Пример #1
0
    def calculate_loss(self):
        x = self.get_input_sequences()

        conv_inputs = self.encode(x, features=self.encode_features)
        decode_x = tf.concat([x, 1.0 - tf.expand_dims(self.x_is_zero, 2)],
                             axis=2)
        self.initialize_decode_params(decode_x, features=self.decode_features)

        y_hat = self.decode(decode_x,
                            conv_inputs,
                            features=self.decode_features)
        y_hat, p = tf.unstack(y_hat, axis=2, num=2)
        y_hat = tf.nn.sigmoid(p) * (y_hat + self.x_mean)
        self.loss = sequence_rmse(self.y,
                                  y_hat,
                                  self.y_len,
                                  weights=self.weights)

        self.prediction_tensors = {
            'preds': tf.nn.relu(y_hat),
            'lengths': self.x_len,
            'ids': self.y_id,
        }

        return self.loss
 def calculate_loss(self):
     x = self.get_input_sequences()
     preds = self.calculate_outputs(x)
     loss = sequence_rmse(self.next_reorder_size, preds, self.history_length, 100)
     return loss
Пример #3
0
 def calculate_loss(self):
     x = self.get_input_sequences()
     preds = self.calculate_outputs(x)
     loss = sequence_rmse(self.next_reorder_size, preds,
                          self.history_length, 100)
     return loss