'kNN': KNN(), 'Naive Bayes': Naive_Bayes(), 'Random Forest': RandomForest(), 'SVM': SVM(), 'Gradient Boosting': GradientBoost() } for model in models: for aug in [True, False]: if aug: models[model].fit(X_aug_t, y_aug_t) name = model + " (aug)" else: models[model].fit(X_train_t, y_train_t) name = model y_pred = models[model].predict(X_test_t) acc = accuracy_score(y_test_t, y_pred) roc = roc_auc_score(y_test_t, y_pred) f1 = f1_score(y_test_t, y_pred) print('%s accuracy: %s' % (name, round(acc, 4))) print('%s AUC: %s' % (name, round(roc, 4))) print('%s F1: %s' % (name, round(f1, 4))) if not args.no_export: export_results(name=name, acc=acc, roc=roc, f1=f1) # data_glove = Dataset('glove') # X_train_g, X_test_g, y_train_g, y_test_g = train_test_split(data.X, data.y)
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score from sklearn.model_selection import train_test_split import argparse parser = argparse.ArgumentParser() parser.add_argument("-x", "--export-results", dest="export", action='store_true', help="Exports results to results.csv") args = parser.parse_args() data = Dataset('twitter') X_train, X_test, y_train, y_test = train_test_split(data.X, data.y) grad_boost = GradientBoost() grad_boost.fit(X_train, y_train) y_pred = grad_boost.predict(X_test) print(y_pred) acc = accuracy_score(y_test, y_pred) roc = roc_auc_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print('TF-IDF + xgb accuracy:', round(acc, 4)) print('TF-IDF + xgb AUC:', round(roc, 4)) print('TF-IDF + xgb F1:', round(f1, 4)) if args.export: export_results(acc=acc, roc=roc, f1=f1)
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score from sklearn.model_selection import train_test_split import argparse parser = argparse.ArgumentParser() parser.add_argument("-x", "--export-results", dest="export", action='store_true', help="Exports results to results.csv") args = parser.parse_args() data = Dataset('twitter') X_train, X_test, y_train, y_test = train_test_split(data.X, data.y) dummy = Dummy() dummy.fit(X_train, y_train) y_pred = dummy.predict(X_test) acc = accuracy_score(y_test, y_pred) roc = roc_auc_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print('Dummy accuracy:', round(acc, 4)) print('Dummy AUC:', round(roc, 4)) print('Dummy F1:', round(f1, 4)) if args.export: export_results(name='Dummy', acc=acc, roc=roc, f1=f1)