def __init__(self, num_units, input_size=None, activation=tf.tanh, inner_activation=tf.sigmoid, bias=True, weights_init=None, trainable=True, restore=True, reuse=False): if input_size is not None: logging.warn("%s: The input_size parameter is deprecated." % self) self._num_units = num_units if isinstance(activation, str): self._activation = activations.get(activation) elif hasattr(activation, '__call__'): self._activation = activation else: raise ValueError("Invalid Activation.") if isinstance(inner_activation, str): self._inner_activation = activations.get(inner_activation) elif hasattr(inner_activation, '__call__'): self._inner_activation = inner_activation else: raise ValueError("Invalid Activation.") self.bias = bias self.weights_init = weights_init if isinstance(weights_init, str): self.weights_init = initializations.get(weights_init)() self.trainable = trainable self.restore = restore self.reuse = reuse
def __init__(self, num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tf.tanh, inner_activation=tf.sigmoid, bias=True, weights_init=None, trainable=True, restore=True, reuse=False, batch_norm=False): if not state_is_tuple: logging.warn( "%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True." % self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated." % self) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self.batch_norm = batch_norm if isinstance(activation, str): self._activation = activations.get(activation) elif hasattr(activation, '__call__'): self._activation = activation else: raise ValueError("Invalid Activation.") if isinstance(inner_activation, str): self._inner_activation = activations.get(inner_activation) elif hasattr(inner_activation, '__call__'): self._inner_activation = inner_activation else: raise ValueError("Invalid Activation.") self.bias = bias self.weights_init = weights_init if isinstance(weights_init, str): self.weights_init = initializations.get(weights_init)() self.trainable = trainable self.restore = restore self.reuse = reuse
def conv_1d_tranpose(layer, nb_filter, filter_size, strides, padding='same', bias=True, scope=None, reuse=False, bias_init='zeros', trainable=True, restore=True, regularizer=None, weight_decay=0.001, weights_init='uniform_scaling', name="deconv_1d"): ''' layer: A 3-D `Tensor` of type `float` and shape `[batch, in_width, in_channels]` . SEE: https://www.tensorflow.org/api_docs/python/tf/nn/conv2d_backprop_input SEE2: https://github.com/tensorflow/tensorflow/pull/13105/commits/2ca9b908d1978a94855349309fd16a67cfd98659 TODO: ADD weight-decay/regularizer ''' input_shape = utils.get_incoming_shape(layer) _, in_width, in_channels = input_shape batch_size = tf.shape(layer)[0] filter_size = [filter_size, nb_filter, in_channels] output_shape = [batch_size, strides * in_width, nb_filter ] # this trick I think work only for strict up-sampling output_shape_ = ops.convert_to_tensor(output_shape, name="output_shape") strides = [1, 1, strides, 1] spatial_start_dim = 1 padding = utils.autoformat_padding(padding) with tf.variable_scope(scope, default_name=name, values=[layer], reuse=reuse) as scope: name = scope.name W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() elif type(W_init) in [tf.Tensor, np.ndarray, list]: filter_size = None W_regul = None if regularizer is not None: W_regul = lambda x: tflearn.losses.get(regularizer)(x, weight_decay ) W = vs.variable('W', shape=filter_size, regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W) # expand dims to make it compatible with conv2d W = tf.expand_dims(W, 0) layer = tf.expand_dims(layer, spatial_start_dim) output_shape_ = array_ops.concat( [output_shape_[:1], [1], output_shape_[1:]], axis=0) result = gen_nn_ops.conv2d_backprop_input(input_sizes=output_shape_, filter=W, out_backprop=layer, strides=strides, padding=padding, name=name) result = array_ops.squeeze(result, [spatial_start_dim]) result = tf.reshape(result, shape=output_shape) if bias: b_shape = [nb_filter] bias_init = initializations.get(bias_init)() b = vs.variable('b', shape=b_shape, initializer=bias_init, trainable=trainable, restore=restore) # Track per layer variables tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b) result = tf.nn.bias_add(result, b) result.b = b result.scope = scope result.W = W return result
def highway(incoming, n_units, activation='linear', transform_dropout=None, weights_init='truncated_normal', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, reuse=False, scope=None, name="FullyConnectedHighway"): """ Fully Connected Highway. A fully connected highway network layer, with some inspiration from [https://github.com/fomorians/highway-fcn](https://github.com/fomorians/highway-fcn). Input: (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten. Output: 2D Tensor [samples, n_units]. Arguments: incoming: `Tensor`. Incoming (2+)D Tensor. n_units: `int`, number of units for this layer. activation: `str` (name) or `function` (returning a `Tensor`). Activation applied to this layer (see tflearn.activations). Default: 'linear'. transform_dropout: `float`: Keep probability on the highway transform gate. weights_init: `str` (name) or `Tensor`. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'. bias_init: `str` (name) or `Tensor`. Bias initialization. (see tflearn.initializations) Default: 'zeros'. regularizer: `str` (name) or `Tensor`. Add a regularizer to this layer weights (see tflearn.regularizers). Default: None. weight_decay: `float`. Regularizer decay parameter. Default: 0.001. trainable: `bool`. If True, weights will be trainable. restore: `bool`. If True, this layer weights will be restored when loading a model reuse: `bool`. If True and 'scope' is provided, this layer variables will be reused (shared). scope: `str`. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name. name: A name for this layer (optional). Default: 'FullyConnectedHighway'. Attributes: scope: `Scope`. This layer scope. W: `Tensor`. Variable representing units weights. W_t: `Tensor`. Variable representing units weights for transform gate. b: `Tensor`. Variable representing biases. b_t: `Tensor`. Variable representing biases for transform gate. Links: [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387) """ input_shape = utils.get_incoming_shape(incoming) assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D" n_inputs = int(np.prod(input_shape[1:])) # Build variables and inference. with tf.variable_scope(scope, default_name=name, values=[incoming], reuse=reuse) as scope: name = scope.name W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() W_regul = None if regularizer: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W) if isinstance(bias_init, str): bias_init = initializations.get(bias_init)() b = va.variable('b', shape=[n_units], initializer=bias_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b) # Weight and bias for the transform gate W_T = va.variable('W_T', shape=[n_inputs, n_units], regularizer=None, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W_T) b_T = va.variable('b_T', shape=[n_units], initializer=tf.constant_initializer(-1), trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b_T) # If input is not 2d, flatten it. if len(input_shape) > 2: incoming = tf.reshape(incoming, [-1, n_inputs]) if isinstance(activation, str): activation = activations.get(activation) elif hasattr(activation, '__call__'): activation = activation else: raise ValueError("Invalid Activation.") H = activation(tf.matmul(incoming, W) + b) T = tf.sigmoid(tf.matmul(incoming, W_T) + b_T) if transform_dropout: T = dropout(T, transform_dropout) C = tf.subtract(1.0, T) inference = tf.add(tf.multiply(H, T), tf.multiply(incoming, C)) # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.W_t = W_T inference.b = b inference.b_t = b_T # Track output tensor. tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference) return inference
def fully_connected(incoming, n_units, activation='linear', bias=True, weights_init='truncated_normal', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, reuse=False, scope=None, name="FullyConnected"): """ Fully Connected. A fully connected layer. Input: (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten. Output: 2D Tensor [samples, n_units]. Arguments: incoming: `Tensor`. Incoming (2+)D Tensor. n_units: `int`, number of units for this layer. activation: `str` (name) or `function` (returning a `Tensor`). Activation applied to this layer (see tflearn.activations). Default: 'linear'. bias: `bool`. If True, a bias is used. weights_init: `str` (name) or `Tensor`. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'. bias_init: `str` (name) or `Tensor`. Bias initialization. (see tflearn.initializations) Default: 'zeros'. regularizer: `str` (name) or `Tensor`. Add a regularizer to this layer weights (see tflearn.regularizers). Default: None. weight_decay: `float`. Regularizer decay parameter. Default: 0.001. trainable: `bool`. If True, weights will be trainable. restore: `bool`. If True, this layer weights will be restored when loading a model. reuse: `bool`. If True and 'scope' is provided, this layer variables will be reused (shared). scope: `str`. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name. name: A name for this layer (optional). Default: 'FullyConnected'. Attributes: scope: `Scope`. This layer scope. W: `Tensor`. Variable representing units weights. b: `Tensor`. Variable representing biases. """ input_shape = utils.get_incoming_shape(incoming) assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D" n_inputs = int(np.prod(input_shape[1:])) with tf.variable_scope(scope, default_name=name, values=[incoming], reuse=reuse) as scope: name = scope.name W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() W_regul = None if regularizer: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W) b = None if bias: if isinstance(bias_init, str): bias_init = initializations.get(bias_init)() b = va.variable('b', shape=[n_units], initializer=bias_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b) inference = incoming # If input is not 2d, flatten it. if len(input_shape) > 2: inference = tf.reshape(inference, [-1, n_inputs]) inference = tf.matmul(inference, W) if b: inference = tf.nn.bias_add(inference, b) if activation: if isinstance(activation, str): inference = activations.get(activation)(inference) elif hasattr(activation, '__call__'): inference = activation(inference) else: raise ValueError("Invalid Activation.") # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.b = b # Track output tensor. tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference) return inference
def fully_connected(incoming, n_units, activation='linear', bias=True, weights_init='truncated_normal', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, reuse=False, scope=None, name="FullyConnected"): """ Fully Connected. A fully connected layer. Input: (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten. Output: 2D Tensor [samples, n_units]. Arguments: incoming: `Tensor`. Incoming (2+)D Tensor. n_units: `int`, number of units for this layer. activation: `str` (name) or `function` (returning a `Tensor`). Activation applied to this layer (see tflearn.activations). Default: 'linear'. bias: `bool`. If True, a bias is used. weights_init: `str` (name) or `Tensor`. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'. bias_init: `str` (name) or `Tensor`. Bias initialization. (see tflearn.initializations) Default: 'zeros'. regularizer: `str` (name) or `Tensor`. Add a regularizer to this layer weights (see tflearn.regularizers). Default: None. weight_decay: `float`. Regularizer decay parameter. Default: 0.001. trainable: `bool`. If True, weights will be trainable. restore: `bool`. If True, this layer weights will be restored when loading a model. reuse: `bool`. If True and 'scope' is provided, this layer variables will be reused (shared). scope: `str`. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name. name: A name for this layer (optional). Default: 'FullyConnected'. Attributes: scope: `Scope`. This layer scope. W: `Tensor`. Variable representing units weights. b: `Tensor`. Variable representing biases. """ input_shape = utils.get_incoming_shape(incoming) assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D" n_inputs = int(np.prod(input_shape[1:])) # Build variables and inference. with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope: name = scope.name W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() W_regul = None if regularizer: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W) b = None if bias: if isinstance(bias, str): bias_init = initializations.get(bias_init)() b = va.variable('b', shape=[n_units], initializer=bias_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b) inference = incoming # If input is not 2d, flatten it. if len(input_shape) > 2: inference = tf.reshape(inference, [-1, n_inputs]) inference = tf.matmul(inference, W) if b: inference = tf.nn.bias_add(inference, b) if isinstance(activation, str): inference = activations.get(activation)(inference) elif hasattr(activation, '__call__'): inference = activation(inference) else: raise ValueError("Invalid Activation.") # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.b = b # Track output tensor. tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference) return inference
def highway(incoming, n_units, activation='linear', transform_dropout=None, weights_init='truncated_normal', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, reuse=False, scope=None, name="FullyConnectedHighway"): """ Fully Connected Highway. A fully connected highway network layer, with some inspiration from [https://github.com/fomorians/highway-fcn](https://github.com/fomorians/highway-fcn). Input: (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten. Output: 2D Tensor [samples, n_units]. Arguments: incoming: `Tensor`. Incoming (2+)D Tensor. n_units: `int`, number of units for this layer. activation: `str` (name) or `function` (returning a `Tensor`). Activation applied to this layer (see tflearn.activations). Default: 'linear'. transform_dropout: `float`: Keep probability on the highway transform gate. weights_init: `str` (name) or `Tensor`. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'. bias_init: `str` (name) or `Tensor`. Bias initialization. (see tflearn.initializations) Default: 'zeros'. regularizer: `str` (name) or `Tensor`. Add a regularizer to this layer weights (see tflearn.regularizers). Default: None. weight_decay: `float`. Regularizer decay parameter. Default: 0.001. trainable: `bool`. If True, weights will be trainable. restore: `bool`. If True, this layer weights will be restored when loading a model reuse: `bool`. If True and 'scope' is provided, this layer variables will be reused (shared). scope: `str`. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name. name: A name for this layer (optional). Default: 'FullyConnectedHighway'. Attributes: scope: `Scope`. This layer scope. W: `Tensor`. Variable representing units weights. W_t: `Tensor`. Variable representing units weights for transform gate. b: `Tensor`. Variable representing biases. b_t: `Tensor`. Variable representing biases for transform gate. Links: [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387) """ input_shape = utils.get_incoming_shape(incoming) assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D" n_inputs = int(np.prod(input_shape[1:])) # Build variables and inference. with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope: name = scope.name W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() W_regul = None if regularizer: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W) if isinstance(bias_init, str): bias_init = initializations.get(bias_init)() b = va.variable('b', shape=[n_units], initializer=bias_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b) # Weight and bias for the transform gate W_T = va.variable('W_T', shape=[n_inputs, n_units], regularizer=None, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W_T) b_T = va.variable('b_T', shape=[n_units], initializer=tf.constant_initializer(-1), trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b_T) # If input is not 2d, flatten it. if len(input_shape) > 2: incoming = tf.reshape(incoming, [-1, n_inputs]) if isinstance(activation, str): activation = activations.get(activation) elif hasattr(activation, '__call__'): activation = activation else: raise ValueError("Invalid Activation.") H = activation(tf.matmul(incoming, W) + b) T = tf.sigmoid(tf.matmul(incoming, W_T) + b_T) if transform_dropout: T = dropout(T, transform_dropout) C = tf.sub(1.0, T) inference = tf.add(tf.mul(H, T), tf.mul(incoming, C)) # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.W_t = W_T inference.b = b inference.b_t = b_T # Track output tensor. tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference) return inference
def fully_connected(incoming, n_units, activation='linear', bias=True, weights_init='truncated_normal', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, name="FullyConnected"): """ Fully Connected. A fully connected layer. Input: (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten. Output: 2D Tensor [samples, n_units]. Arguments: incoming: `Tensor`. Incoming (2+)D Tensor. n_units: `int`, number of units for this layer. activation: `str` (name) or `Tensor`. Activation applied to this layer. (see tflearn.activations). Default: 'linear'. bias: `bool`. If True, a bias is used. weights_init: `str` (name) or `Tensor`. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'. bias_init: `str` (name) or `Tensor`. Bias initialization. (see tflearn.initializations) Default: 'zeros'. regularizer: `str` (name) or `Tensor`. Add a regularizer to this layer weights (see tflearn.regularizers). Default: None. weight_decay: `float`. Regularizer decay parameter. Default: 0.001. trainable: `bool`. If True, weights will be trainable. restore: `bool`. If True, this layer weights will be restored when loading a model name: A name for this layer (optional). Default: 'FullyConnected'. Attributes: scope: `Scope`. This layer scope. W: `Tensor`. Variable representing units weights. b: `Tensor`. Variable representing biases. """ input_shape = utils.get_incoming_shape(incoming) n_inputs = int(np.prod(input_shape[1:])) # Build variables and inference. with tf.name_scope(name) as scope: W_init = initializations.get(weights_init)() W_regul = None if regularizer: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = va.variable(scope + 'W', shape=[n_inputs, n_units], regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W) b = None if bias: b_init = initializations.get(bias_init)() b = va.variable(scope + 'b', shape=[n_units], initializer=b_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b) inference = incoming # If input is not 2d, flatten it. if len(input_shape) > 2: inference = tf.reshape(inference, [-1, n_inputs]) inference = tf.matmul(inference, W) if b: inference = tf.nn.bias_add(inference, b) inference = activations.get(activation)(inference) # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.b = b return inference
def fully_connected(incoming, n_units, activation='linear', bias=True, weights_init='truncated_normal', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, name="FullyConnected"): """ Fully Connected. A fully connected layer. Input: (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten. Output: 2D Tensor [samples, n_units]. Arguments: incoming: `Tensor`. Incoming (2+)D Tensor. n_units: `int`, number of units for this layer. activation: `str` (name) or `Tensor`. Activation applied to this layer. (see tflearn.activations). Default: 'linear'. bias: `bool`. If True, a bias is used. weights_init: `str` (name) or `Tensor`. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'. bias_init: `str` (name) or `Tensor`. Bias initialization. (see tflearn.initializations) Default: 'zeros'. regularizer: `str` (name) or `Tensor`. Add a regularizer to this layer weights (see tflearn.regularizers). Default: None. weight_decay: `float`. Regularizer decay parameter. Default: 0.001. trainable: `bool`. If True, weights will be trainable. restore: `bool`. If True, this layer weights will be restored when loading a model name: A name for this layer (optional). Default: 'FullyConnected'. Attributes: scope: `Scope`. This layer scope. W: `Tensor`. Variable representing units weights. b: `Tensor`. Variable representing biases. """ input_shape = utils.get_incoming_shape(incoming) n_inputs = int(np.prod(input_shape[1:])) # Build variables and inference. with tf.name_scope(name) as scope: W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() W_regul = None if regularizer: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = va.variable(scope + 'W', shape=[n_inputs, n_units], regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W) b = None if bias: b_init = initializations.get(bias_init)() b = va.variable(scope + 'b', shape=[n_units], initializer=b_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b) inference = incoming # If input is not 2d, flatten it. if len(input_shape) > 2: inference = tf.reshape(inference, [-1, n_inputs]) inference = tf.matmul(inference, W) if b: inference = tf.nn.bias_add(inference, b) inference = activations.get(activation)(inference) # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.b = b return inference
def PhraseLayer(incoming, input_dim, output_dim, output_length, activation='linear', dropout_keepprob=0.5, batchNorm=False, name='PhraseLayer', alpha=0.5, scope=None): ''' incoming: [batch_size, sen_length, input_dim] return: [batch_size, sen_length, output_length, output_dim[0]], [batch_size, sen_length, output_length, output_dim[1]] ''' with tf.variable_scope(scope, default_name=name, values=[incoming]) as scope: name = scope.name P = va.variable('P', shape=[input_dim, output_dim[0]], initializer=initializations.get('truncated_normal')()) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, P) P_p = va.variable( 'P_p', shape=[input_dim, output_dim[1]], initializer=initializations.get('truncated_normal')()) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, P_p) Q = va.variable('Q', shape=[input_dim, output_dim[0]], initializer=initializations.get('truncated_normal')()) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, Q) Q_p = va.variable( 'Q_p', shape=[input_dim, output_dim[1]], initializer=initializations.get('truncated_normal')()) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, Q_p) R = va.variable('R', shape=[input_dim, output_dim[0]], initializer=initializations.get('truncated_normal')()) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, R) R_p = va.variable( 'R_p', shape=[input_dim, output_dim[1]], initializer=initializations.get('truncated_normal')()) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, R_p) O = va.variable('O', shape=[output_dim[0], output_dim[0]], initializer=initializations.get('truncated_normal')()) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, O) O_p = va.variable('O_p', shape=[output_dim[1], output_dim[1]], initializer=tf.ones_initializer()) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, O_p) b = va.variable('b', shape=[1, 1, 1, output_dim[0]], initializer=tf.ones_initializer()) b_p = va.variable('b_p', shape=[1, 1, 1, output_dim[1]], initializer=tf.ones_initializer()) if isinstance(activation, str): activation = activations.get(activation) elif hasattr(activation, '__call__'): activation = activation else: raise ValueError("Invalid Activation.") def calc(incoming, P, Q, R, O, output_dim): batch_size = tf.shape(incoming)[0] sent_length = incoming.shape[1].value G1 = tf.zeros([batch_size, sent_length, output_dim]) G2 = tf.zeros([batch_size, sent_length, output_dim]) G3 = tf.zeros([batch_size, sent_length, output_dim]) r = [] for i in range(output_length): '''if i == 0: now = incoming else: now = tf.concat([tf.zeros([batch_size, i, input_dim]), incoming[:,0:-i, :]], axis = 1) F2 = tf.einsum('aij,jk->aik', now, Q) * G1 F3 = tf.einsum('aij,jk->aik', now, R) * G2 if i == 0: F1 = tf.einsum('aij,jk->aik', now, P) G1 = G1 * alpha + F1 else: G1 = G1 * alpha G2 = G2 * alpha + F2 G3 = G3 * alpha + F3 r.append(tf.einsum('aij,jk->aik',G1+G2+G3, O))''' F1 = tf.einsum('aij,jk->aik', incoming, P) r.append(tf.einsum('aij,jk->aik', F1, O)) #return tf.stack(r, axis = 2) return tf.reshape(r[0], [batch_size, sent_length, 1, output_dim]) batch_size = tf.shape(incoming)[0] sent_length = incoming.shape[1].value #out1 = tf.reshape(tf.einsum('aij,jk->aik', tf.einsum('aij,jk->aik', incoming, P), O), [batch_size, sent_length, 1, output_dim[0]]) + b out1 = tf.reshape(tf.einsum('aij,jk->aik', incoming, P), [batch_size, sent_length, 1, output_dim[0]]) + b #out1 = calc(incoming, P, Q, R, O, output_dim[0]) + b #out1 = activation(out1, name="activation") tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, out1) if batchNorm: pass #out1 = tflearn.batch_normalization(out1, name="batchNormOut1") #out1 = tflearn.dropout(out1, dropout_keepprob, name="dropOut1") if output_dim[1] == 0: out2 = None else: out2 = calc(tf.stop_gradient(incoming), P_p, Q_p, R_p, O_p, output_dim[1]) + b_p out2 = activation(out2, name="activation_p") tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, out2) if batchNorm: out2 = tflearn.batch_normalization(out2, name="batchNormOut2") out2 = tflearn.dropout(out2, dropout_keepprob, name="dropOut2") tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, out1) if output_dim[1] != 0: tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, out2) return out1, out2
def fully_connected(incoming, n_units, activation='linear', bias=True, weights_init='truncated_normal', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, reuse=False, scope=None, name="FullyConnected"): input_shape = utils.get_incoming_shape(incoming) assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D" n_inputs = int(np.prod(input_shape[1:])) with tf.variable_scope(scope, default_name=name, values=[incoming], reuse=reuse) as scope: name = scope.name W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() W_regul = None if regularizer is not None: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = vs.variable('W', shape=[n_inputs, n_units], regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W) b = None if bias: if isinstance(bias_init, str): bias_init = initializations.get(bias_init)() b = vs.variable('b', shape=[n_units], initializer=bias_init, trainable=trainable, restore=restore) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b) inference = incoming # If input is not 2d, flatten it. if len(input_shape) > 2: inference = tf.reshape(inference, [-1, n_inputs]) inference = tf.matmul(inference, W) if b is not None: inference = tf.nn.bias_add(inference, b) if activation: if isinstance(activation, str): inference = activations.get(activation)(inference) elif hasattr(activation, '__call__'): inference = activation(inference) else: raise ValueError("Invalid Activation.") # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.b = b # Track output tensor. tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference) return inference
def conv_2d(incoming, nb_filter, filter_size, strides=1, padding='same', activation='linear', bias=True, weights_init='uniform_scaling', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, reuse=False, scope=None, name="Conv2D"): input_shape = utils.get_incoming_shape(incoming) assert len(input_shape) == 4, "Incoming Tensor shape must be 4-D" filter_size = utils.autoformat_filter_conv2d(filter_size, input_shape[-1], nb_filter) strides = utils.autoformat_kernel_2d(strides) padding = utils.autoformat_padding(padding) with tf.variable_scope(scope, default_name=name, values=[incoming], reuse=reuse) as scope: name = scope.name W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() W_regul = None if regularizer is not None: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = vs.variable('W', shape=filter_size, regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) # Track per layer variables tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W) b = None if bias: if isinstance(bias_init, str): bias_init = initializations.get(bias_init)() b = vs.variable('b', shape=nb_filter, initializer=bias_init, trainable=trainable, restore=restore) # Track per layer variables tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b) inference = tf.nn.conv2d(incoming, W, strides, padding) if b is not None: inference = tf.nn.bias_add(inference, b) if activation: if isinstance(activation, str): inference = activations.get(activation)(inference) elif hasattr(activation, '__call__'): inference = activation(inference) else: raise ValueError("Invalid Activation.") # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.b = b # Track output tensor. tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference) return inference
def conv_2d_BN(incoming, nb_filter, filter_size, strides=1, padding='same', activation='linear', bias=True, weights_init='xavier', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, reuse=False, scope=None, name="Conv2D", batch_norm=False): """ Convolution 2D. Input: 4-D Tensor [batch, height, width, in_channels]. Output: 4-D Tensor [batch, new height, new width, nb_filter]. Arguments: incoming: `Tensor`. Incoming 4-D Tensor. nb_filter: `int`. The number of convolutional filters. filter_size: `int` or `list of int`. Size of filters. strides: 'int` or list of `int`. Strides of conv operation. Default: [1 1 1 1]. padding: `str` from `"same", "valid"`. Padding algo to use. Default: 'same'. activation: `str` (name) or `function` (returning a `Tensor`). Activation applied to this layer (see tflearn.activations). Default: 'linear'. bias: `bool`. If True, a bias is used. weights_init: `str` (name) or `Tensor`. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'. bias_init: `str` (name) or `Tensor`. Bias initialization. (see tflearn.initializations) Default: 'zeros'. regularizer: `str` (name) or `Tensor`. Add a regularizer to this layer weights (see tflearn.regularizers). Default: None. weight_decay: `float`. Regularizer decay parameter. Default: 0.001. trainable: `bool`. If True, weights will be trainable. restore: `bool`. If True, this layer weights will be restored when loading a model. reuse: `bool`. If True and 'scope' is provided, this layer variables will be reused (shared). scope: `str`. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name. name: A name for this layer (optional). Default: 'Conv2D'. batch_norm: If true, add batch normalization with default TFLearn parameters before the activation layer Attributes: scope: `Scope`. This layer scope. W: `Variable`. Variable representing filter weights. b: `Variable`. Variable representing biases. """ input_shape = utils.get_incoming_shape(incoming) assert len(input_shape) == 4, "Incoming Tensor shape must be 4-D" filter_size = utils.autoformat_filter_conv2d(filter_size, input_shape[-1], nb_filter) strides = utils.autoformat_kernel_2d(strides) padding = utils.autoformat_padding(padding) # Variable Scope fix for older TF try: vscope = tf.variable_scope(scope, default_name=name, values=[incoming], reuse=reuse) except Exception: vscope = tf.variable_op_scope([incoming], scope, name, reuse=reuse) with vscope as scope: name = scope.name W_init = weights_init if isinstance(weights_init, str): W_init = initializations.get(weights_init)() W_regul = None if regularizer: W_regul = lambda x: losses.get(regularizer)(x, weight_decay) W = vs.variable('W', shape=filter_size, regularizer=W_regul, initializer=W_init, trainable=trainable, restore=restore) # Track per layer variables tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W) b = None if bias: if isinstance(bias_init, str): bias_init = initializations.get(bias_init)() b = vs.variable('b', shape=nb_filter, initializer=bias_init, trainable=trainable, restore=restore) # Track per layer variables tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b) inference = tf.nn.conv2d(incoming, W, strides, padding) if b: inference = tf.nn.bias_add(inference, b) if batch_norm: inference = batch_normalization(inference) if isinstance(activation, str): if activation == 'softmax': shapes = inference.get_shape() inference = activations.get(activation)(inference) elif hasattr(activation, '__call__'): inference = activation(inference) else: raise ValueError("Invalid Activation.") # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.b = b # Track output tensor. tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference) return inference