Пример #1
0
    def setUp(self):
        """Set up class before _each_ test method is executed.

        Creates a tensorflow session and instantiates a dbinterface.

        """
        self.setup_model()
        self.sess = tf.Session(
            config=tf.ConfigProto(
                allow_soft_placement=True,
                gpu_options=tf.GPUOptions(allow_growth=True),
                log_device_placement=self.params['log_device_placement'],
                ))

        # TODO: Determine whether this should be called here or
        # in dbinterface.initialize()
        self.sess.run(tf.global_variables_initializer())

        self.dbinterface = DBInterface(
                sess=self.sess,
                params=self.params,
                cache_dir=self.CACHE_DIR,
                save_params=self.save_params,
                load_params=self.load_params)

        self.step = 0
Пример #2
0
def test_estimator(cls_dict, param, ttarg):
    # load params query stores path to checkpoint
    if param['load_params']['do_restore'] and (param['load_params']['query']
                                               is not None):
        # path to specific checkpoint
        load_dir = param['load_params']['query']
    else:
        # gets latest checkpoint from model_dir
        load_dir = None

    ttarg['dbinterface'] = DBInterface(sess=None,
                                       params=param,
                                       save_params=param['save_params'],
                                       load_params=param['load_params'])

    ttarg['dbinterface'].start_time_step = time.time()

    m_predictions = {}
    for valid_k in cls_dict.keys():
        cls = cls_dict[valid_k]
        validation_data_params = param['validation_params'][valid_k][
            'data_params']
        # can use to filter particular params to save, if not there will set to None and all saved
        filter_keys = param['validation_params'][valid_k].get('keys_to_save')
        session_hooks = param['validation_params'][valid_k].get('hooks')
        valid_fn = validation_data_params['func']
        log.info('Starting to evaluate ({}).'.format(valid_k))
        eval_results = cls.predict(input_fn=valid_fn,
                                   predict_keys=filter_keys,
                                   hooks=session_hooks,
                                   checkpoint_path=load_dir)
        m_predictions[valid_k] = list(eval_results)

    log.info('Saving eval results to database.')
    # set validation only to be True to just save the results and not filters
    ttarg['dbinterface'].save(valid_res=m_predictions, validation_only=True)
    log.info('Done saving eval results to database.')

    # sync with hosts
    res = []
    ttarg['dbinterface'].sync_with_host()
    res.append(trarg['dbinterface'].outrecs)
    # returning final eval results for convenience
    return eval_results, res
Пример #3
0
def train_from_params(
        save_params,
        model_params,
        train_params,
        loss_params=None,
        learning_rate_params=None,
        optimizer_params=None,
        validation_params=None,
        load_params=None,
        log_device_placement=DEFAULT_PARAMS[
            'log_device_placement'],  # advanced
        dont_run=DEFAULT_PARAMS['dont_run'],  # advanced
        skip_check=DEFAULT_PARAMS['skip_check'],  # advanced
        use_estimator=False):
    """
    Main training interface function.

    Args:
        save_params (dict): 
            Describing the parameters used to construct the save database, and
            control saving. These include:

            - host (str)
                Hostname where database connection lives
            - port (int)
                Port where database connection lives
            - dbname (str)
                Name of database for storage
            - collname (str)
                Name of collection for storage
            - exp_id (str)
                Experiment id descriptor
                NOTE: the variables host/port/dbname/coll/exp_id control
                the location of the saved data for the run, in order of
                increasing specificity.  When choosing these, note that:

                - If a given host/port/dbname/coll/exp_id already has saved checkpoints,\
                then any new call to start training with these same location variables\
                will start to train from the most recent saved checkpoint.  If you mistakenly\
                try to start training a new model with different variable names, or structure,\
                from that existing checkpoint, an error will be raised, as the model will be\
                incompatiable with the saved variables.

                - When choosing what dbname, coll, and exp_id, to use, keep in mind that mongodb\
                queries only operate over a single collection.  So if you want to analyze\
                results from a bunch of experiments together using mongod queries, you should\
                put them all in the same collection, but with different exp_ids. If, on the\
                other hand, you never expect to analyze data from two experiments together,\
                you can put them in different collections or different databases. Choosing\
                between putting two experiments in two collections in the same database\
                or in two totally different databases will depend on how you want to organize\
                your results and is really a matter of preference.

            - do_save (bool, default: True)
                Whether to save to database
            - save_initial_filters (bool, default: True)
                Whether to save initial model filters at step = 0,
            - save_metrics_freq (int, default: 5)
                How often to store train results to database
            - save_valid_freq (int, default: 3000)
                How often to calculate and store validation results
                to database
            - save_filters_freq (int, default: 30000)
                How often to save filter values to database
            - cache_filters_freq (int, default: 3000)
                How often to cache filter values locally and save
                to ___RECENT database
            - cache_max_num (int, default: 6)
                Maximal number of cached filters to keep in __RECENT database
            - cache_dir (str, default: None)
                Path where caches will be saved locally. If None, will default to
                ~/.tfutils/<host:post>/<dbname>/<collname>/<exp_id>.

        model_params (dict): Containing function that produces model and arguments to that function.

            - model_params['func'] 
                The function producing the model.

                The function's signature is:

                Args:

                - ``inputs``: data object
                - ``train`` (boolean): if in training or testing 
                - ``seed`` (int): seed for use in random generation

                Returns:

                - ``outputs`` (tf.Operations): train output tensorflow nodes
                - Additional configurations you want to store in database

            - Remaining items in model_params are dictionary of arguments passed to func.

        train_params (dict): Containing params for data sources and targets in training.

            - train_params['data_params'] 
                This contains params for the data

                - ``train_params['data_params']['func']`` is the function that constructs the data:

                    The function's signature is:

                    Args:

                    - ``batch_size``: Batch size for input data

                    Returns:

                    - ``inputs``: A dictionary of tensors that will be sent to model function

                - ``train_params['data_params']['batch_size']`` batch size of the data, will be sent to func

                - Remainder of ``train_params['data_params']`` are kwargs passed to func

            - train_params['targets'] (optional) 
                contains params for additional train targets

                - ``train_params['targets']['func']`` is a function that produces tensorflow nodes as training targets:

                    The function's signature is:

                    Args:

                    - ``inputs``: returned values of ``train_params['data_params']['func']``
                    - ``output``: first returned value of ``train_params['model_params']['func']``

                    Returns:

                    A dictionary of tensors that will be computed and stored in the database

                - Remainder of ``train_parms['targets']`` are arguments to func.

            - train_params['validate_first'] (optional, bool, default is True):
                controls whether validating before training

            - train_params['thres_loss'] (optional, float, default: 100): 
                If loss exceeds this during training, HiLossError is thrown

            - train_params['num_steps'] (int or None, default: None): 
                How many total steps of the optimization are run.
                If None, train is run until process is cancelled.

        loss_params (dict): Parameters for helper.get_loss_base function to build loss.

            - loss_params['pred_targets'] (a string or a list of strings):
                contain the names of inputs nodes that will be sent into the loss function

            - loss_params['loss_func']:
                the function used to calculate the loss. Must be provided.

            - loss_params['loss_func_kwargs'] (dict):
                Keyword parameters sent to ``loss_params['loss_func']``. Default is {}.

            - loss_params['agg_func']:
                The aggregate function, default is None.

            - loss_params['agg_func_kwargs']: 
                Keyword parameters sent to ``loss_params['agg_func']``. Default is {}.

            - loss_params['loss_per_case_func'] (Deprecated):
                Deprecated parameter, the same as ``loss_params['loss_func']``.

            - loss_params['targets'] (Deprecated):
                Deprecated parameter, the same as ``loss_params['targets']``.

        learning_rate_params (dict): Parameters for specifying learning_rate.

            - learning_rate_params['func']:
                The function producing tensorflow node acting as learning rate. 
                This function must accept argument ``global_step``.

            - remainder of learning_rate_params are arguments to func.

        optimizer_params (dict): Parameters for creating optimizer.

            - optimizer_params['optimizer']:
                A class producing an optimizer object, 
                which should have function ``compute_gradients`` and ``apply_gradients``. 
                The signatures of these two functions are similar as tensorflow basic optimizer classes.

                Must accept:

                - "learning_rate" -- the result of the learning_rate_func call

                - Remainder of optimizer_params (aside form "optimizer") are arguments
                  to the optimizer func

            - optimizer_params['func'] (Deprecated):
                Deprecated parameter, the same as ``optimizer_params['optimizer']``.

        validation_params (dict): Dictionary of validation sources. The structure if this dictionary is:

            {
                <validation_target_name_1>: {
                    data: {
                        'func': (callable) data source function for this validation,

                        <kwarg1>: <value1> for 'func',

                        ...
                        },
                    targets: {
                        'func': (callable) returning targets,

                        <kwarg1>: <value1> for 'func',

                        ...
                        },
                    num_steps (int): 
                        number of batches of validation source to compute,
                    agg_func (optional, callable):  
                        how to aggregate validation results
                        across batches after computation. Signature is:

                            - one input argument: the list of validation batch results
                            - one output: aggregated version
                        Default is ``utils.identity_func``
                    online_agg_func (optional, callable):  
                        how to aggregate validation results
                        on a per-batch basis. Siganture is:

                            - three input arguments: (current aggregate, new result, step)
                            - one output: new aggregated result
                        On first step, current aggregate passed in is None.
                        The final result is passed to the "agg_func".
                        Default is ``utils.append_and_return``
                },

                <validation_target_name_2>: ...
            }

            For each validation_target_name key, the targets are computed and then added to
            the output dictionary to be computed every so often -- unlike train_targets which
            are computed on each time step, these are computed on a basic controlled by the
            valid_save_freq specific in the save_params.

        load_params (dict):
            Similar to save_params, if you want loading to happen from a different
            location than where saving occurs. Parameters include:

            - host (str)
                Hostname where database connection lives
            - port (int)
                Port where database connection lives
            - dbname (str)
                Name of database for storage
            - collname (str)
                Name of collection for storage
            - exp_id (str)
                Experiment id descriptor
            - do_restore (bool, default: True)
                Whether to restore from saved model
            - query (dict)
                mongodb query describing how to load from loading database
            - from_ckpt (string)
                Path to load from a TensorFlow checkpoint (instead of from the db)
            - to_restore (list of strings or a regex/callable which returns strings)
                Specifies which variables should be loaded from the checkpoint.
                Any variables not specified here will be reinitialized.
            - load_param_dict (dict)
                A dictionary whose keys are the names of the variables that are to be loaded
                from the checkpoint, and the values are the names of the variables of the model
                that you want to restore with the value of the corresponding checkpoint variable.

        log_device_placement (bool, default is False): 
            Advanced parameter. Whether to log device placement in tensorflow session

        dont_run (bool, default is False): 
            Advanced parameter. Whether returning everything, not actually training 

        skip_check (bool, default is False): 
            Advanced parameter. Whether skipping github check, could be useful when working in detached head

    """

    # use tpu only if a tpu_name has been specified and not a multi-model
    if isinstance(model_params, list):  # multi-model mode
        use_tpu = (model_params[0].get('tpu_name', None) is not None)
        assert (use_tpu is False)
    else:
        use_tpu = (model_params.get('tpu_name', None) is not None)
    if use_tpu:
        log.info('Using tpu: %s' % model_params['tpu_name'])
    params, train_args = parse_params(
        'train',
        model_params,
        dont_run=dont_run,
        skip_check=skip_check,
        load_params=load_params,
        loss_params=loss_params,
        save_params=save_params,
        train_params=train_params,
        optimizer_params=optimizer_params,
        validation_params=validation_params,
        learning_rate_params=learning_rate_params,
        log_device_placement=log_device_placement,
        use_tpu=use_tpu or use_estimator)

    if use_estimator or use_tpu:
        return tpu_train_from_params(params, train_args, use_tpu=use_tpu)
    else:
        with tf.Graph().as_default(), tf.device(DEFAULT_HOST):
            # For convenience, use list of dicts instead of dict of lists
            _params = [{key: value[i]
                        for (key, value) in params.items()}
                       for i in range(len(params['model_params']))]
            _trargs = [{key: value[i]
                        for (key, value) in train_args.items()}
                       for i in range(len(params['model_params']))]

            # Use a single dataprovider for all models.
            data_params = _params[0]['train_params']['data_params']

            _params[0]['train_params']['data_params'], inputs \
                    = get_data(**data_params)

            # Build a graph for each distinct model.
            var_manager_list = []
            for param, trarg in zip(_params, _trargs):
                _, _, param, trarg, var_manager \
                        = get_model(inputs,
                                param['model_params'],
                                param=param,
                                trarg=trarg)

                trarg['validation_targets'], _ = \
                        get_valid_targets_dict(
                                var_manager=var_manager,
                                **param)
                var_manager_list.append(var_manager)

            # Create session.
            gpu_options = tf.GPUOptions(allow_growth=True)
            sess = tf.Session(config=tf.ConfigProto(
                allow_soft_placement=True,
                gpu_options=gpu_options,
                log_device_placement=log_device_placement,
            ))

            # Initialize variables here
            init_op_global = tf.global_variables_initializer()
            sess.run(init_op_global)
            init_op_local = tf.local_variables_initializer()
            sess.run(init_op_local)
            log.info('Initialized from scratch first')

            # Build database interface for each model
            # This interface class will handle the records saving, model saving, and
            # model restoring.
            for param, trarg, var_manager in zip(_params, _trargs,
                                                 var_manager_list):

                trarg['dbinterface'] = DBInterface(
                    sess=sess,
                    params=param,
                    var_manager=var_manager,
                    global_step=trarg['global_step'],
                    save_params=param['save_params'],
                    load_params=param['load_params'])
                ## Model will be restored from saved database here
                trarg['dbinterface'].initialize()

            # Convert back to a dictionary of lists
            params = {
                key: [param[key] for param in _params]
                for key in _params[0].keys()
            }
            train_args = {
                key: [trarg[key] for trarg in _trargs]
                for key in _trargs[0].keys()
            }

            if dont_run:
                return train_args

            return train(sess, **train_args)
Пример #4
0
def test_from_params(load_params,
                     model_params,
                     validation_params,
                     log_device_placement=False,
                     save_params=None,
                     dont_run=False,
                     skip_check=False,
                     use_estimator=False):
    """
    Main testing interface function.

    Same as train_from_parameters; but just performs testing without training.

    For documentation, see argument descriptions in train_from_params.

    """
    # use tpu only if a tpu_name has been specified and not a multi-model
    if isinstance(model_params, list):  # multi-model mode
        use_tpu = (model_params[0].get('tpu_name', None) is not None)
        assert (use_tpu is False)
    else:
        use_tpu = (model_params.get('tpu_name', None) is not None)
    if use_tpu:
        log.info('Using tpu: %s' % model_params['tpu_name'])

    params, test_args = parse_params('test',
                                     model_params,
                                     dont_run=dont_run,
                                     skip_check=skip_check,
                                     save_params=save_params,
                                     load_params=load_params,
                                     validation_params=validation_params,
                                     log_device_placement=log_device_placement,
                                     use_tpu=use_tpu)

    # do not need to create sess with estimator interface
    if use_estimator or use_tpu:
        return tpu_test_from_params(params, test_args, use_tpu=use_tpu)
    else:
        with tf.Graph().as_default(), tf.device(DEFAULT_HOST):

            # create session
            gpu_options = tf.GPUOptions(allow_growth=True)
            sess = tf.Session(config=tf.ConfigProto(
                allow_soft_placement=True,
                gpu_options=gpu_options,
                log_device_placement=log_device_placement,
            ))

            init_op_global = tf.global_variables_initializer()
            sess.run(init_op_global)
            init_op_local = tf.local_variables_initializer()
            sess.run(init_op_local)
            log.info('Initialized from scratch first')

            # For convenience, use list of dicts instead of dict of lists
            _params = [{key: value[i]
                        for (key, value) in params.items()}
                       for i in range(len(params['model_params']))]
            _ttargs = [{key: value[i]
                        for (key, value) in test_args.items()}
                       for i in range(len(params['model_params']))]

            # Build a graph for each distinct model.
            for param, ttarg in zip(_params, _ttargs):
                print(param['load_params'])
                from_ckpt = param['load_params'].get('from_ckpt')
                use_ckpt = (from_ckpt is not None)

                if not 'cache_dir' in load_params:
                    temp_cache_dir = save_params.get('cache_dir', None)
                    load_params['cache_dir'] = temp_cache_dir
                    log.info('cache_dir not found in load_params, '\
                            + 'using cache_dir ({}) from save_params'.format(
                                temp_cache_dir))

                ttarg['dbinterface'] = DBInterface(
                    var_manager=None,
                    params=param,
                    load_params=param['load_params'])
                if not use_ckpt:
                    ttarg['dbinterface'].load_rec()
                    ld = ttarg['dbinterface'].load_data
                    assert ld is not None, "No load data found for query, aborting"
                    ld = ld[0]
                    # TODO: have option to reconstitute model_params entirely from
                    # saved object ("revivification")
                    param['model_params']['seed'] = ld['params'][
                        'model_params']['seed']
                    cfg_final = ld['params']['model_params']['cfg_final']
                else:
                    cfg_final = param['model_params'].get('cfg_final', {})

                ttarg['validation_targets'], var_manager \
                        = get_valid_targets_dict(
                            loss_params=None,
                            cfg_final=cfg_final,
                            **param)

                param['load_params']['do_restore'] = True
                param['model_params']['cfg_final'] = cfg_final

                # Build database interface class, loading model
                ttarg['dbinterface'] = DBInterface(
                    sess=sess,
                    params=param,
                    var_manager=var_manager,
                    load_params=param['load_params'],
                    save_params=param['save_params'])
                ttarg['dbinterface'].initialize()

                ttarg['save_intermediate_freq'] \
                        = param['save_params'].get('save_intermediate_freq')

            # Convert back to a dictionary of lists
            params = {
                key: [param[key] for param in _params]
                for key in _params[0].keys()
            }
            test_args = {
                key: [ttarg[key] for ttarg in _ttargs]
                for key in _ttargs[0].keys()
            }

            if dont_run:
                return test_args

            res = test(sess, **test_args)
            sess.close()
            return res
Пример #5
0
def train_estimator(train_cls, eval_cls, param, trarg):
    if eval_cls is None:
        eval_cls = train_cls

    model_dir = param['save_params'].get('cache_dir', '')
    train_steps = param['train_params']['num_steps']
    # only single targets during eval mode
    need_val = len(param['validation_params'].keys()) > 0
    steps_per_eval = param['save_params'].get('save_valid_freq')
    if need_val:
        valid_k = param['validation_params'].keys()[0]
        validation_data_params = param['validation_params'][valid_k][
            'data_params']
        valid_steps = param['validation_params'][valid_k]['num_steps']
        valid_fn = validation_data_params['func']
        if steps_per_eval is None:
            steps_per_eval = param['save_params']['save_filters_freq']
        else:
            save_filters_freq = param['save_params'].get('save_filters_freq')
            if save_filters_freq is not None:
                # these need to be the same right now because estimator loads
                # from last checkpoint after validating
                assert (steps_per_eval == save_filters_freq)
            else:
                param['save_params']['save_filters_freq'] = steps_per_eval
    train_fn = param['train_params']['data_params']['func']

    model_params = param['model_params']
    iterations_per_loop = model_params.get('iterations_per_loop',
                                           DEFAULT_ITERATIONS_PER_LOOP)

    if (steps_per_eval is
            None) or (steps_per_eval < iterations_per_loop
                      ):  # eval steps cannot be less than TPU iterations
        log.info(
            'Setting save_valid_freq ({}) to be the same as iterations_per_loop ({}).'
            .format(steps_per_eval, iterations_per_loop))
        steps_per_eval = iterations_per_loop

    train_hooks = param['train_params'].get('hooks')
    if need_val:
        valid_hooks = param['validation_params'][valid_k].get('hooks')
    else:
        valid_hooks = None

    current_step = estimator._load_global_step_from_checkpoint_dir(model_dir)
    # initialize db here (currently no support for loading and saving to different places. May need to modify init so load_params can load from different dir, estimator interface limited
    #    when loading and saving to different paths, may need to create a new config)

    trarg['dbinterface'] = DBInterface(sess=None,
                                       params=param,
                                       global_step=current_step,
                                       save_params=param['save_params'],
                                       load_params=param['load_params'],
                                       cache_dir=model_dir)

    log.info('Training beginning ...')
    log.info('Training for %d steps. Current '
             'step %d' % (train_steps, current_step))

    trarg['dbinterface'].start_time_step = time.time()

    tpu_validate_first = param['train_params'].get('tpu_validate_first', False)

    def do_tpu_validation():
        log.info('Starting to evaluate.')
        eval_results = eval_cls.evaluate(input_fn=valid_fn,
                                         hooks=valid_hooks,
                                         steps=valid_steps)
        log.info('Saving eval results to database.')
        trarg['dbinterface'].save(valid_res={valid_k: eval_results},
                                  validation_only=True)
        log.info('Done saving eval results to database.')
        return eval_results

    if tpu_validate_first:
        eval_results = do_tpu_validation()

    while current_step < train_steps:
        next_eval = min(current_step + steps_per_eval, train_steps)
        log.info('Training until step %d' % next_eval)
        train_cls.train(input_fn=train_fn,
                        max_steps=next_eval,
                        hooks=train_hooks)
        current_step = next_eval

        if need_val:
            eval_results = do_tpu_validation()

    # sync with hosts
    res = []
    trarg['dbinterface'].sync_with_host()
    res.append(trarg['dbinterface'].outrecs)
    # returning final eval results for convenience
    return eval_results, res
Пример #6
0
class TestDBInterface(unittest.TestCase):

    PORT = 29101
    HOST = 'localhost'
    EXP_ID = 'TEST_EXP_ID'
    DATABASE_NAME = 'TFUTILS_TESTDB'
    COLLECTION_NAME = 'TFUTILS_TESTCOL'
    CACHE_DIR = 'TFUTILS_TEST_CACHE_DIR'

    @classmethod
    def setUpClass(cls):
        """Set up class once before any test methods are run."""
        cls.setup_log()
        cls.setup_conn()
        cls.setup_cache()
        cls.setup_params()

    @classmethod
    def tearDownClass(cls):
        """Tear down class after all test methods have run."""
        cls.remove_directory(cls.CACHE_DIR)
        cls.remove_database(cls.DATABASE_NAME)

        # Close primary MongoDB connection.
        cls.conn.close()

    def setUp(self):
        """Set up class before _each_ test method is executed.

        Creates a tensorflow session and instantiates a dbinterface.

        """
        self.setup_model()
        self.sess = tf.Session(
            config=tf.ConfigProto(
                allow_soft_placement=True,
                gpu_options=tf.GPUOptions(allow_growth=True),
                log_device_placement=self.params['log_device_placement'],
                ))

        # TODO: Determine whether this should be called here or
        # in dbinterface.initialize()
        self.sess.run(tf.global_variables_initializer())

        self.dbinterface = DBInterface(
                sess=self.sess,
                params=self.params,
                cache_dir=self.CACHE_DIR,
                save_params=self.save_params,
                load_params=self.load_params)

        self.step = 0

    def tearDown(self):
        """Tear Down is called after _each_ test method is executed."""
        self.sess.close()

    @unittest.skip("skipping")
    def test_init(self):
        # TODO: Test all permutations of __init__ params.
        pass

    @unittest.skip("skipping")
    def test_load_rec(self):
        pass

    @unittest.skip("skipping")
    def test_initialize(self):
        pass

    def test_get_restore_vars(self):

        # First, train model and save a checkpoint
        self.train_model()  # weights_name='Weights'
        saved_path = self.save_test_checkpoint()

        # Create a new model with different variable names.
        self.setup_model(weights_name='Filters')

        # Reset var_list in DBInterface
        self.dbinterface.var_list = {
                var.op.name: var for var in tf.global_variables()}

        # Restore first checkpoint vars.
        mapping = {'Weights': 'Filters'}
        self.dbinterface.load_param_dict = mapping
        restore_vars = self.dbinterface.get_restore_vars(saved_path)

        self.log.info('restore_vars:')
        for name, var in restore_vars.items():
            self.log.info('(name, var.name): ({}, {})'.format(name, var.name))
            self.assertEqual(var.op.name, mapping[name])

    def test_filter_var_list(self):

        var_list = {var.op.name: var for var in tf.global_variables()}

        # Test None
        self.dbinterface.to_restore = None
        filtered_var_list = self.dbinterface.filter_var_list(var_list)
        self.assertEqual(filtered_var_list, var_list)

        # Test list of strings
        self.dbinterface.to_restore = ['Weights']
        filtered_var_list = self.dbinterface.filter_var_list(var_list)
        for name, var in filtered_var_list.items():
            self.assertIn(name, ['Weights'])
            self.assertNotIn(name, ['Bias', 'global_step'])

        # Test regex
        self.dbinterface.to_restore = re.compile(r'Bias')
        filtered_var_list = self.dbinterface.filter_var_list(var_list)
        for name, var in filtered_var_list.items():
            self.assertIn(name, ['Bias'])
            self.assertNotIn(name, ['Weights', 'global_step'])

        # Test invalid type (should raise TypeError)
        self.dbinterface.to_restore = {'invalid_key': 'invalid_value'}
        with self.assertRaises(TypeError):
            filtered_var_list = self.dbinterface.filter_var_list(var_list)

    @unittest.skip("skipping")
    def test_tf_saver(self):
        pass

    @unittest.skip("skipping")
    def test_load_from_db(self):
        pass

    @unittest.skip("skipping")
    def test_save(self):
        self.dbinterface.initialize()
        self.dbinterface.start_time_step = time.time()
        train_res = self.train_model(num_steps=100)
        self.dbinterface.save(train_res=train_res, step=self.step)

    @unittest.skip("skipping")
    def test_sync_with_host(self):
        pass

    @unittest.skip("skipping")
    def test_save_thread(self):
        pass

    @unittest.skip("skipping")
    def test_initialize_from_ckpt(self):
        save_path = self.save_test_checkpoint()
        self.load_test_checkpoint(save_path)

    def train_model(self, num_steps=100):
        x_train = [1, 2, 3, 4]
        y_train = [0, -1, -2, -3]
        x = tf.get_default_graph().get_tensor_by_name('x:0')
        y = tf.get_default_graph().get_tensor_by_name('y:0')
        feed_dict = {x: x_train, y: y_train}

        pre_global_step = self.sess.run(self.global_step)
        for step in range(num_steps):
            train_res = self.sess.run(self.train_targets, feed_dict=feed_dict)
            self.log.info('Step: {}, loss: {}'.format(step, train_res['loss']))

        post_global_step = self.sess.run(self.global_step)
        self.assertEqual(pre_global_step + num_steps, post_global_step)
        self.step += num_steps
        return train_res

    def save_test_checkpoint(self):
        self.log.info('Saving checkpoint to {}'.format(self.save_path))
        saved_checkpoint_path = self.dbinterface.tf_saver.save(self.sess,
                                                               save_path=self.save_path,
                                                               global_step=self.global_step,
                                                               write_meta_graph=False)
        self.log.info('Checkpoint saved to {}'.format(saved_checkpoint_path))
        return saved_checkpoint_path

    def load_test_checkpoint(self, save_path):
        reader = tf.train.NewCheckpointReader(save_path)
        saved_shapes = reader.get_variable_to_shape_map()
        self.log.info('Saved Vars:\n' + str(saved_shapes.keys()))
        for name in saved_shapes.keys():
            self.log.info(
                'Name: {}, Tensor: {}'.format(name, reader.get_tensor(name)))

    def setup_model(self, weights_name='Weights', bias_name='Bias'):
        """Set up simple tensorflow model."""
        tf.reset_default_graph()

        self.global_step = tf.get_variable(
                'global_step', [],
                dtype=tf.int64, trainable=False,
                initializer=tf.constant_initializer(0))

        # Model parameters and placeholders.
        x = tf.placeholder(tf.float32, name='x')
        y = tf.placeholder(tf.float32, name='y')
        W = tf.get_variable(weights_name, [1], dtype=tf.float32)
        b = tf.get_variable(bias_name, [1], dtype=tf.float32)

        # Model output, loss and optimizer.
        linear_model = W * x + b
        loss = tf.reduce_sum(tf.square(linear_model - y))
        optimizer_base = tf.train.GradientDescentOptimizer(0.01)

        # Model train op.
        optimizer = optimizer_base.minimize(
            loss, global_step=self.global_step)

        # Train targets.
        self.train_targets = {'loss': loss,
                              'optimizer': optimizer}

    @classmethod
    def setup_log(cls):
        cls.log = logging.getLogger(':'.join([__name__, cls.__name__]))
        cls.log.setLevel('DEBUG')

    @classmethod
    def setup_conn(cls):
        cls.conn = pymongo.MongoClient(host=cls.HOST, port=cls.PORT)

    @classmethod
    def setup_cache(cls):
        cls.cache_dir = os.path.join(cls.CACHE_DIR,
                                     '%s:%d' % (cls.HOST, cls.PORT),
                                     cls.DATABASE_NAME,
                                     cls.COLLECTION_NAME,
                                     cls.EXP_ID)
        cls.makedirs(cls.cache_dir)
        cls.save_path = os.path.join(cls.cache_dir, 'checkpoint')

    @classmethod
    def setup_params(cls):
        cls.model_params = {'func': model.mnist_tfutils_new,
                            'devices': ['/gpu:0', '/gpu:1'],
                            'prefix': 'model_0'}

        cls.save_params = {
            'host': cls.HOST,
            'port': cls.PORT,
            'dbname': cls.DATABASE_NAME,
            'collname': cls.COLLECTION_NAME,
            'exp_id': cls.EXP_ID,
            'save_valid_freq': 20,
            'save_filters_freq': 200,
            'cache_filters_freq': 100}

        cls.train_params = {
                'data_params': {'func': data.build_data,
                    'batch_size': 100,
                    'group': 'train',
                    'directory': TFUTILS_HOME},
                'num_steps': 500}

        cls.loss_params = {
                'targets': ['labels'],
                'agg_func': tf.reduce_mean,
                'loss_per_case_func': tf.nn.sparse_softmax_cross_entropy_with_logits}

        cls.load_params = {'do_restore': True}

        cls.optimizer_params = {'func': optimizer.ClipOptimizer,
                                'optimizer_class': tf.train.MomentumOptimizer,
                                'clip': True,
                                'momentum': 0.9}

        cls.learning_rate_params = {'learning_rate': 0.05,
                                    'decay_steps': 10000 // 256,
                                    'decay_rate': 0.95,
                                    'staircase': True}
        cls.params = {
            'dont_run': False,
            'skip_check': True,
            'model_params': cls.model_params,
            'train_params': cls.train_params,
            'validation_params': {},
            'log_device_placement': False,
            'save_params': cls.save_params,
            'load_params': cls.load_params,
            'loss_params': cls.loss_params,
            'optimizer_params': cls.optimizer_params,
            'learning_rate_params': cls.learning_rate_params}

    @classmethod
    def remove_checkpoint(cls, checkpoint):
        """Remove a tf.train.Saver checkpoint."""
        cls.log.info('Removing checkpoint: {}'.format(checkpoint))
        # TODO: remove ckpt
        cls.log.info('Checkpoint successfully removed.')
        raise NotImplementedError

    @classmethod
    def remove_directory(cls, directory):
        """Remove a directory."""
        cls.log.info('Removing directory: {}'.format(directory))
        shutil.rmtree(directory)
        cls.log.info('Directory successfully removed.')

    @classmethod
    def remove_database(cls, database_name):
        """Remove a MonogoDB database."""
        cls.log.info('Removing database: {}'.format(database_name))
        cls.conn.drop_database(database_name)
        cls.log.info('Database successfully removed.')

    @classmethod
    def remove_collection(cls, collection_name):
        """Remove a MonogoDB collection."""
        cls.log.debug('Removing collection: {}'.format(collection_name))
        cls.conn[cls.DATABASE_NAME][collection_name].drop()
        cls.log.info('Collection successfully removed.')

    @classmethod
    def remove_document(cls, document):
        raise NotImplementedError

    @staticmethod
    def makedirs(dir):
        try:
            os.makedirs(dir)
        except OSError as e:
            if e.errno != errno.EEXIST:
                raise
Пример #7
0
def test_from_params(load_params,
                     model_params,
                     validation_params,
                     log_device_placement=False,
                     save_params=None,
                     dont_run=False,
                     skip_check=False,
                     ):
    """
    Main testing interface function.

    Same as train_from_parameters; but just performs testing without training.

    For documentation, see argument descriptions in train_from_params.

    """
    params, test_args = parse_params(
            'test',
            model_params,
            dont_run=dont_run,
            skip_check=skip_check,
            save_params=save_params,
            load_params=load_params,
            validation_params=validation_params,
            log_device_placement=log_device_placement,
            )

    with tf.Graph().as_default(), tf.device(DEFAULT_HOST):

        # create session
        sess = tf.Session(
                config=tf.ConfigProto(
                    allow_soft_placement=True,
                    log_device_placement=log_device_placement,
                    ))

        init_op_global = tf.global_variables_initializer()
        sess.run(init_op_global)
        init_op_local = tf.local_variables_initializer()
        sess.run(init_op_local)
        log.info('Initialized from scratch first')

        # For convenience, use list of dicts instead of dict of lists
        _params = [{key: value[i] for (key, value) in params.items()}
                   for i in range(len(params['model_params']))]
        _ttargs = [{key: value[i] for (key, value) in test_args.items()}
                   for i in range(len(params['model_params']))]

        # Build a graph for each distinct model.
        for param, ttarg in zip(_params, _ttargs):

            if not 'cache_dir' in load_params:
                temp_cache_dir = save_params.get('cache_dir', None)
                load_params['cache_dir'] = temp_cache_dir
                log.info('cache_dir not found in load_params, using cache_dir ({}) from save_params'.format(temp_cache_dir))

            ttarg['dbinterface'] = DBInterface(params=param, load_params=param['load_params'])
            ttarg['dbinterface'].load_rec()
            ld = ttarg['dbinterface'].load_data
            assert ld is not None, "No load data found for query, aborting"
            ld = ld[0]
            # TODO: have option to reconstitute model_params entirely from
            # saved object ("revivification")
            param['model_params']['seed'] = ld['params']['model_params']['seed']
            cfg_final = ld['params']['model_params']['cfg_final']

            ttarg['validation_targets'] = \
                    get_valid_targets_dict(
                        loss_params=None,
                        cfg_final=cfg_final,
                        **param)

            # tf.get_variable_scope().reuse_variables()

            param['load_params']['do_restore'] = True
            param['model_params']['cfg_final'] = cfg_final

            prefix = param['model_params']['prefix'] + '/'
            all_vars = variables._all_saveable_objects()
            var_list = strip_prefix(prefix, all_vars)

            ttarg['dbinterface'] = DBInterface(sess=sess,
                                               params=param,
                                               var_list=var_list,
                                               load_params=param['load_params'],
                                               save_params=param['save_params'])
            ttarg['dbinterface'].initialize(no_scratch=True)
            ttarg['save_intermediate_freq'] = param['save_params'].get('save_intermediate_freq')

        # Convert back to a dictionary of lists
        params = {key: [param[key] for param in _params]
                  for key in _params[0].keys()}
        test_args = {key: [ttarg[key] for ttarg in _ttargs]
                     for key in _ttargs[0].keys()}

        if dont_run:
            return test_args

        res = test(sess, **test_args)
        sess.close()
        return res