputs_device()):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    num_readers=FLAGS.num_readers,
                    common_queue_capacity=20 * FLAGS.batch_size,
                    common_queue_min=10 * FLAGS.batch_size,
                    shuffle=True)
            # Get for SSD network: image, labels, bboxes.
            [image, shape, glabels, gbboxes] = provider.get(
                ['image', 'shape', 'object/label', 'object/bbox'])
            # Pre-processing image, labels and bboxes.
            image, glabels, gbboxes = \
                image_preprocessing_fn(image, glabels, gbboxes,
                                       out_shape=ssd_shape,
                                       data_format=DATA_FORMAT)
            # Encode groundtruth labels and bboxes.
            gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] + [len(ssd_anchors)] * 3

            # Training batches and queue.
            r = tf.train.batch(tf_utils.reshape_list(
                [image, gclasses, glocalisations, gscores]),
                               batch_size=FLAGS.batch_size,
                               num_threads=FLAGS.num_preprocessing_threads,
                               capacity=5 * FLAGS.batch_size)
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(r, batch_shape)

            # Intermediate queueing: unique batch computation pipeline for all
            # GPUs running the training.
            batch_queue = slim.prefetch_queue.prefetch_queue(
                tf_utils.reshape_list(
                    [b_image, b_gclasses, b_glocalisations, b_gscores]),
                capacity=2 * deploy_config.num_clones)

        # =================================================================== #
        # Define the model running on every GPU.
        # =================================================================== #
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple
            clones of network_fn."""
            # Dequeue batch.
            b_image, b_gclasses, b_glocalisations, b_gscores = \
                tf_utils.reshape_list(batch_queue.dequeue(), batch_shape)

            # Construct SSD network.
            arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                          data_format=DATA_FORMAT)
            with slim.arg_scope(arg_scope):
                predictions, localisations, logits, end_points = \
                    ssd_net.net(b_image, is_training=True)
            # Add loss function.
            ssd_net.losses(logits,
                           localisations,
                           b_gclasses,
                           b_glocalisations,
                           b_gscores,
                           match_threshold=FLAGS.match_threshold,
                           negative_ratio=FLAGS.negative_ratio,
                           alpha=FLAGS.loss_alpha,
                           label_smoothing=FLAGS.label_smoothing)
            return end_points

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        # =================================================================== #
        # Add summaries from first clone.
        # =================================================================== #
        clones = model_deploy.create_clones(deploy_config, clone_fn,
                                            [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)
        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by network_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        # Add summaries for end_points.
        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(
                tf.summary.scalar('sparsity/' + end_point,
                                  tf.nn.zero_fraction(x)))
        # Add summaries for losses and extra losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))
        for loss in tf.get_collection('EXTRA_LOSSES', first_clone_scope):
            summaries.add(tf.summary.scalar(loss.op.name, loss))

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        # =================================================================== #
        # Configure the moving averages.
        # =================================================================== #
        if FLAGS.moving_average_decay:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        # =================================================================== #
        # Configure the optimization procedure.
        # =================================================================== #
        with tf.device(deploy_config.optimizer_device()):
            learning_rate = tf_utils.configure_learning_rate(
                FLAGS, dataset.num_samples, global_step)
            optimizer = tf_utils.configure_optimizer(FLAGS, learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if FLAGS.moving_average_decay:
            # Update ops executed locally by trainer.
            update_ops.append(
                variable_averages.apply(moving_average_variables))

        # Variables to train.
        variables_to_train = tf_utils.get_variables_to_train(FLAGS)

        # and returns a train_tensor and summary_op
        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones, optimizer, var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)
        update_op = tf.group(*update_ops)
        train_tensor = control_flow_ops.with_dependencies([update_op],
                                                          total_loss,
                                                          name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # =================================================================== #
        # Kicks off the training.
        # =================================================================== #
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)
        saver = tf.train.Saver(max_to_keep=5,
                               keep_checkpoint_every_n_hours=1.0,
                               write_version=2,
                               pad_step_number=False)
        slim.learning.train(train_tensor,
                            logdir=FLAGS.train_dir,
                            master='',
                            is_chief=True,
                            init_fn=tf_utils.get_init_fn(FLAGS),
                            summary_op=summary_op,
                            number_of_steps=FLAGS.max_number_of_steps,
                            log_every_n_steps=FLAGS.log_every_n_steps,
                            save_summaries_secs=FLAGS.save_summaries_secs,
                            saver=saver,
                            save_interval_secs=FLAGS.save_interval_secs,
                            session_config=config,
                            sync_optimizer=None)
Пример #28
0
    def train_input_fn():
        # Select the dataset.
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.data_dir)
        tf_utils.print_configuration(FLAGS.__flags, ron_params,
                                     dataset.data_sources, FLAGS.model_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=120 * FLAGS.batch_size,
                common_queue_min=80 * FLAGS.batch_size,
                shuffle=True)
        # Get for RON network: image, labels, bboxes.
        # (ymin, xmin, ymax, xmax) fro gbboxes
        [image, shape, glabels, gbboxes, isdifficult] = provider.get([
            'image', 'shape', 'object/label', 'object/bbox', 'object/difficult'
        ])
        isdifficult_mask = tf.cond(
            tf.reduce_sum(
                tf.cast(
                    tf.logical_not(
                        tf.equal(tf.ones_like(isdifficult), isdifficult)),
                    tf.float32)) < 1.,
            lambda: tf.one_hot(0,
                               tf.shape(isdifficult)[0],
                               on_value=True,
                               off_value=False,
                               dtype=tf.bool),
            lambda: isdifficult < tf.ones_like(isdifficult))

        glabels = tf.boolean_mask(glabels, isdifficult_mask)
        gbboxes = tf.boolean_mask(gbboxes, isdifficult_mask)
        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        # Pre-processing image, labels and bboxes.
        image, glabels, gbboxes = image_preprocessing_fn(
            image,
            glabels,
            gbboxes,
            out_shape=ron_shape,
            data_format=DATA_FORMAT)

        # Encode groundtruth labels and bboxes.
        # glocalisations is our regression object
        # gclasses is the ground_trutuh label
        # gscores is the the jaccard score with ground_truth
        gclasses, glocalisations, gscores = ron_net.bboxes_encode(
            glabels,
            gbboxes,
            ron_anchors,
            positive_threshold=FLAGS.match_threshold,
            ignore_threshold=FLAGS.neg_threshold)

        # each size of the batch elements
        # include one image, three others(gclasses, glocalisations, gscores)
        batch_shape = [1] + [len(ron_anchors)] * 3

        # Training batches and queue.
        r = tf.train.batch(tf_utils.reshape_list(
            [image, gclasses, glocalisations, gscores]),
                           batch_size=FLAGS.batch_size,
                           num_threads=FLAGS.num_preprocessing_threads,
                           capacity=120 * FLAGS.batch_size,
                           shared_name=None)
        b_image, b_gclasses, b_glocalisations, b_gscores = tf_utils.reshape_list(
            r, batch_shape)
        return b_image, {
            'b_gclasses': b_gclasses,
            'b_glocalisations': b_glocalisations,
            'b_gscores': b_gscores
        }