def __init__(self, sequence_length, num_classes, embeddings, num_filters, l2_reg_lambda=0.0, dropout=None): self.input_text = layers.input_data( (None, sequence_length), dtype=tf.int32) with tf.variable_scope('Embedding'): embeddings_var = tf.Variable(embeddings, name='W', dtype=tf.float32) embeddings_var = tf.concat([np.zeros((1, embeddings.shape[1]) ), embeddings_var[1:] ] , axis = 0) self.embeded_text = tf.gather(embeddings_var, self.input_text) net = self.embeded_text self.mask = tf.expand_dims(tf.cast(tf.not_equal(self.input_text, 0), tf.float32), axis = 2) if dropout is not None: dropout = map(float, dropout.split(',') ) for num_filter in num_filters: net = layers.lstm(net, num_filter, return_seq=True, dropout=dropout) net = tf.transpose(tf.stack(net), (1, 0, 2) ) features = tf.reduce_sum(net * self.mask, axis=1) / (tf.reduce_sum(self.mask, axis=1) + 1e-5) self.probas = layers.fully_connected(features, num_classes, activation='softmax', regularizer='L2', weight_decay=l2_reg_lambda) optimizer = tflearn.optimizers.Adam(learning_rate=0.001) self.train_op = layers.regression( self.probas, optimizer=optimizer, batch_size=128)
def __init__(self, sequence_length, num_classes, embeddings, num_filters, l2_reg_lambda=0.0, dropout=None, bn=False): self.input_text = layers.input_data( (None, sequence_length), dtype=tf.int32) with tf.variable_scope('Embedding'): embeddings_var = tf.Variable(embeddings, name='W', dtype=tf.float32) embeddings_var = tf.concat([np.zeros((1, embeddings.shape[1]) ), embeddings_var[1:] ] , axis = 0) self.embeded_text = tf.gather(embeddings_var, self.input_text) net = self.embeded_text for num_filter in num_filters: if bn: # , weights_init=tflearn.initializations.uniform(minval=-0.001, maxval=0.001) net = layers.conv_1d(net, num_filter, 3, padding='valid', activation='linear', bias=False) net = layers.batch_normalization(net) net = layers.activation(net, 'relu') else: net = layers.conv_1d(net, num_filter, 3, padding='valid', activation='relu', bias=True, regularizer='L2', weight_decay=l2_reg_lambda) if dropout is not None: net = layers.dropout(net, float(dropout) ) features = layers.flatten( layers.max_pool_1d(net, net.shape.as_list()[1], padding='valid') ) self.probas = layers.fully_connected(features, num_classes, activation='softmax', regularizer='L2', weight_decay=l2_reg_lambda) #optimizer = tflearn.optimizers.Momentum(learning_rate=0.1, momentum=0.9, lr_decay=0.2, decay_step=1000, staircase=True) optimizer = tflearn.optimizers.Adam(learning_rate=0.001) self.train_op = layers.regression( self.probas, optimizer=optimizer, batch_size=128)
def nn_model(input_size): # same implementation with keras # model = Sequential() # model.add(Dense(128, input_shape=size, activation='relu')) network = input_data(shape=[None, input_size, 1], name='input') network = fully_connected(network, 128, activation='relu') network = dropout(network, 0.8) # meaning 0.8 will be kept, opposite in keras network = fully_connected(network, 256, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 2, activation='softmax') network = regression(network, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets') model = tflearn.DNN(network, tensorboard_dir='log') return model
def __init__(self, max_document_length, num_classes=2, num_characters=71, num_blocks=None, char_vec_size=16, weight_decay=2e-4): self.input_text = layers.input_data((None, max_document_length)) self.target_label = tf.placeholder(shape=(None, num_classes), dtype=tf.float32) embeded_text = layers.embedding(self.input_text, num_characters, char_vec_size) top_feature = embeded_text filters = 64 if num_blocks[0] == 0: self.block = (2, 2, 2, 2) else: self.block = num_blocks for i, num_block in enumerate(self.block): if i > 0: filters *= 2 top_feature = layers.max_pool_1d(top_feature, 3, strides=2, padding='same') for block_i in range(num_block): top_feature = self.conv_block(top_feature, filters) pooled_feature = layers.flatten( layers.custom_layer(top_feature, self.kmax_pool_1d)) fc1 = layers.fully_connected(pooled_feature, 2048, activation='relu', regularizer='L2', weight_decay=weight_decay) fc2 = layers.fully_connected(fc1, 2048, activation='relu', regularizer='L2', weight_decay=weight_decay) self.probas = layers.fully_connected(fc2, num_classes, activation='softmax', regularizer='L2', weight_decay=weight_decay) self.train_op = layers.regression(self.probas, placeholder=self.target_label)
""" #TFLearnwith tensorflow - Deep Learning with Neural Networks 14 #https://pythonprogramming.net/tflearn-machine-learning-tutorial/ import tflearn from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers import input_data, dropout, fully_connected from tflearn.layers.estimator import regression import tflearn.datasets.mnist as mnist X, Y, test_x, test_y = mnist.load_data(one_hot=True) X = X.reshape([-1, 28, 28, 1]) test_x = test_x.reshape([-1, 28, 28, 1]) convnet = input_data(shape=[None, 28, 28, 1], name='input') convnet = conv_2d(convnet, 32, 2, activation='relu') convnet = max_pool_2d(convnet, 2) convnet = conv_2d(convnet, 64, 2, activation='relu') convnet = max_pool_2d(convnet, 2) convnet = fully_connected(convnet, 1024, activation='relu') convnet = dropout(convnet, 0.8) convnet = fully_connected(convnet, 10, activation='softmax') convnet = regression(convnet, optimizer='adam', learning_rate=0.01,
def __init__(self, max_document_length, num_classes=2, num_characters=71, char_vec_size=16, weight_decay=2e-4, optimizer='sgd', dropout=None, num_blocks=None): self.input_text = layers.input_data((None, max_document_length)) self.target_label = tf.placeholder(shape=(None, num_classes), dtype=tf.float32) embeded_text = layers.embedding(self.input_text, num_characters, char_vec_size) mask = tf.cast(tf.not_equal(self.input_text, 0), tf.float32) embeded_text = embeded_text * tf.expand_dims(mask, 2) self.embeded_text = embeded_text top_feature = embeded_text filters = 64 if num_blocks[0] == 0: self.block = (1, 1, 1, 1) else: self.block = num_blocks for i, num_block in enumerate(self.block): if i > 0: filters *= 2 top_feature = layers.max_pool_1d(top_feature, 3, strides=2, padding='same') for block_i in range(num_block): top_feature = self.conv_block(top_feature, filters) pooled_feature = layers.flatten( layers.custom_layer(top_feature, self.kmax_pool_1d)) if dropout is not None: pooled_feature = layers.dropout(pooled_feature, dropout) fc1 = layers.fully_connected(pooled_feature, 2048, activation='relu', regularizer='L2', weight_decay=weight_decay) if dropout is not None: fc1 = layers.dropout(fc1, dropout) fc2 = layers.fully_connected(fc1, 2048, activation='relu', regularizer='L2', weight_decay=weight_decay) self.probas = layers.fully_connected(fc2, num_classes, activation='softmax', regularizer='L2', weight_decay=weight_decay) def build_sgd(learning_rate): step_tensor = tf.Variable(0., name="Training_step", trainable=False) steps = [-1.0, 16000.0, 24000.0] lrs = [1e-1, 1e-2, 1e-3] lr = tf.reduce_min( tf.cast(tf.less(step_tensor, steps), tf.float32) + lrs) tflearn.helpers.summarizer.summarize( lr, 'scalar', 'lr', 'Optimizer_training_summaries') return tf.train.MomentumOptimizer(learning_rate=lr, momentum=0.9), step_tensor if optimizer == 'sgd': optimizer = build_sgd self.train_op = layers.regression(self.probas, optimizer=optimizer, learning_rate=0.001, placeholder=self.target_label)