def parse_options(self): options = self._flatbuf_op.BuiltinOptions() o = Conv2DOptions() o.Init(options.Bytes, options.Pos) self.stride = (o.StrideH(), o.StrideW()) self.padding = self.padding_schemes[o.Padding()] self.dilation_factor = (o.DilationHFactor(), o.DilationWFactor()) self.fused_activation_function = self.activation_types[ o.FusedActivationFunction()] self._flatbuf_options_obj = options self._supported_options = [ 'stride', 'padding', 'dilation_factor', 'fused_activation_function' ]
def convert_conv(self, op, conv_type): """convolution implementation.""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.ActivationFunctionType import ActivationFunctionType from tflite.TensorType import TensorType from tflite.Operator import Operator from tflite.Conv2DOptions import Conv2DOptions from tflite.DepthwiseConv2DOptions import DepthwiseConv2DOptions from tflite.Padding import Padding except ImportError: raise ImportError("The tflite package must be installed") assert isinstance(op, Operator) input_tensors = self.get_input_tensors(op) assert len(input_tensors) >= 2, "input tensors length should be >= 2" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx weight_tensor = input_tensors[1] is_depthwise_conv = False if conv_type == 'conv2d': assert op.BuiltinOptionsType() == BuiltinOptions.Conv2DOptions op_options = op.BuiltinOptions() conv_options = Conv2DOptions() conv_options.Init(op_options.Bytes, op_options.Pos) elif conv_type == 'depthwise': is_depthwise_conv = True assert op.BuiltinOptionsType( ) == BuiltinOptions.DepthwiseConv2DOptions op_options = op.BuiltinOptions() conv_options = DepthwiseConv2DOptions() conv_options.Init(op_options.Bytes, op_options.Pos) depth_multiplier = conv_options.DepthMultiplier() assert depth_multiplier == 1, "TF frontend have transformed it be 1 " \ "no matter original value be set by 0.25, 0.5 or any else" else: raise tvm.error.OpNotImplemented( 'Operator {} is not supported for frontend TFLite.'.format( conv_type)) stride_h = conv_options.StrideH() stride_w = conv_options.StrideW() dilation_h = conv_options.DilationHFactor() dilation_w = conv_options.DilationWFactor() padding = conv_options.Padding() fused_activation_fn = conv_options.FusedActivationFunction() _, input_h, input_w, _ = input_tensor.tensor.ShapeAsNumpy() if is_depthwise_conv: multiplier, kernel_h, kernel_w, in_channels = weight_tensor.tensor.ShapeAsNumpy( ) assert multiplier == depth_multiplier else: output_channels, kernel_h, kernel_w, _ = weight_tensor.tensor.ShapeAsNumpy( ) dilated_kernel_h = dilation_h * (kernel_h - 1) + 1 dilated_kernel_w = dilation_w * (kernel_w - 1) + 1 params = { 'kernel_size': [kernel_h, kernel_w], 'strides': [stride_h, stride_w], 'dilation': [dilation_h, dilation_w], 'padding': [0, 0] } if is_depthwise_conv: params['channels'] = int(in_channels * multiplier) params['groups'] = int(in_channels) else: params['channels'] = int(output_channels) # weight tensor type should be UINT8 (quantization) or FLOAT32 weight_tensor_type = weight_tensor.tensor.Type() assert weight_tensor_type in (TensorType.UINT8, TensorType.FLOAT32) weight_tensor_type_str = self.get_tensor_type_str(weight_tensor_type) in_expr = self.get_expr(input_tensor_idx) weight_value = self.get_tensor_value(weight_tensor) if is_depthwise_conv: # TFLite is M KH KW IC, we require IC M KH KW weight_value = weight_value.transpose((3, 0, 1, 2)) else: # TFLite is OC KH KW IC, we require OC IC KH kW weight_value = weight_value.transpose((0, 3, 1, 2)) weight_expr = self.exp_tab.new_const(weight_value, dtype=weight_tensor_type_str) if padding == Padding.VALID: pass elif padding == Padding.SAME: pad_top, pad_bottom = get_pad_value(input_h, dilated_kernel_h, stride_h) pad_left, pad_right = get_pad_value(input_w, dilated_kernel_w, stride_w) in_expr = _op.nn.pad(data=in_expr, pad_width=((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right))) else: raise tvm.error.OpAttributeUnimplemented( 'Padding format {} is not supported for operator Conv.'.format( padding)) out = _op.nn.conv2d(data=in_expr, weight=weight_expr, **params) # if we have bias if len(input_tensors) == 3: bias_tensor = input_tensors[2] bias_tensor_type = bias_tensor.tensor.Type() # bias tensor type should be INT32 (quantization) or FLOAT32 assert bias_tensor_type in (TensorType.INT32, TensorType.FLOAT32) bias_tensor_type_str = self.get_tensor_type_str(bias_tensor_type) bias_expr = self.exp_tab.new_const( self.get_tensor_value(bias_tensor), dtype=bias_tensor_type_str) out = _op.nn.bias_add(out, bias_expr) # If we have fused activations if fused_activation_fn != ActivationFunctionType.NONE: out = self.convert_fused_activation_function( out, fused_activation_fn) return out
def __init__(self, op, op_type, tflite_interpreter): Layer.__init__(self, op, op_type, tflite_interpreter) self.tflite_conv_parser = Conv2DOptions() self.tflite_conv_parser.Init(op.BuiltinOptions().Bytes, op.BuiltinOptions().Pos)