def test_add_features_with_index(): X, y = make_classification(n_samples=1000, n_features=100, n_informative=2, n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=1, weights=None, class_sep=1.0, hypercube=True, scale=2.0, shuffle=True, random_state=0) X_og = X.copy() index = [0, 8, 9, 20] X_two_less = np.delete(X_og, index, axis=1) nb = CustomNaiveBayes(encode_data=True) nb.fit(X_two_less, y) nb.add_features(X_og[:, index], y, index=index) independent = nb.indepent_term_ smoothed_log_counts_ = nb.smoothed_log_counts_ added = nb.predict_proba(X) nb.fit(X, y) og = nb.predict_proba(X) assert np.allclose(nb.indepent_term_, independent) assert np.allclose(nb.smoothed_log_counts_, smoothed_log_counts_) assert np.allclose(og, added)
def test_remove_feature(): X, y = make_classification(n_samples=1000, n_features=100, n_informative=2, n_redundant=0, n_repeated=0, n_classes=2, n_clusters_per_class=1, weights=None, class_sep=1.0, hypercube=True, scale=2.0, shuffle=True, random_state=0) nb = CustomNaiveBayes(encode_data=True) nb.fit(X, y) nb.remove_feature(0) independent = nb.indepent_term_ smoothed_log_counts_ = nb.smoothed_log_counts_ removed = nb.predict_proba(np.delete(X, 0, axis=1)) nb.fit(np.delete(X, 0, axis=1), y) og = nb.predict_proba(np.delete(X, 0, axis=1)) assert np.allclose(nb.smoothed_log_counts_, smoothed_log_counts_) assert np.allclose(nb.indepent_term_, independent) assert np.allclose(og, removed)
class GeneticProgrammingFlexibleLogic(OptimizationMixin, TransformerMixin, ClassifierMixin, BaseEstimator): """GeneticProgramming for Feature Construction and Selection. Parameters ---------- seed : int or None Seed to guarantee reproducibility individuals : int Number of individuals per population generations : int Number of generations mutation_probability : float Probability for each individual of being mutated select : {rank,proportionate} Selection strategy mutation : {simple,complex} Mutation strategy combine : {truncation,elitism} Population combination strategy n_intervals : int Number of intervals for the discretization of continous variables mixed : bool Mix heuristic and wrapper evaluation mixed_percentage : float Percentage of total iterations to do heuristic evaluation metric : {accuracy,f1-score} Target metric for the optimization process flexible_logic: bool Allow different individual sizes in the generation encode_data : bool, default=True Encode data when data is not encoded by default with an OrdinalEncoder verbose :int {0,1}, default = 1 Display process progress Attributes ---------- classifier_ : NaiveBayes Base classifier used for prediction best_features_ : array-lik of Feature Array of selected Feature used for transforming new data """ def simple_evaluate(self, individual, X, y): classifier_ = NaiveBayes(encode_data=False, metric=self.metric) return classifier_.leave_one_out_cross_val(transform_features( individual[0] + individual[1], X), y, fit=True) def simple_evaluate_heuristic(self, individual, X, y): return compute_sufs_non_incremental( features=[f.transform(X) for f in chain(*individual[:2])], y=y) def fitness(self, population, X, y): evaluation = [] for individual in population: evaluation.append((individual, self.evaluate(individual, X, y))) return evaluation def generate_population(self): population = [] for _ in range(self.individuals): individual = ([], [], set()) if self.flexible_logic: n_chromosomes = range(random.randint(1, self.size)) else: n_chromosomes = range(self.size) for _ in n_chromosomes: operand1_feature = random.randint(0, self.n_features - 1) operand2_feature = random.randint(0, self.n_features - 1) if operand1_feature == operand2_feature: op = 'OR' operand1_value = random.randint( 0, self.unique_values[operand1_feature] - 1) operand2_value = random.randint( 0, self.unique_values[operand1_feature] - 1) else: op = random.choice(('OR', 'XOR', 'AND')) operand1_value = random.randint( 0, self.unique_values[operand1_feature] - 1) operand2_value = random.randint( 0, self.unique_values[operand2_feature] - 1) operands = [] operands.append((operand1_feature, operand1_value)) operands.append((operand2_feature, operand2_value)) individual[1].append( create_feature(operator=op, operands=operands)) n_og_features = random.randint(0, self.n_features - 1) features = list(range(self.n_features)) for f in random.sample(features, n_og_features): individual[0].append(DummyFeatureConstructor(feature_index=f)) individual[2].add(f) population.append(individual) return population def mutate_complex(self, population, **kwargs): new_population = [] for individual in population: if random.random() < self.mutation_probability: chromosomes_index = [] if self.flexible_logic: if len(individual[1]) > 0: chromosomes_index = random.sample( list(range(len(individual[1]))), random.randint(1, len(individual[1]))) else: op = random.choice(('OR', 'XOR', 'AND')) operands = [] for _ in range(2): feature_index = random.randint( 0, self.n_features - 1) value = random.randint( 0, self.unique_values[feature_index] - 1) operands.append((feature_index, value)) individual[1].append( create_feature(operator=op, operands=operands)) new_population.append(individual) continue else: chromosomes_index = random.sample( list(range(len(individual[1]))), random.randint(1, len(individual[1]))) for i in range(len(chromosomes_index)): index = chromosomes_index[i] if not self.flexible_logic: feature = individual[1][index] feature.op = random.choice(('OR', 'XOR', 'AND')) for operand in feature.operands: operand.feature_index = random.randint( 0, self.n_features - 1) operand.value = random.randint( 0, self.unique_values[operand.feature_index] - 1) else: a = random.random() if a < 0.33: feature = individual[1][index] feature.op = random.choice(('OR', 'XOR', 'AND')) for operand in feature.operands: operand.feature_index = random.randint( 0, self.n_features - 1) operand.value = random.randint( 0, self.unique_values[operand.feature_index] - 1) elif a < 0.66: op = random.choice(('OR', 'XOR', 'AND')) operands = [] for _ in range(2): feature_index = random.randint( 0, self.n_features - 1) value = random.randint( 0, self.unique_values[feature_index] - 1) operands.append((feature_index, value)) individual[1].append( create_feature(operator=op, operands=operands)) else: del individual[1][index] chromosomes_index = [ j - 1 if j > index else j for j in chromosomes_index ] if random.random() < self.mutation_probability: a = random.random() og_features = individual[0] included_features = individual[2] if (a < 0.33 and len(og_features) < self.n_features ) or len(og_features) == 0: selected = random.choice( tuple( set(list(range(0, self.n_features))) - included_features)) included_features.add(selected) og_features.append(DummyFeatureConstructor(selected)) elif a < 0.66 and len(og_features) < self.n_features and len( og_features) > 0: selected = random.choice( tuple( set(list(range(0, self.n_features))) - included_features)) index = random.randint(0, len(og_features) - 1) feature = og_features[index].feature_index og_features[index] = DummyFeatureConstructor(selected) included_features.remove(feature) included_features.add(selected) else: index = random.randint(0, len(og_features) - 1) feature = og_features[index].feature_index del og_features[index] included_features.remove(feature) if len(individual[0]) == 0 and len(individual[1]) == 0: og_features = individual[0] included_features = individual[2] selected = random.choice( tuple( set(list(range(0, self.n_features))) - included_features)) included_features.add(selected) og_features.append(DummyFeatureConstructor(selected)) new_population.append(individual) return new_population def mutate_simple(self, population, **kwargs): new_population = [] for individual in population: if random.random() < self.mutation_probability: chromosomes_index = [] if self.flexible_logic: if len(individual[1]) > 0: chromosomes_index = random.sample( list(range(len(individual[1]))), random.randint(1, len(individual[1]))) else: op = random.choice(('OR', 'XOR', 'AND')) operands = [] for _ in range(2): feature_index = random.randint( 0, self.n_features - 1) value = random.randint( 0, self.unique_values[feature_index] - 1) operands.append((feature_index, value)) individual[1].append( create_feature(operator=op, operands=operands)) new_population.append(individual) continue else: chromosomes_index = random.sample( list(range(len(individual[1]))), random.randint(1, len(individual[1]))) for i in range(len(chromosomes_index)): index = chromosomes_index[i] feature = individual[1][index] if not self.flexible_logic: feature.op = random.choice(('OR', 'XOR', 'AND')) for operand in feature.operands: operand.feature_index = random.randint( 0, self.n_features - 1) operand.value = random.randint( 0, self.unique_values[operand.feature_index] - 1) else: a = random.random() if a < 0.33: b = random.random() if b < 0.2: # Change operatior feature.op = random.choice( ('OR', 'XOR', 'AND')) elif b < 0.4: # Change full operand operand = feature.operands[0] operand.value = random.randint( 0, self.unique_values[operand.feature_index] - 1) elif b < 0.6: # Change full operand operand = feature.operands[1] operand.value = random.randint( 0, self.unique_values[operand.feature_index] - 1) elif b < 0.8: # Change value operand = feature.operands[0] operand.value = random.randint( 0, self.unique_values[operand.feature_index] - 1) else: # Change value operand = feature.operands[1] operand.value = random.randint( 0, self.unique_values[operand.feature_index] - 1) elif a < 0.66: # Add feature op = random.choice(('OR', 'XOR', 'AND')) operands = [] for _ in range(2): feature_index = random.randint( 0, self.n_features - 1) value = random.randint( 0, self.unique_values[feature_index] - 1) operands.append((feature_index, value)) individual[1].append( create_feature(operator=op, operands=operands)) else: # Remove feature del individual[1][index] chromosomes_index = [ j - 1 if j > index else j for j in chromosomes_index ] if random.random() < self.mutation_probability: a = random.random() og_features = individual[0] included_features = individual[2] if (a < 0.33 and len(og_features) < self.n_features ) or len(og_features) == 0: selected = random.choice( tuple( set(list(range(0, self.n_features))) - included_features)) included_features.add(selected) og_features.append(DummyFeatureConstructor(selected)) elif a < 0.66 and len(og_features) < self.n_features and len( og_features) > 0: selected = random.choice( tuple( set(list(range(0, self.n_features))) - included_features)) index = random.randint(0, len(og_features) - 1) feature = og_features[index].feature_index og_features[index] = DummyFeatureConstructor(selected) included_features.remove(feature) included_features.add(selected) else: index = random.randint(0, len(og_features) - 1) feature = og_features[index].feature_index del og_features[index] included_features.remove(feature) if len(individual[0]) == 0 and len(individual[1]) == 0: og_features = individual[0] included_features = individual[2] selected = random.choice( tuple( set(list(range(0, self.n_features))) - included_features)) included_features.add(selected) og_features.append(DummyFeatureConstructor(selected)) new_population.append(individual) return new_population def elitism(self, population1, population2): maximum = max(population1, key=lambda x: x[1]) minimum_index = min(enumerate(population2), key=lambda x: x[1][1])[0] population2[minimum_index] = maximum return population2 def truncation(self, population1, population2): return sorted(population1 + population2, reverse=True, key=lambda x: x[1])[:len(population1)] def select_population(self, population): selected_individuals = [] num_selected = len(population) totalFitness = sum(fitness for _, fitness in population) for _ in range(num_selected): cumulative_prob = 0.0 r = random.random() for individual_with_fitness in population: cumulative_prob += individual_with_fitness[1] / totalFitness if r <= cumulative_prob: selected_individuals.append( self.copy_individual(individual_with_fitness[0])) break return selected_individuals def select_population_rank(self, population): selected_individuals = [] num_selected = len(population) totalRank = (num_selected * (num_selected + 1)) / 2 population.sort(reverse=True, key=lambda x: x[1]) for _ in range(num_selected): cumulative_prob = 0.0 r = random.random() for i, individual_with_fitness in enumerate(population, start=1): cumulative_prob += (num_selected - i + 1) / totalRank if r <= cumulative_prob: selected_individuals.append( self.copy_individual(individual_with_fitness[0])) break return selected_individuals def copy_individual(self, individual): return ([chrms.copy() for chrms in individual[0]], [chrms.copy() for chrms in individual[1]], individual[2].copy()) def fit(self, X, y): self.feature_encoder_ = CustomOrdinalFeatureEncoder() self.class_encoder_ = CustomLabelEncoder() if isinstance(X, pd.DataFrame): self.categories_ = X.columns if self.encode_data: X = self.feature_encoder_.fit_transform(X) y = self.class_encoder_.fit_transform(y) classifier_ = NaiveBayes(encode_data=False, n_intervals=self.n_intervals, metric=self.metric) self.n_features = X.shape[1] if self.encode_data: self.unique_values = [ values.shape[0] for values in self.feature_encoder_.categories_ ] else: self.unique_values = [ np.unique(X[:, j]).shape[0] for j in range(X.shape[1]) ] random.seed(self.seed) np.random.seed(self.seed) self.size = np.ceil(np.sqrt(X.shape[1])) best_individual = self.execute_algorithm(X, y) self.best_features = best_individual self.classifier_ = NaiveBayes(encode_data=False, metric=self.metric) self.classifier_.fit( np.concatenate( [feature.transform(X) for feature in self.best_features], axis=1), y) return self def execute_algorithm(self, X, y): if self.mixed: self.evaluate = self.evaluate_heuristic else: self.evaluate = self.evaluate_wrapper population = self.generate_population() population_with_fitness = self.fitness(population, X, y) iterator = tqdm(range(self.generations), leave=False) if self.verbose else range( self.generations) for generation in iterator: if self.mixed and generation > int( self.generations * self.mixed_percentage ) and self.evaluate == self.evaluate_heuristic: self.evaluate = self.evaluate_wrapper # Reevaluate for fair combination population_with_fitness = self.fitness([ individual_with_fitness[0] for individual_with_fitness in population_with_fitness ], X, y) selected_individuals = self.selection(population_with_fitness) crossed_individuals = selected_individuals # self.crossover(selected_individuals) mutated_individuals = self.mutation(crossed_individuals, X=X, y=y) new_population = self.fitness(mutated_individuals, X, y) population_with_fitness = self.combine(population_with_fitness, new_population) # Obtaining population's statistics if self.verbose: best, mean = get_max_mean(population_with_fitness) iterator.set_postfix({ "Generation": generation, "hit_count": self.evaluate.hit_count, "populationLength": len(population_with_fitness), "best fitness": best, "mean fitness": mean }) best_individual = max(population_with_fitness, key=lambda x: x[1])[0] return best_individual[0] + best_individual[1] def reset_evaluation(self): self.evaluate_wrapper = memoize_genetic(self.simple_evaluate) self.evaluate_heuristic = memoize_genetic( self.simple_evaluate_heuristic) def set_params(self, **params): super().set_params(**params) if "selection" in params: if params["selection"] not in ("rank", "proportionate"): raise ValueError( "Unknown selection parameter expected one of : " + str(tuple(["rank", "proportionate"]))) self.selection = self.select_population_rank if "rank" in params[ "selection"] else self.select_population if "combine" in params: if params["combine"] not in ("elitism", "truncate"): raise ValueError( "Unknown selection parameter expected one of : " + str(tuple(["elitism", "truncate"]))) self.combine = self.elitism if "elit" in params[ "combine"] else self.truncation if "mutation" in params: if params["mutation"] not in ("complex", "simple"): raise ValueError( "Unknown selection parameter expected one of : " + str(tuple(["complex", "simple"]))) self.mutation = self.mutate_simple if "simple" == params[ "mutation"] else self.mutate_complex def __init__(self, seed=None, individuals=1, generations=40, mutation_probability=0.2, selection="rank", mutation="simple", combine="elitism", n_intervals=5, metric="accuracy", flexible_logic=True, verbose=False, encode_data=True, mixed=True, mixed_percentage=0.5): self.mixed_percentage = mixed_percentage self.mixed = mixed self.encode_data = encode_data self.flexible_logic = flexible_logic self.verbose = verbose self.n_intervals = n_intervals self.metric = metric self.seed = seed self.individuals = individuals self.generations = generations self.mutation_probability = mutation_probability self.selection = selection self.combine = combine self.mutation = mutation allowed_selection = ('rank', 'proportionate') allowed_combine = ('elitism', 'truncate') allowed_mutation = ('complex', 'simple') if self.selection not in allowed_selection: raise ValueError( "Unknown selection type: %s, expected one of %s." % (self.selection, selection)) if self.combine not in allowed_combine: raise ValueError("Unknown combine type: %s, expected one of %s." % (self.combine, combine)) if self.mutation not in allowed_mutation: raise ValueError( "Unknown selection type: %s, expected one of %s." % (self.mutation, mutation)) self.selection = self.select_population_rank if "rank" in selection else self.select_population self.combine = self.elitism if "elit" in combine else self.truncation self.mutation = self.mutate_simple if "simple" in mutation else self.mutate_complex self.reset_evaluation()
def acfs_score_comparison(datasets, seed, base_path, params, n_splits=3, n_repeats=5, n_intervals=5, metric="accuracy", send_email=False, email_data=dict(), verbose=True): # List to store results and column names for the csv result = [] columns = [ "Database", "Number of attributes", "NBScore", "NBScore STD", "ACFCS Score", "ACFCS Score STD", "Configuration", "Nodes", "Contruction Matrix", "Selection Matrix", "Selected_attributes", "Original" ] dataset_tqdm = tqdm(datasets) # Instantiate the classifier acfcs = ACFCS(verbose=0, metric=metric) nb = NaiveBayes(encode_data=False, n_intervals=n_intervals, metric=metric) # Execute algorithm on datasets for database in dataset_tqdm: name, label = database if not os.path.exists(base_path + name): print(f"{name} doesnt' exist") continue # Assume UCI REPO like data test = f"{name}.test.csv" data = f"{name}.data.csv" X, y = get_X_y_from_database(base_path, name, data, test, label) # Update progressbar dataset_tqdm.set_postfix({"DATABASE": name}) # Set up data structures to store results nb_score = np.zeros(shape=(len(params), n_splits * n_repeats)) acfcs_score = np.zeros(shape=(len(params), n_splits * n_repeats)) acfcs_selection_matrix = np.zeros(shape=(len(params), n_splits * n_repeats)) acfcs_construction_matrix = np.zeros(shape=(len(params), n_splits * n_repeats)) acfcs_nodes = np.zeros(shape=(len(params), n_splits * n_repeats)) acfcs_dummy = np.zeros(shape=(len(params), n_splits * n_repeats)) acfcs_selected = np.zeros(shape=(len(params), n_splits * n_repeats)) # Create splits for the experiments rskf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) seed_tqdm = tqdm(rskf.split(X, y), leave=False, total=n_splits * n_repeats, bar_format='{l_bar}{bar:20}{r_bar}{bar:-10b}' ) if verbose else rskf.split(X, y) # Execute experiments for i, data in enumerate(seed_tqdm): train_index, test_index = data X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] # Encode the data c = CustomOrdinalFeatureEncoder(n_intervals=n_intervals) X_train = c.fit_transform(X_train) X_test = c.transform(X_test) l = CustomLabelEncoder() y_train = l.fit_transform(y_train) y_test = l.transform(y_test) # Assess the classifiers reusing info to speed up evaluation nb.fit(X_train, y_train) naive_bayes_score = nb.score(X_test, y_test) acfcs.reset_cache() for conf_index, conf in enumerate(params): acfcs.set_params(**conf) acfcs.fit(X_train, y_train, init_graph=conf_index == 0) # score acfcs_score_conf = acfcs.score(X_test, y_test) if verbose: seed_tqdm.set_postfix({ "config": conf_index, "nb_score": naive_bayes_score, "ant_score": acfcs_score_conf }) # Get data n_original_features = len( list( filter( lambda x: isinstance(x, DummyFeatureConstructor), acfcs.best_features))) n_selected = len(acfcs.best_features) selection_matrix = len(acfcs.afg.pheromone_selection) construction_matrix = len(acfcs.afg.pheromone_construction) nodes = len(acfcs.afg.nodes) # Update nb_score[conf_index, i] = naive_bayes_score acfcs_score[conf_index, i] = acfcs_score_conf acfcs_selection_matrix[conf_index, i] = selection_matrix acfcs_construction_matrix[conf_index, i] = construction_matrix acfcs_nodes[conf_index, i] = nodes acfcs_dummy[conf_index, i] = n_original_features acfcs_selected[conf_index, i] = n_selected # Insert the final result - averaged metrics for this database. for conf_index, conf in enumerate(params): row = [ name, X.shape[1], np.mean(nb_score[conf_index]), np.std(nb_score[conf_index]), np.mean(acfcs_score[conf_index]), np.std(acfcs_score[conf_index]), conf, np.mean(acfcs_nodes[conf_index]), np.mean(acfcs_construction_matrix[conf_index]), np.mean(acfcs_selection_matrix[conf_index]), np.mean(acfcs_selected[conf_index]), np.mean(acfcs_dummy[conf_index]) ] result.append(row) result = pd.DataFrame(result, columns=columns) if send_email: from tfg.utils import send_results send_results("ACFCS", email_data, result) return result
def ranker_score_comparison(datasets, seed, base_path, params, n_splits=3, n_repeats=5, n_intervals=5, metric="accuracy", send_email=False, email_data=dict(), share_rank=True): result = [] columns = ["Database", "Number of attributes", "NBScore", "NBScore STD", "Ranker Score", "Ranker Score STD", "Configuration", "Combinations", "Selected_attributes", "Original"] dataset_tqdm = tqdm(datasets) # Instantiate the classifier r = RankerLogicalFeatureConstructor(n_intervals=n_intervals, metric=metric) nb = NaiveBayes(encode_data=False, n_intervals=n_intervals, metric=metric) # Execute algorithm on datasets for database in dataset_tqdm: name, label = database if not os.path.exists(base_path + name): print(f"{name} doesnt' exist") continue # Assume UCI REPO like data test = f"{name}.test.csv" data = f"{name}.data.csv" X, y = get_X_y_from_database(base_path, name, data, test, label) dataset_tqdm.set_postfix({"DATABASE": name}) # Set up data structures to store results nb_score = np.zeros(shape=(len(params), n_splits*n_repeats)) r_score = np.zeros(shape=(len(params), n_splits*n_repeats)) r_combinations = np.zeros(shape=(len(params), n_splits*n_repeats)) r_selected = np.zeros(shape=(len(params), n_splits*n_repeats)) r_dummy = np.zeros(shape=(len(params), n_splits*n_repeats)) r_total_constructed = np.zeros(shape=(len(params), n_splits*n_repeats)) r_total_selected = np.zeros(shape=(len(params), n_splits*n_repeats)) r_original_selected = np.zeros(shape=(len(params), n_splits*n_repeats)) rskf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) seed_tqdm = tqdm(rskf.split(X, y), leave=False, total=n_splits*n_repeats, bar_format='{l_bar}{bar:20}{r_bar}{bar:-10b}') for i, data in enumerate(seed_tqdm): train_index, test_index = data X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] c = CustomOrdinalFeatureEncoder(n_intervals=n_intervals) X_train = c.fit_transform(X_train) X_test = c.transform(X_test) l = CustomLabelEncoder() y_train = l.fit_transform(y_train) y_test = l.transform(y_test) # Assess the classifiers nb.fit(X=X_train, y=y_train) naive_bayes_score = nb.score(X_test, y_test) for conf_index, conf in enumerate(params): seed_tqdm.set_postfix({"config": conf_index}) r.set_params(**conf) # Fit if conf_index == 0 or not share_rank: # The rank is computed from scratch r.fit(X_train, y_train) else: r.filter_features(r.feature_encoder_.transform( X_train), r.class_encoder_.transform(y_train)) # score ranker_score = r.score(X_test, y_test) # Get data n_original_features = len(list(filter(lambda x: isinstance( x, DummyFeatureConstructor), r.final_feature_constructors))) n_combinations = len(r.all_feature_constructors) n_selected = len(r.final_feature_constructors) # Update nb_score[conf_index, i] = naive_bayes_score r_score[conf_index, i] = ranker_score r_combinations[conf_index, i] = n_combinations r_selected[conf_index, i] = n_selected r_dummy[conf_index, i] = n_original_features # Insert to final result averaged metrics for this dataset for conf_index, conf in enumerate(params): row = [name, X.shape[1], np.mean(nb_score[conf_index]), np.std(nb_score[conf_index]), np.mean(r_score[conf_index]), np.std(r_score[conf_index]), conf, np.mean(r_combinations[conf_index]), np.mean(r_selected[conf_index]), np.mean(r_dummy[conf_index])] result.append(row) result = pd.DataFrame(result, columns=columns) if send_email: from tfg.utils import send_results send_results("RANKER", email_data, result) return result
def fit(self, X, y): # Parse input if isinstance(y, pd.DataFrame): y = y.to_numpy() if self.encode_data: self.feature_encoder_ = CustomOrdinalFeatureEncoder( n_intervals=self.n_intervals) self.class_encoder_ = CustomLabelEncoder() X = self.feature_encoder_.fit_transform(X) y = self.class_encoder_.fit_transform(y) if isinstance(X, pd.DataFrame): X = X.to_numpy() check_X_y(X, y) # Reset the stored results for new fit self.reset_evaluation() # Generate rank if self.use_graph: # Construct the minimum graph and create rank graph = AntFeatureGraphMI(seed=None, connections=1).compute_graph( X, y, ("AND", "OR", "XOR")) self.all_feature_constructors = graph.get_rank() elif self.prune is not None: # Construct the rank with pruning by selecting pais that maximise SU(X_iX_j,Y) feature_combinations = list( combinations(list(range(X.shape[1])), 2)) + [(i, i) for i in range(X.shape[1])] rank_pairs = [ symmetrical_uncertainty_two_variables(X[:, i], X[:, j], y) for i, j in feature_combinations ] rank_pairs_index = np.argsort(rank_pairs)[::-1] # Create the unsorted list self.all_feature_constructors = [] for index in rank_pairs_index[:self.prune]: i, j = feature_combinations[index] if i == j: from tfg.feature_construction import create_feature self.all_feature_constructors.extend([ create_feature("OR", [(i, n), (i, m)]) for n, m in combinations(np.unique(X[:, i]), 2) ]) else: self.all_feature_constructors.extend( construct_features(X[:, [i, j]], operators=self.operators, same_feature=False)) else: # Create the unsorted list of all features self.all_feature_constructors = construct_features( X, operators=self.operators) if self.verbose: print( f"Total number of constructed features: {len(self.all_feature_constructors)}" ) self.all_feature_constructors.extend( [DummyFeatureConstructor(j) for j in range(X.shape[1])]) self.symmetrical_uncertainty_rank = [] # Sort the ranking for feature_constructor in self.all_feature_constructors: feature = feature_constructor.transform(X) su = symmetrical_uncertainty(f1=feature.flatten(), f2=y) self.symmetrical_uncertainty_rank.append(su) # Store the descending order index self.rank = np.argsort(self.symmetrical_uncertainty_rank)[::-1] # If the initial variables are if self.use_initials: classifier = NaiveBayes(encode_data=False, n_intervals=self.n_intervals, metric=self.metric) classifier.fit(X, y) current_features = [ DummyFeatureConstructor(j) for j in range(X.shape[1]) ] # Store the backward result to reuse it for other executions self.initial_backward_features = backward_search( X, y, current_features, classifier) # Feature Subset Selection (FSS) from the rank self.filter_features(X, y) return self
def genetic_score_comparison(datasets, seed, base_path, params, n_splits=3, n_repeats=5, n_intervals=5, metric="accuracy", send_email=False, email_data=dict(), verbose=True, version=1): result = [] columns = [ "Database", "Number of attributes", "NBScore", "NBScore STD", "Genetic Score", "Genetic Score STD", "Configuration", "Selected_attributes", "Original" ] dataset_tqdm = tqdm(datasets) # Instantiate the classifier if version == 1: # First Version - No flexibility in the number of attributes (bad performance) # clf = GeneticProgramming(seed=seed, metric=metric) clf = GeneticProgrammingFlexibleLogic(seed=seed, metric=metric) elif version == 2: # Version with flexibility clf = GeneticProgrammingFlexibleLogic(seed=seed, metric=metric) else: # Guided mutation based on SU clf = GeneticProgrammingRankMutation(seed=seed, metric=metric) nb = NaiveBayes(encode_data=False, n_intervals=n_intervals, metric=metric) # Execute algorithm on datasets for database in dataset_tqdm: name, label = database if not os.path.exists(base_path + name): print(f"{name} doesnt' exist") continue # Assume UCI REPO like data test = f"{name}.test.csv" data = f"{name}.data.csv" X, y = get_X_y_from_database(base_path, name, data, test, label) dataset_tqdm.set_postfix({"DATABASE": name}) # Set up data structures to store results nb_score = np.zeros(shape=(len(params), n_splits * n_repeats)) clf_score = np.zeros(shape=(len(params), n_splits * n_repeats)) clf_selected = np.zeros(shape=(len(params), n_splits * n_repeats)) clf_dummy = np.zeros(shape=(len(params), n_splits * n_repeats)) # Create splits for the experiments rskf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) seed_tqdm = tqdm(rskf.split(X, y), leave=False, total=n_splits * n_repeats, bar_format='{l_bar}{bar:20}{r_bar}{bar:-10b}' ) if verbose else rskf.split(X, y) # Execute experiments for i, data in enumerate(seed_tqdm): train_index, test_index = data X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] # Encode the data c = CustomOrdinalFeatureEncoder(n_intervals=n_intervals) X_train = c.fit_transform(X_train) X_test = c.transform(X_test) l = CustomLabelEncoder() y_train = l.fit_transform(y_train) y_test = l.transform(y_test) # Assess the classifiers reusing info to speed up evaluation nb.fit(X_train, y_train) naive_bayes_score = nb.score(X_test, y_test) # Reset evaluation-cache for new split clf.reset_evaluation() for conf_index, conf in enumerate(params): if verbose: seed_tqdm.set_postfix({"config": conf_index}) clf.set_params(**conf) clf.fit(X_train, y_train) # score genetic_score = clf.score(X_test, y_test) # Get data n_original_features = len( list( filter( lambda x: isinstance(x, DummyFeatureConstructor), clf.best_features))) n_selected = len(clf.best_features) # Update nb_score[conf_index, i] = naive_bayes_score clf_score[conf_index, i] = genetic_score clf_selected[conf_index, i] = n_selected clf_dummy[conf_index, i] = n_original_features # Insert to final result averaged metrics for this database for conf_index, conf in enumerate(params): row = [ name, X.shape[1], np.mean(nb_score[conf_index]), np.std(nb_score[conf_index]), np.mean(clf_score[conf_index]), np.std(clf_score[conf_index]), conf, np.mean(clf_selected[conf_index]), np.mean(clf_dummy[conf_index]) ] result.append(row) result = pd.DataFrame(result, columns=columns) if send_email: from tfg.utils import send_results send_results(f"GENETIC_{version}", email_data, result) return result
class ACFCS(OptimizationMixin, TransformerMixin, ClassifierMixin, BaseEstimator): def __init__(self, ants=10, evaporation_rate=0.05, intensification_factor=0.05, alpha=1.0, beta=0.0, beta_evaporation_rate=0.05, step=1, iterations=100, early_stopping=20, update_strategy="best", seed=None, parallel=False, save_features=False, path=None, filename=None, verbose=0, graph_strategy="mutual_info", connections=2, max_errors=0, metric="accuracy", use_initials=False, final_selection="ALL", encode_data=True): self.step = step self.ants = ants self.evaporation_rate = evaporation_rate self.intensification_factor = intensification_factor self.alpha = alpha self.beta = beta self.beta_evaporation_rate = beta_evaporation_rate self.iterations = iterations self.early_stopping = early_stopping self.seed = seed self.parallel = parallel self.save_features = save_features self.path = path self.filename = filename self.verbose = verbose self.graph_strategy = graph_strategy self.connections = connections self.metric = metric self.update_strategy = update_strategy self.use_initials = use_initials self.final_selection = final_selection self.encode_data = encode_data self.max_errors = max_errors allowed_graph_strategy = ("full", "mutual_info") if self.graph_strategy not in allowed_graph_strategy: raise ValueError( "Unknown graph strategy type: %s, expected one of %s." % (self.graph_strategy, allowed_graph_strategy)) allowed_update_strategy = ("all", "best") if self.update_strategy not in allowed_update_strategy: raise ValueError( "Unknown graph strategy type: %s, expected one of %s." % (self.update_strategy, allowed_update_strategy)) self.reset_cache() def reset_cache(self): self.cache_loo = dict() self.cache_heuristic = dict() def fit(self, X, y, init_graph=True): self.feature_encoder_ = CustomOrdinalFeatureEncoder() self.class_encoder_ = CustomLabelEncoder() self.categories_ = None if isinstance(X, pd.DataFrame): self.categories_ = X.columns if self.encode_data: X = self.feature_encoder_.fit_transform(X) y = self.class_encoder_.fit_transform(y) if init_graph: if self.graph_strategy == "full": #Full graph self.afg = AntFeatureGraph(seed=self.seed).compute_graph( X, y, ("XOR", "OR", "AND")) else: #Pruned graph self.afg = AntFeatureGraphMI( seed=self.seed, connections=self.connections).compute_graph( X, y, ("XOR", "OR", "AND")) else: self.afg.reset_pheromones() if self.verbose: print(f"Number of nodes: {len(self.afg.nodes)}") random.seed(self.seed) best_score = 0 self.best_features = [] iterations_without_improvement = 0 iterator = tqdm(range(self.iterations)) if self.verbose else range( self.iterations) beta = self.beta distance_from_best = -1 for iteration in iterator: if self.verbose: iterator.set_postfix({ "best_score": best_score, "n_features": len(self.best_features), "p_matrix_c": len(self.afg.pheromone_construction), "p_matrix_s": len(self.afg.pheromone_selection), "distance_from_best": distance_from_best }) ants = [ Ant(ant_id=i, alpha=self.alpha, beta=beta, metric=self.metric, use_initials=self.use_initials, cache_loo=self.cache_loo, cache_heuristic=self.cache_heuristic, step=self.step) for i in range(self.ants) ] beta *= (1 - self.beta_evaporation_rate) results = [] for ant in ants: results.append( ant.run(X=X, y=y, graph=self.afg, random_generator=random, parallel=self.parallel, max_errors=self.max_errors)) results = np.array(results) self.afg.update_pheromone_matrix_evaporation(self.evaporation_rate) distance_from_best = np.mean(np.abs(results - best_score)) best_ant = np.argmax(results) if self.update_strategy == "best": ant = ants[best_ant] self.afg.intensify(ant.current_features, self.intensification_factor, 1, self.use_initials) else: for ant_score, ant in zip(results, ants): self.afg.intensify(ant.current_features, self.intensification_factor, ant_score, self.use_initials) if results[best_ant] >= best_score: iterations_without_improvement = 0 ant = ants[best_ant] best_score = results[best_ant] self.best_features = ant.current_features else: iterations_without_improvement += 1 if iterations_without_improvement > self.early_stopping: break self.classifier_ = NaiveBayes(encode_data=False, metric=self.metric) if self.final_selection == "BEST": pass else: #An ant traverses the graph deterministically to obtain the features final_ant = FinalAnt(ant_id=0, alpha=self.alpha, beta=beta, metric=self.metric, use_initials=self.use_initials, cache_loo=self.cache_loo, cache_heuristic=self.cache_heuristic, step=self.step) final_ant.run(X=X, y=y, graph=self.afg, random_generator=random, parallel=self.parallel) self.best_features = final_ant.current_features #Train model with final features self.classifier_.fit( np.concatenate( [feature.transform(X) for feature in self.best_features], axis=1), y) if self.save_features: #Save to features to dict translate_features(features=self.best_features, feature_encoder=self.feature_encoder_, categories=self.categories_, path=self.path, filename=self.filename) return self
class PazzaniWrapperNB(PazzaniWrapper): ''''Optimized version of Pazzani's wrapper for the Naive Bayes classifier. LOO cross validation Update, add, delete features ''' def __init__(self, seed=None, strategy="BSEJ", verbose=0): super().__init__(seed=seed, strategy=strategy, verbose=verbose, cv=None) def _generate_neighbors_bsej(self, current_columns, X): if X.shape[1] > 1: for column_to_drop in range(X.shape[1]): new_columns = current_columns.copy() del new_columns[column_to_drop] yield new_columns, column_to_drop, None, True # Updated column list, columns to remove, columns to add, delete? for features in combinations(np.arange(X.shape[1]), 2): new_col_name = flatten([ current_columns[features[0]], current_columns[features[1]] ]) new_columns = current_columns.copy() new_columns.append(tuple(new_col_name)) columns_to_drop = sorted(features, reverse=True) del new_columns[columns_to_drop[0]] del new_columns[columns_to_drop[1]] combined_columns = combine_columns(X, list(features)) yield new_columns, list( columns_to_drop), combined_columns, False def fit_bsej(self, X, y): self.evaluate = memoize(_evaluate, attribute_to_cache="columns") current_best = X.copy() current_columns = deque(range(X.shape[1])) best_score = self.evaluate(self.classifier, current_best, y, columns=current_columns, fit=True) stop = False while not stop: update = False stop = True if self.verbose: print("Current Best: ", current_columns, " Score: ", best_score) for new_columns, columns_to_delete, columns_to_add, delete in self._generate_neighbors_bsej( current_columns, current_best): if delete: action = "DELETE" # Update classifier and get validation result self.classifier.remove_feature(columns_to_delete) neighbor = np.delete(current_best, columns_to_delete, axis=1) score = self.evaluate(self.classifier, neighbor, y, columns=new_columns, fit=False) # Restore the column for the next iteration self.classifier.add_features( current_best[:, columns_to_delete].reshape(-1, 1), y, index=[columns_to_delete]) else: action = "ADD" self.classifier.add_features(columns_to_add, y) self.classifier.remove_feature(columns_to_delete[0]) self.classifier.remove_feature(columns_to_delete[1]) neighbor = np.delete(current_best, columns_to_delete, axis=1) neighbor = np.concatenate([neighbor, columns_to_add], axis=1) score = self.evaluate(self.classifier, neighbor, y, columns=new_columns, fit=False) if self.classifier.n_features_ == 1: # We reverse it for insert order self.classifier.add_features( current_best[:, columns_to_delete], y) self.classifier.remove_feature(0) else: self.classifier.remove_feature(neighbor.shape[1] - 1) # We reverse it for insert order self.classifier.add_features( current_best[:, columns_to_delete], y, index=columns_to_delete) if self.verbose == 2: print("\tNeighbor: ", new_columns, " Score: ", score) if score > best_score: stop = False best_columns = new_columns best_action = action best_score = score best_columns_to_delete = columns_to_delete update = True if best_action == "ADD": best_columns_to_add = columns_to_add if score == 1.0: stop = True break if update: current_columns = best_columns if best_action == "DELETE": current_best = np.delete(current_best, best_columns_to_delete, axis=1) # Update best self.classifier.remove_feature(best_columns_to_delete) else: current_best = np.delete(current_best, best_columns_to_delete, axis=1) current_best = np.concatenate( [current_best, best_columns_to_add], axis=1) # Update classifier self.classifier.add_features(best_columns_to_add, y) self.classifier.remove_feature(best_columns_to_delete[0]) self.classifier.remove_feature(best_columns_to_delete[1]) if self.verbose: print("Final best: ", list(current_columns), " Score: ", best_score) self.features_ = current_columns self.feature_transformer = lambda X: join_columns( X, columns=self.features_) model = self.classifier.fit(self.feature_transformer(X), y) return self def _generate_neighbors_fssj(self, current_columns, individual, original_data, available_columns): if available_columns: for index, col in enumerate(available_columns): new_columns = current_columns.copy() new_columns.append(col) new_available_columns = available_columns.copy() del new_available_columns[index] column_to_add = original_data[:, col].reshape(-1, 1) column_to_delete = None # New columns, Availables,ColumnToDelete,ColumnToAdd,Delete? yield new_columns, new_available_columns, column_to_delete, column_to_add, False if individual is not None and individual.shape[ 1] > 0 and available_columns: for features_index in product(np.arange(len(available_columns)), np.arange(len(current_columns))): features = available_columns[ features_index[0]], current_columns[features_index[1]] new_col_name = flatten([features[0], features[1]]) new_available_columns = available_columns.copy() del new_available_columns[features_index[0]] new_columns = current_columns.copy() new_columns.append(tuple(new_col_name)) del new_columns[features_index[1]] separated_columns = np.concatenate([ original_data[:, features[0]].reshape(-1, 1), individual[:, features_index[1]].reshape(-1, 1) ], axis=1) if isinstance(features[1], tuple): features = list(features) features[1] = list(features[1]) features = tuple(features) column_to_delete = features_index[1] combined_columns = combine_columns(separated_columns) column_to_add = combined_columns yield new_columns, new_available_columns, column_to_delete, column_to_add, True def fit_fssj(self, X, y): self.evaluate = memoize(_evaluate, attribute_to_cache="columns") current_best = None current_columns = deque() available_columns = list(range(X.shape[1])) best_score = -float("inf") stop = False while not stop: update = False stop = True # self.classifier.encode_data=True if self.verbose: print("Current Best: ", current_columns, " Score: ", best_score, "Available columns: ", available_columns) for new_columns, new_available_columns, column_to_delete, column_to_add, delete in self._generate_neighbors_fssj( current_columns=current_columns, individual=current_best, original_data=X, available_columns=available_columns): if delete: action = "JOIN" # Update classifier and get validation result self.classifier.add_features(column_to_add, y) self.classifier.remove_feature(column_to_delete) neighbor = np.concatenate([current_best, column_to_add], axis=1) neighbor = np.delete(neighbor, column_to_delete, axis=1) score = self.evaluate(self.classifier, neighbor, y, columns=new_columns, fit=False) # Restore the column for the next iteration if neighbor.shape[1] == 1: self.classifier.fit(current_best, y) else: self.classifier.remove_feature(neighbor.shape[1] - 1) self.classifier.add_features( current_best[:, column_to_delete].reshape(-1, 1), y, index=[column_to_delete]) else: action = "ADD" if current_best is None: neighbor = column_to_add self.classifier.fit(neighbor, y) else: neighbor = np.concatenate( [current_best, column_to_add], axis=1) self.classifier.add_features(column_to_add, y) score = self.evaluate(self.classifier, neighbor, y, columns=new_columns, fit=False) if current_best is None: self.classifier = NaiveBayes(encode_data=True) else: self.classifier.remove_feature(neighbor.shape[1] - 1) if self.verbose == 2: print("\tNeighbour: ", new_columns, " Score: ", score, "Available columns: ", new_available_columns) if score > best_score: stop = False best_columns = new_columns best_available_columns = new_available_columns best_action = action best_score = score best_column_to_delete = column_to_delete best_column_to_add = column_to_add update = True if score == 1.0: stop = True break if update: current_columns = best_columns available_columns = best_available_columns if best_action == "JOIN": self.classifier.add_features(best_column_to_add, y) self.classifier.remove_feature(best_column_to_delete) current_best = np.concatenate( [current_best, best_column_to_add], axis=1) current_best = np.delete(current_best, best_column_to_delete, axis=1) else: if current_best is None: current_best = best_column_to_add self.classifier.fit(current_best, y) else: current_best = np.concatenate( [current_best, best_column_to_add], axis=1) self.classifier.add_features(best_column_to_add, y) if self.verbose: print("Final best: ", list(current_columns), " Score: ", best_score) self.features_ = current_columns self.feature_transformer = lambda X: join_columns( X, columns=self.features_) model = self.classifier.fit(self.feature_transformer(X), y) return self def evaluate(self, classifier, X, y, fit=True, columns=None): return _evaluate(classifier, X, y, fit=True, columns=None)
def scoring_comparison(base_path,datasets,verbose=1,test_size=0.3,seed=None,n_iterations=30): column_names = ["dataset", "custom_training_score", "custom_test_score", "categorical_training_score", "categorical_test_score"] data =[] clf_no_encoding = NaiveBayes(encode_data=True) clf_categorical_sklearn = CategoricalNB() datasets_iter = tqdm(datasets, bar_format='{l_bar}{bar:20}{r_bar}{bar:-10b}') c = CustomOrdinalFeatureEncoder() l = CustomLabelEncoder() for dataset in datasets_iter: dataset_name, label = dataset data_filename = f"{dataset_name}.data.csv" test_filename = f"{dataset_name}.test.csv" X, y = get_X_y_from_database(base_path=base_path, name = dataset_name, data = data_filename, test = test_filename, label = label) custom_train = [] custom_test = [] sklearn_train = [] sklearn_test = [] X = c.fit_transform(X) y = l.fit_transform(y) for iteration in range(n_iterations): if verbose: datasets_iter.set_postfix({"Dataset": dataset_name, "seed":iteration}) datasets_iter.refresh() try: X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=test_size, random_state=seed+iteration, shuffle=True, stratify=y) except: #Not enough values to stratify y X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=test_size, random_state=seed+iteration, shuffle=True ) #Fit clf_no_encoding.fit(X_train,y_train) clf_categorical_sklearn.min_categories = [1+np.max(np.concatenate([X_train[:,j],X_test[:,j]])) for j in range(X_train.shape[1])] clf_categorical_sklearn.fit(X_train,y_train) #Predict custom_train.append(clf_no_encoding.score(X_train,y_train)) custom_test.append(clf_no_encoding.score(X_test,y_test)) sklearn_train.append(clf_categorical_sklearn.score(X_train,y_train)) sklearn_test.append(clf_categorical_sklearn.score(X_test,y_test)) data.append([dataset_name,np.mean(custom_train),np.mean(custom_test),np.mean(sklearn_train),np.mean(sklearn_test)]) return pd.DataFrame(data,columns = column_names)
def explore(self, X, y, graph, random_generator, parallel, max_errors=0): ''' Search method that follows the following steps: 1. The initial node is connected to all the others (roulette wheel selection is performed) 2. There are 2 type of nodes (corresponding to an original feature (2.1) or corresponding to a value of a feature (2.2)): 2.1. If the selected node is an original feature we add it to the selected subset and go to step 3. 2.2. If the selected node is part of a logical feature then we select another node (the CONSTRUCTION step will not return full original features) 3. Compute the score 3.1. If it improves the previous one 3.1.1 Add the feature to the current subset 3.1.2 Update the score 3.1.3 Select another node (SELECTION step) 3.1.4 Go to step 2 3.2. If not, the exploration ends Note: Threading does not speed up the calculations as they are CPU bound and in python only I/O operations will benefit from this parallelism GPU improvement would reduce the time of the exploration. ''' self.step = math.ceil(math.log2(X.shape[1])) self.current_features = [] selected_nodes = set() constructed_nodes = set() classifier = NaiveBayes(encode_data=False, metric=self.metric) current_score = np.NINF score = 0 if self.use_initials: self.current_features = [ DummyFeatureConstructor(j) for j in range(X.shape[1]) ] classifier.fit(X, y) current_transformed_features_numpy = np.concatenate( [f.transform(X) for f in self.current_features], axis=1) score = self.evaluate_loo(self.current_features, classifier, current_transformed_features_numpy, y) current_score = score selected_nodes.update(graph.get_original_ids()) if len(self.current_features) == 0: current_transformed_features_numpy = None initial, pheromones, heuristics = graph.get_initial_nodes( selected_nodes) probabilities = self.compute_probability(pheromones, heuristics) index = self.choose_next(probabilities, random_generator) node_id, selected_node = initial[index] # SU variable contains the MIFS-SU for the selected variable current_su = 0 su = heuristics[index] is_fitted = self.use_initials feature_constructor = None n_errors = 0 number_steps = 1 while True: current_score = score if selected_node[1] is None: # Original Feature feature_constructor = DummyFeatureConstructor(selected_node[0]) selected_nodes.add(node_id) else: # Need to construct next feature and compute heuristic value for the feature to replace temporal su from half-var neighbours, pheromones = graph.get_neighbours( selected_node, constructed_nodes, step="CONSTRUCTION") if len(neighbours) == 0: break if self.beta != 0: if parallel: with concurrent.futures.ThreadPoolExecutor( ) as executor: futures = [] for neighbour in neighbours: futures.append( executor.submit( self.compute_neighbour_sufs, neighbour=neighbour, transformed_features= current_transformed_features_numpy, constructors=self.current_features, selected_node=selected_node, current_su=current_su, X=X, y=y)) concurrent.futures.wait( futures, timeout=None, return_when='ALL_COMPLETED') su = [future.result() for future in futures] else: su = [ self.compute_neighbour_sufs( neighbour=neighbour, transformed_features= current_transformed_features_numpy, selected_node=selected_node, constructors=self.current_features, current_su=current_su, X=X, y=y) for neighbour in neighbours ] else: #Avoid unnecessary evaluation su = np.ones(len(neighbours)) probabilities = self.compute_probability( pheromones, np.array(su)) index = self.choose_next(probabilities, random_generator) su = su[index] feature_constructor = create_feature( neighbours[index][2], [selected_node, neighbours[index][1]]) constructed_nodes.add( frozenset( (node_id, neighbours[index][0], neighbours[index][2]))) node_id, selected_node = neighbours[index][:2] # Assess new feature transformed_feature = feature_constructor.transform(X) if is_fitted: classifier.add_features(transformed_feature, y) else: classifier.fit(transformed_feature, y) is_fitted = True if current_transformed_features_numpy is None: current_transformed_features_numpy = transformed_feature else: current_transformed_features_numpy = append_column_to_numpy( current_transformed_features_numpy, transformed_feature) if number_steps >= self.step: score = self.evaluate_loo( self.current_features + [feature_constructor], classifier, current_transformed_features_numpy, y) if score <= current_score: if n_errors >= max_errors: break else: n_errors += 1 else: n_errors = 0 number_steps = 0 else: number_steps += 1 current_su = su self.current_features.append(feature_constructor) current_score = score # Select next neighbours, pheromones = graph.get_neighbours(selected_node, selected_nodes, step="SELECTION") # Compute heuristic su = [] if len(neighbours) == 0: break if self.beta != 0: for neighbour, pheromone in zip(neighbours, pheromones): if neighbour[1][1] is None: # Original variable su.append( self.compute_sufs_cached( current_su, current_transformed_features_numpy, X[:, neighbour[1][0]], self.current_features, DummyFeatureConstructor(neighbour[1][0]), y, minimum=0)) else: # This is a temporal variable that will not be finally selected but only used to calculate the heuristic su.append( self.compute_sufs_cached( current_su, current_transformed_features_numpy, X[:, neighbour[1][0]] == neighbour[1][1], self.current_features, FeatureOperand(feature_index=neighbour[1][0], value=neighbour[1][1]), y, minimum=0)) else: su = np.ones(len(neighbours)) probabilities = self.compute_probability(pheromones, np.array(su)) index = self.choose_next(probabilities, random_generator) su = su[index] node_id, selected_node = neighbours[index][:2] if current_transformed_features_numpy.shape[1] > len( self.current_features): current_transformed_features_numpy = np.delete( current_transformed_features_numpy, -1, axis=1) self.final_score = self.evaluate_loo( self.current_features, classifier, current_transformed_features_numpy, y) return self.final_score