Пример #1
0
 def test_serializable(self):
     device_params = test_device_matmul(max_batch=5,
                                        max_hidden=9,
                                        max_classes=17,
                                        repeats=1,
                                        device='CPU:0',
                                        dtype='float32')
     json.dumps(device_params)
Пример #2
0
    def test_normal(self):
        device_params = test_device_matmul(max_batch=4,
                                           max_hidden=8,
                                           max_classes=128,
                                           repeats=1,
                                           device='CPU:0',
                                           dtype='float32')
        approx_cost = interpolate_matmul_cost(device_params)

        batch4 = approx_cost(4, 8, 16)
        batch3 = approx_cost(3, 8, 16)
        self.assertAlmostEqual(batch3, batch4, places=1)
Пример #3
0
    def tes_failure(self):
        device_params = test_device_matmul(max_batch=4,
                                           max_hidden=8,
                                           max_classes=128,
                                           repeats=1,
                                           device='GPU:0',
                                           dtype='float32')
        approx_cost = interpolate_matmul_cost(device_params)

        with self.assertRaises(ValueError):
            approx_cost(4, 9, 16)
        with self.assertRaises(ValueError):
            approx_cost(1, 9, 1)
Пример #4
0
 def test_normal_cpu(self):
     device_params = test_device_matmul(max_batch=5,
                                        max_hidden=9,
                                        max_classes=17,
                                        repeats=1,
                                        device='CPU:0',
                                        dtype='float32')
     self.assertListEqual([1, 2, 3, 4, 5], device_params['batch_sizes'])
     self.assertListEqual([1, 2, 3, 4, 5, 7, 8, 9],
                          device_params['hidden_sizes'])
     self.assertListEqual([1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17],
                          device_params['class_sizes'])
     self.assertLen(device_params['cost_values'], 5 * 8 * 11)
Пример #5
0
    def test_normalize_to_worst_adaptive(self):
        device_params = test_device_matmul(max_batch=8,
                                           max_hidden=25,
                                           max_classes=110,
                                           repeats=1,
                                           device='CPU:0',
                                           dtype='float32')
        freq_vocab = build_zipf_vocab(120)
        batch_sizes, head_sizes, speed_ups, best_splits = estimate_best_splits(
            device_params, freq_vocab, num_tails=2, hidden_size=24, factor=2)

        self.assertListEqual([1, 2, 3, 4, 5, 7, 8], batch_sizes)
        self.assertListEqual([14, 22, 30], head_sizes)
        self.assertLen(speed_ups, 7 * 3)
        self.assertLen(best_splits, 7 * 3)
Пример #6
0
    def test_normal_gpu(self):
        if not tf.test.is_gpu_available(cuda_only=True):
            self.skipTest('No GPU available')

        device_params = test_device_matmul(max_batch=32,
                                           max_hidden=8,
                                           max_classes=16,
                                           repeats=1,
                                           device='GPU:0',
                                           dtype='float32')
        self.assertListEqual(
            [1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31, 32],
            device_params['batch_sizes'])
        self.assertListEqual([1, 2, 3, 4, 5, 7, 8],
                             device_params['hidden_sizes'])
        self.assertListEqual([1, 2, 3, 4, 5, 7, 8, 9, 15, 16],
                             device_params['class_sizes'])
        self.assertLen(device_params['cost_values'], 16 * 7 * 10)
Пример #7
0
    def test_normal(self):
        device_params = test_device_matmul(max_batch=8,
                                           max_hidden=25,
                                           max_classes=30,
                                           repeats=1,
                                           device='CPU:0',
                                           dtype='float32')
        approx_cost = interpolate_matmul_cost(device_params)

        freq_vocab = build_zipf_vocab(30)
        all_freq = np.array([f for _, f in freq_vocab.most_common()])
        all_prob = all_freq / np.sum(all_freq)
        prob_accum = np.cumsum(all_prob)

        split_size = [2, 9, 19]
        adaptive_split_cost(approx_cost,
                            prob_accum,
                            split_size,
                            batch_size=6,
                            hidden_size=24,
                            factor=2)