Пример #1
0
 def __init__(self,
              num_units,
              input_size=None,
              activation=tf.tanh,
              inner_activation=tf.sigmoid,
              bias=True,
              weights_init=None,
              trainable=True,
              restore=True,
              reuse=False):
     if input_size is not None:
         logging.warn("%s: The input_size parameter is deprecated." % self)
     self._num_units = num_units
     if isinstance(activation, str):
         self._activation = activations.get(activation)
     elif hasattr(activation, '__call__'):
         self._activation = activation
     else:
         raise ValueError("Invalid Activation.")
     if isinstance(inner_activation, str):
         self._inner_activation = activations.get(inner_activation)
     elif hasattr(inner_activation, '__call__'):
         self._inner_activation = inner_activation
     else:
         raise ValueError("Invalid Activation.")
     self.bias = bias
     self.weights_init = weights_init
     if isinstance(weights_init, str):
         self.weights_init = initializations.get(weights_init)()
     self.trainable = trainable
     self.restore = restore
     self.reuse = reuse
Пример #2
0
 def __init__(self,
              num_units,
              forget_bias=1.0,
              input_size=None,
              state_is_tuple=True,
              activation=tf.tanh,
              inner_activation=tf.sigmoid,
              bias=True,
              weights_init=None,
              trainable=True,
              restore=True,
              reuse=False,
              batch_norm=False):
     if not state_is_tuple:
         logging.warn(
             "%s: Using a concatenated state is slower and will soon be "
             "deprecated.  Use state_is_tuple=True." % self)
     if input_size is not None:
         logging.warn("%s: The input_size parameter is deprecated." % self)
     self._num_units = num_units
     self._forget_bias = forget_bias
     self._state_is_tuple = state_is_tuple
     self.batch_norm = batch_norm
     if isinstance(activation, str):
         self._activation = activations.get(activation)
     elif hasattr(activation, '__call__'):
         self._activation = activation
     else:
         raise ValueError("Invalid Activation.")
     if isinstance(inner_activation, str):
         self._inner_activation = activations.get(inner_activation)
     elif hasattr(inner_activation, '__call__'):
         self._inner_activation = inner_activation
     else:
         raise ValueError("Invalid Activation.")
     self.bias = bias
     self.weights_init = weights_init
     if isinstance(weights_init, str):
         self.weights_init = initializations.get(weights_init)()
     self.trainable = trainable
     self.restore = restore
     self.reuse = reuse
Пример #3
0
def conv_1d_tranpose(layer,
                     nb_filter,
                     filter_size,
                     strides,
                     padding='same',
                     bias=True,
                     scope=None,
                     reuse=False,
                     bias_init='zeros',
                     trainable=True,
                     restore=True,
                     regularizer=None,
                     weight_decay=0.001,
                     weights_init='uniform_scaling',
                     name="deconv_1d"):
    '''
    layer: A 3-D `Tensor` of type `float` and shape `[batch, in_width, in_channels]` .
    SEE: https://www.tensorflow.org/api_docs/python/tf/nn/conv2d_backprop_input
    SEE2: https://github.com/tensorflow/tensorflow/pull/13105/commits/2ca9b908d1978a94855349309fd16a67cfd98659
    TODO: ADD weight-decay/regularizer
    '''
    input_shape = utils.get_incoming_shape(layer)
    _, in_width, in_channels = input_shape
    batch_size = tf.shape(layer)[0]

    filter_size = [filter_size, nb_filter, in_channels]
    output_shape = [batch_size, strides * in_width, nb_filter
                    ]  # this trick I think work only for strict up-sampling
    output_shape_ = ops.convert_to_tensor(output_shape, name="output_shape")

    strides = [1, 1, strides, 1]
    spatial_start_dim = 1
    padding = utils.autoformat_padding(padding)

    with tf.variable_scope(scope,
                           default_name=name,
                           values=[layer],
                           reuse=reuse) as scope:
        name = scope.name
        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        elif type(W_init) in [tf.Tensor, np.ndarray, list]:
            filter_size = None

        W_regul = None
        if regularizer is not None:
            W_regul = lambda x: tflearn.losses.get(regularizer)(x, weight_decay
                                                                )

        W = vs.variable('W',
                        shape=filter_size,
                        regularizer=W_regul,
                        initializer=W_init,
                        trainable=trainable,
                        restore=restore)

        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        # expand dims to make it compatible with conv2d
        W = tf.expand_dims(W, 0)
        layer = tf.expand_dims(layer, spatial_start_dim)
        output_shape_ = array_ops.concat(
            [output_shape_[:1], [1], output_shape_[1:]], axis=0)

        result = gen_nn_ops.conv2d_backprop_input(input_sizes=output_shape_,
                                                  filter=W,
                                                  out_backprop=layer,
                                                  strides=strides,
                                                  padding=padding,
                                                  name=name)

        result = array_ops.squeeze(result, [spatial_start_dim])
        result = tf.reshape(result, shape=output_shape)

        if bias:
            b_shape = [nb_filter]
            bias_init = initializations.get(bias_init)()
            b = vs.variable('b',
                            shape=b_shape,
                            initializer=bias_init,
                            trainable=trainable,
                            restore=restore)
            # Track per layer variables
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)
            result = tf.nn.bias_add(result, b)
            result.b = b

        result.scope = scope
        result.W = W

    return result
Пример #4
0
def highway(incoming,
            n_units,
            activation='linear',
            transform_dropout=None,
            weights_init='truncated_normal',
            bias_init='zeros',
            regularizer=None,
            weight_decay=0.001,
            trainable=True,
            restore=True,
            reuse=False,
            scope=None,
            name="FullyConnectedHighway"):
    """ Fully Connected Highway.

    A fully connected highway network layer, with some inspiration from
    [https://github.com/fomorians/highway-fcn](https://github.com/fomorians/highway-fcn).

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        transform_dropout: `float`: Keep probability on the highway transform gate.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'FullyConnectedHighway'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        W_t: `Tensor`. Variable representing units weights for transform gate.
        b: `Tensor`. Variable representing biases.
        b_t: `Tensor`. Variable representing biases for transform gate.

    Links:
        [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387)

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_scope(scope,
                           default_name=name,
                           values=[incoming],
                           reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable('W',
                        shape=[n_inputs, n_units],
                        regularizer=W_regul,
                        initializer=W_init,
                        trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        if isinstance(bias_init, str):
            bias_init = initializations.get(bias_init)()
        b = va.variable('b',
                        shape=[n_units],
                        initializer=bias_init,
                        trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        # Weight and bias for the transform gate
        W_T = va.variable('W_T',
                          shape=[n_inputs, n_units],
                          regularizer=None,
                          initializer=W_init,
                          trainable=trainable,
                          restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W_T)

        b_T = va.variable('b_T',
                          shape=[n_units],
                          initializer=tf.constant_initializer(-1),
                          trainable=trainable,
                          restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b_T)

        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            incoming = tf.reshape(incoming, [-1, n_inputs])

        if isinstance(activation, str):
            activation = activations.get(activation)
        elif hasattr(activation, '__call__'):
            activation = activation
        else:
            raise ValueError("Invalid Activation.")

        H = activation(tf.matmul(incoming, W) + b)
        T = tf.sigmoid(tf.matmul(incoming, W_T) + b_T)
        if transform_dropout:
            T = dropout(T, transform_dropout)
        C = tf.subtract(1.0, T)

        inference = tf.add(tf.multiply(H, T), tf.multiply(incoming, C))

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.W_t = W_T
    inference.b = b
    inference.b_t = b_T

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
Пример #5
0
def fully_connected(incoming,
                    n_units,
                    activation='linear',
                    bias=True,
                    weights_init='truncated_normal',
                    bias_init='zeros',
                    regularizer=None,
                    weight_decay=0.001,
                    trainable=True,
                    restore=True,
                    reuse=False,
                    scope=None,
                    name="FullyConnected"):
    """ Fully Connected.

    A fully connected layer.

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'FullyConnected'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        b: `Tensor`. Variable representing biases.

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    with tf.variable_scope(scope,
                           default_name=name,
                           values=[incoming],
                           reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable('W',
                        shape=[n_inputs, n_units],
                        regularizer=W_regul,
                        initializer=W_init,
                        trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias_init, str):
                bias_init = initializations.get(bias_init)()
            b = va.variable('b',
                            shape=[n_units],
                            initializer=bias_init,
                            trainable=trainable,
                            restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b: inference = tf.nn.bias_add(inference, b)
        if activation:
            if isinstance(activation, str):
                inference = activations.get(activation)(inference)
            elif hasattr(activation, '__call__'):
                inference = activation(inference)
            else:
                raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
Пример #6
0
def fully_connected(incoming, n_units, activation='linear', bias=True,
                    weights_init='truncated_normal', bias_init='zeros',
                    regularizer=None, weight_decay=0.001, trainable=True,
                    restore=True, reuse=False, scope=None,
                    name="FullyConnected"):
    """ Fully Connected.

    A fully connected layer.

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'FullyConnected'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        b: `Tensor`. Variable representing biases.

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias, str):
                bias_init = initializations.get(bias_init)()
            b = va.variable('b', shape=[n_units], initializer=bias_init,
                            trainable=trainable, restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b: inference = tf.nn.bias_add(inference, b)

        if isinstance(activation, str):
            inference = activations.get(activation)(inference)
        elif hasattr(activation, '__call__'):
            inference = activation(inference)
        else:
            raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
Пример #7
0
def highway(incoming, n_units, activation='linear', transform_dropout=None,
            weights_init='truncated_normal', bias_init='zeros',
            regularizer=None, weight_decay=0.001, trainable=True,
            restore=True, reuse=False, scope=None,
            name="FullyConnectedHighway"):
    """ Fully Connected Highway.

    A fully connected highway network layer, with some inspiration from
    [https://github.com/fomorians/highway-fcn](https://github.com/fomorians/highway-fcn).

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        transform_dropout: `float`: Keep probability on the highway transform gate.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'FullyConnectedHighway'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        W_t: `Tensor`. Variable representing units weights for transform gate.
        b: `Tensor`. Variable representing biases.
        b_t: `Tensor`. Variable representing biases for transform gate.

    Links:
        [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387)

    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.variable_op_scope([incoming], scope, name, reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable('W', shape=[n_inputs, n_units], regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        if isinstance(bias_init, str):
            bias_init = initializations.get(bias_init)()
        b = va.variable('b', shape=[n_units], initializer=bias_init,
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        # Weight and bias for the transform gate
        W_T = va.variable('W_T', shape=[n_inputs, n_units],
                          regularizer=None, initializer=W_init,
                          trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W_T)

        b_T = va.variable('b_T', shape=[n_units],
                          initializer=tf.constant_initializer(-1),
                          trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b_T)

        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            incoming = tf.reshape(incoming, [-1, n_inputs])

        if isinstance(activation, str):
            activation = activations.get(activation)
        elif hasattr(activation, '__call__'):
            activation = activation
        else:
            raise ValueError("Invalid Activation.")

        H = activation(tf.matmul(incoming, W) + b)
        T = tf.sigmoid(tf.matmul(incoming, W_T) + b_T)
        if transform_dropout:
            T = dropout(T, transform_dropout)
        C = tf.sub(1.0, T)

        inference = tf.add(tf.mul(H, T), tf.mul(incoming, C))

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.W_t = W_T
    inference.b = b
    inference.b_t = b_T

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
Пример #8
0
def fully_connected(incoming,
                    n_units,
                    activation='linear',
                    bias=True,
                    weights_init='truncated_normal',
                    bias_init='zeros',
                    regularizer=None,
                    weight_decay=0.001,
                    trainable=True,
                    restore=True,
                    name="FullyConnected"):
    """ Fully Connected.

    A fully connected layer.

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `Tensor`. Activation applied to this layer.
            (see tflearn.activations). Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
       regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
       weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
       trainable: `bool`. If True, weights will be trainable.
       restore: `bool`. If True, this layer weights will be restored when
            loading a model
       name: A name for this layer (optional). Default: 'FullyConnected'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        b: `Tensor`. Variable representing biases.

    """
    input_shape = utils.get_incoming_shape(incoming)
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.name_scope(name) as scope:

        W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable(scope + 'W',
                        shape=[n_inputs, n_units],
                        regularizer=W_regul,
                        initializer=W_init,
                        trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W)

        b = None
        if bias:
            b_init = initializations.get(bias_init)()
            b = va.variable(scope + 'b',
                            shape=[n_units],
                            initializer=b_init,
                            trainable=trainable,
                            restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b: inference = tf.nn.bias_add(inference, b)
        inference = activations.get(activation)(inference)

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    return inference
Пример #9
0
def fully_connected(incoming, n_units, activation='linear', bias=True,
                    weights_init='truncated_normal', bias_init='zeros',
                    regularizer=None, weight_decay=0.001, trainable=True,
                    restore=True, name="FullyConnected"):
    """ Fully Connected.

    A fully connected layer.

    Input:
        (2+)-D Tensor [samples, input dim]. If not 2D, input will be flatten.

    Output:
        2D Tensor [samples, n_units].

    Arguments:
        incoming: `Tensor`. Incoming (2+)D Tensor.
        n_units: `int`, number of units for this layer.
        activation: `str` (name) or `Tensor`. Activation applied to this layer.
            (see tflearn.activations). Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
       regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
       weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
       trainable: `bool`. If True, weights will be trainable.
       restore: `bool`. If True, this layer weights will be restored when
            loading a model
       name: A name for this layer (optional). Default: 'FullyConnected'.

    Attributes:
        scope: `Scope`. This layer scope.
        W: `Tensor`. Variable representing units weights.
        b: `Tensor`. Variable representing biases.

    """
    input_shape = utils.get_incoming_shape(incoming)
    n_inputs = int(np.prod(input_shape[1:]))

    # Build variables and inference.
    with tf.name_scope(name) as scope:

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = va.variable(scope + 'W', shape=[n_inputs, n_units],
                        regularizer=W_regul, initializer=W_init,
                        trainable=trainable, restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W)

        b = None
        if bias:
            b_init = initializations.get(bias_init)()
            b = va.variable(scope + 'b', shape=[n_units],
                            initializer=b_init, trainable=trainable,
                            restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b: inference = tf.nn.bias_add(inference, b)
        inference = activations.get(activation)(inference)

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    return inference
Пример #10
0
def PhraseLayer(incoming,
                input_dim,
                output_dim,
                output_length,
                activation='linear',
                dropout_keepprob=0.5,
                batchNorm=False,
                name='PhraseLayer',
                alpha=0.5,
                scope=None):
    '''
	incoming: [batch_size, sen_length, input_dim]
	
	return: [batch_size, sen_length, output_length, output_dim[0]],
			[batch_size, sen_length, output_length, output_dim[1]]
	'''
    with tf.variable_scope(scope, default_name=name,
                           values=[incoming]) as scope:
        name = scope.name

        P = va.variable('P',
                        shape=[input_dim, output_dim[0]],
                        initializer=initializations.get('truncated_normal')())
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, P)

        P_p = va.variable(
            'P_p',
            shape=[input_dim, output_dim[1]],
            initializer=initializations.get('truncated_normal')())
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, P_p)

        Q = va.variable('Q',
                        shape=[input_dim, output_dim[0]],
                        initializer=initializations.get('truncated_normal')())
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, Q)

        Q_p = va.variable(
            'Q_p',
            shape=[input_dim, output_dim[1]],
            initializer=initializations.get('truncated_normal')())
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, Q_p)

        R = va.variable('R',
                        shape=[input_dim, output_dim[0]],
                        initializer=initializations.get('truncated_normal')())
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, R)

        R_p = va.variable(
            'R_p',
            shape=[input_dim, output_dim[1]],
            initializer=initializations.get('truncated_normal')())
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, R_p)

        O = va.variable('O',
                        shape=[output_dim[0], output_dim[0]],
                        initializer=initializations.get('truncated_normal')())
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, O)

        O_p = va.variable('O_p',
                          shape=[output_dim[1], output_dim[1]],
                          initializer=tf.ones_initializer())
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, O_p)

        b = va.variable('b',
                        shape=[1, 1, 1, output_dim[0]],
                        initializer=tf.ones_initializer())

        b_p = va.variable('b_p',
                          shape=[1, 1, 1, output_dim[1]],
                          initializer=tf.ones_initializer())

        if isinstance(activation, str):
            activation = activations.get(activation)
        elif hasattr(activation, '__call__'):
            activation = activation
        else:
            raise ValueError("Invalid Activation.")

        def calc(incoming, P, Q, R, O, output_dim):

            batch_size = tf.shape(incoming)[0]
            sent_length = incoming.shape[1].value

            G1 = tf.zeros([batch_size, sent_length, output_dim])
            G2 = tf.zeros([batch_size, sent_length, output_dim])
            G3 = tf.zeros([batch_size, sent_length, output_dim])
            r = []

            for i in range(output_length):
                '''if i == 0:
					now = incoming
				else:
					now = tf.concat([tf.zeros([batch_size, i, input_dim]), incoming[:,0:-i, :]], axis = 1)
				
				F2 = tf.einsum('aij,jk->aik', now, Q) * G1
				F3 = tf.einsum('aij,jk->aik', now, R) * G2
				
				if i == 0:
					F1 = tf.einsum('aij,jk->aik', now, P)
					G1 = G1 * alpha + F1
				else:
					G1 = G1 * alpha
				G2 = G2 * alpha + F2
				G3 = G3 * alpha + F3
				
				r.append(tf.einsum('aij,jk->aik',G1+G2+G3, O))'''

                F1 = tf.einsum('aij,jk->aik', incoming, P)
                r.append(tf.einsum('aij,jk->aik', F1, O))

            #return tf.stack(r, axis = 2)
            return tf.reshape(r[0], [batch_size, sent_length, 1, output_dim])

        batch_size = tf.shape(incoming)[0]
        sent_length = incoming.shape[1].value
        #out1 = tf.reshape(tf.einsum('aij,jk->aik', tf.einsum('aij,jk->aik', incoming, P), O), [batch_size, sent_length, 1, output_dim[0]]) + b
        out1 = tf.reshape(tf.einsum('aij,jk->aik', incoming, P),
                          [batch_size, sent_length, 1, output_dim[0]]) + b
        #out1 = calc(incoming, P, Q, R, O, output_dim[0]) + b
        #out1 = activation(out1, name="activation")
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, out1)
        if batchNorm:
            pass
            #out1 = tflearn.batch_normalization(out1, name="batchNormOut1")
        #out1 = tflearn.dropout(out1, dropout_keepprob, name="dropOut1")

        if output_dim[1] == 0:
            out2 = None
        else:
            out2 = calc(tf.stop_gradient(incoming), P_p, Q_p, R_p, O_p,
                        output_dim[1]) + b_p
            out2 = activation(out2, name="activation_p")
            tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, out2)
            if batchNorm:
                out2 = tflearn.batch_normalization(out2, name="batchNormOut2")
            out2 = tflearn.dropout(out2, dropout_keepprob, name="dropOut2")

    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, out1)
    if output_dim[1] != 0:
        tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, out2)

    return out1, out2
Пример #11
0
def fully_connected(incoming,
                    n_units,
                    activation='linear',
                    bias=True,
                    weights_init='truncated_normal',
                    bias_init='zeros',
                    regularizer=None,
                    weight_decay=0.001,
                    trainable=True,
                    restore=True,
                    reuse=False,
                    scope=None,
                    name="FullyConnected"):
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
    n_inputs = int(np.prod(input_shape[1:]))

    with tf.variable_scope(scope,
                           default_name=name,
                           values=[incoming],
                           reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer is not None:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = vs.variable('W',
                        shape=[n_inputs, n_units],
                        regularizer=W_regul,
                        initializer=W_init,
                        trainable=trainable,
                        restore=restore)
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias_init, str):
                bias_init = initializations.get(bias_init)()
            b = vs.variable('b',
                            shape=[n_units],
                            initializer=bias_init,
                            trainable=trainable,
                            restore=restore)
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = incoming
        # If input is not 2d, flatten it.
        if len(input_shape) > 2:
            inference = tf.reshape(inference, [-1, n_inputs])

        inference = tf.matmul(inference, W)
        if b is not None: inference = tf.nn.bias_add(inference, b)
        if activation:
            if isinstance(activation, str):
                inference = activations.get(activation)(inference)
            elif hasattr(activation, '__call__'):
                inference = activation(inference)
            else:
                raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
Пример #12
0
def conv_2d(incoming,
            nb_filter,
            filter_size,
            strides=1,
            padding='same',
            activation='linear',
            bias=True,
            weights_init='uniform_scaling',
            bias_init='zeros',
            regularizer=None,
            weight_decay=0.001,
            trainable=True,
            restore=True,
            reuse=False,
            scope=None,
            name="Conv2D"):
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) == 4, "Incoming Tensor shape must be 4-D"
    filter_size = utils.autoformat_filter_conv2d(filter_size, input_shape[-1],
                                                 nb_filter)
    strides = utils.autoformat_kernel_2d(strides)
    padding = utils.autoformat_padding(padding)

    with tf.variable_scope(scope,
                           default_name=name,
                           values=[incoming],
                           reuse=reuse) as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer is not None:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = vs.variable('W',
                        shape=filter_size,
                        regularizer=W_regul,
                        initializer=W_init,
                        trainable=trainable,
                        restore=restore)

        # Track per layer variables
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias_init, str):
                bias_init = initializations.get(bias_init)()
            b = vs.variable('b',
                            shape=nb_filter,
                            initializer=bias_init,
                            trainable=trainable,
                            restore=restore)
            # Track per layer variables
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = tf.nn.conv2d(incoming, W, strides, padding)
        if b is not None: inference = tf.nn.bias_add(inference, b)

        if activation:
            if isinstance(activation, str):
                inference = activations.get(activation)(inference)
            elif hasattr(activation, '__call__'):
                inference = activation(inference)
            else:
                raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference
def conv_2d_BN(incoming, nb_filter, filter_size, strides=1, padding='same',
            activation='linear', bias=True, weights_init='xavier',
            bias_init='zeros', regularizer=None, weight_decay=0.001,
            trainable=True, restore=True, reuse=False, scope=None,
            name="Conv2D", batch_norm=False):
    """ Convolution 2D.
    Input:
        4-D Tensor [batch, height, width, in_channels].
    Output:
        4-D Tensor [batch, new height, new width, nb_filter].
    Arguments:
        incoming: `Tensor`. Incoming 4-D Tensor.
        nb_filter: `int`. The number of convolutional filters.
        filter_size: `int` or `list of int`. Size of filters.
        strides: 'int` or list of `int`. Strides of conv operation.
            Default: [1 1 1 1].
        padding: `str` from `"same", "valid"`. Padding algo to use.
            Default: 'same'.
        activation: `str` (name) or `function` (returning a `Tensor`).
            Activation applied to this layer (see tflearn.activations).
            Default: 'linear'.
        bias: `bool`. If True, a bias is used.
        weights_init: `str` (name) or `Tensor`. Weights initialization.
            (see tflearn.initializations) Default: 'truncated_normal'.
        bias_init: `str` (name) or `Tensor`. Bias initialization.
            (see tflearn.initializations) Default: 'zeros'.
        regularizer: `str` (name) or `Tensor`. Add a regularizer to this
            layer weights (see tflearn.regularizers). Default: None.
        weight_decay: `float`. Regularizer decay parameter. Default: 0.001.
        trainable: `bool`. If True, weights will be trainable.
        restore: `bool`. If True, this layer weights will be restored when
            loading a model.
        reuse: `bool`. If True and 'scope' is provided, this layer variables
            will be reused (shared).
        scope: `str`. Define this layer scope (optional). A scope can be
            used to share variables between layers. Note that scope will
            override name.
        name: A name for this layer (optional). Default: 'Conv2D'.
        batch_norm: If true, add batch normalization with default TFLearn 
            parameters before the activation layer 
    Attributes:
        scope: `Scope`. This layer scope.
        W: `Variable`. Variable representing filter weights.
        b: `Variable`. Variable representing biases.
    """
    input_shape = utils.get_incoming_shape(incoming)
    assert len(input_shape) == 4, "Incoming Tensor shape must be 4-D"
    filter_size = utils.autoformat_filter_conv2d(filter_size,
                                                 input_shape[-1],
                                                 nb_filter)
    strides = utils.autoformat_kernel_2d(strides)
    padding = utils.autoformat_padding(padding)

    # Variable Scope fix for older TF
    try:
        vscope = tf.variable_scope(scope, default_name=name, values=[incoming],
                                   reuse=reuse)
    except Exception:
        vscope = tf.variable_op_scope([incoming], scope, name, reuse=reuse)

    with vscope as scope:
        name = scope.name

        W_init = weights_init
        if isinstance(weights_init, str):
            W_init = initializations.get(weights_init)()
        W_regul = None
        if regularizer:
            W_regul = lambda x: losses.get(regularizer)(x, weight_decay)
        W = vs.variable('W', shape=filter_size, regularizer=W_regul,
                        initializer=W_init, trainable=trainable,
                        restore=restore)

        # Track per layer variables
        tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, W)

        b = None
        if bias:
            if isinstance(bias_init, str):
                bias_init = initializations.get(bias_init)()
            b = vs.variable('b', shape=nb_filter, initializer=bias_init,
                            trainable=trainable, restore=restore)
            # Track per layer variables
            tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + name, b)

        inference = tf.nn.conv2d(incoming, W, strides, padding)
        if b: inference = tf.nn.bias_add(inference, b)

        if batch_norm:
            inference = batch_normalization(inference)
        
        if isinstance(activation, str):
            if activation == 'softmax':
                shapes = inference.get_shape()

                inference = activations.get(activation)(inference)
        elif hasattr(activation, '__call__'):
            inference = activation(inference)
        else:
            raise ValueError("Invalid Activation.")

        # Track activations.
        tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference)

    # Add attributes to Tensor to easy access weights.
    inference.scope = scope
    inference.W = W
    inference.b = b

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, inference)

    return inference