Пример #1
0
    def testStartCMLETraining(self, mock_discovery, mock_deps_utils):
        mock_discovery.build.return_value = self._mock_api_client
        mock_create = mock.Mock()
        self._mock_api_client.projects().jobs().create = mock_create
        mock_get = mock.Mock()
        self._mock_api_client.projects().jobs().get.return_value = mock_get
        mock_get.execute.return_value = {
            'state': 'SUCCEEDED',
        }
        mock_deps_utils.build_ephemeral_package.return_value = self._fake_package

        class_path = 'foo.bar.class'

        cmle_runner.start_cmle_training(self._inputs, self._outputs,
                                        self._exec_properties, class_path,
                                        self._training_inputs)

        mock_deps_utils.build_ephemeral_package.assert_called_with()

        mock_create.assert_called_with(body=mock.ANY,
                                       parent='projects/{}'.format(
                                           self._project_id))
        (_, kwargs) = mock_create.call_args
        body = kwargs['body']
        self.assertDictContainsSubset(
            {
                'pythonVersion':
                '%d.%d' % (sys.version_info.major, sys.version_info.minor),
                'runtimeVersion':
                '.'.join(tf.__version__.split('.')[0:2]),
                'jobDir':
                self._job_dir,
                'args': [
                    '--executor_class_path', class_path, '--inputs', '{}',
                    '--outputs', '{}', '--exec-properties',
                    '{"custom_config": {}}'
                ],
                'pythonModule':
                'tfx.scripts.run_executor',
                'packageUris': [os.path.join(self._job_dir, 'fake_package')],
            }, body['trainingInput'])
        self.assertStartsWith(body['jobId'], 'tfx_')
        mock_get.execute.assert_called_with()
Пример #2
0
    def Do(self, input_dict: Dict[Text, List[types.TfxType]],
           output_dict: Dict[Text, List[types.TfxType]],
           exec_properties: Dict[Text, Any]):
        """Starts a trainer job on Google Cloud AI Platform.

    Args:
      input_dict: Passthrough input dict for tfx.components.Trainer.executor.
      output_dict: Passthrough input dict for tfx.components.Trainer.executor.
      exec_properties: Mostly a passthrough input dict for
        tfx.components.Trainer.executor.
        custom_config.ai_platform_training_args is consumed by this class.  For
        the full set of parameters supported by Google Cloud AI Platform, refer
        to
        https://cloud.google.com/ml-engine/docs/tensorflow/training-jobs#configuring_the_job

    Returns:
      None
    Raises:
      ValueError: if ai_platform_training_args is not in
      exec_properties.custom_config.
      RuntimeError: if the Google Cloud AI Platform training job failed.
    """
        self._log_startup(input_dict, output_dict, exec_properties)

        if not exec_properties.get('custom_config',
                                   {}).get('ai_platform_training_args'):
            err_msg = '\'ai_platform_training_args\' not found in custom_config.'
            tf.logging.error(err_msg)
            raise ValueError(err_msg)

        training_inputs = exec_properties.get(
            'custom_config', {}).pop('ai_platform_training_args')
        executor_class_path = '%s.%s' % (
            tfx_trainer_executor.Executor.__module__,
            tfx_trainer_executor.Executor.__name__)
        return cmle_runner.start_cmle_training(input_dict, output_dict,
                                               exec_properties,
                                               executor_class_path,
                                               training_inputs)
Пример #3
0
    def Do(self, input_dict: Dict[Text, List[types.TfxArtifact]],
           output_dict: Dict[Text, List[types.TfxArtifact]],
           exec_properties: Dict[Text, Any]) -> None:
        """Uses a user-supplied tf.estimator to train a TensorFlow model locally.

    The Trainer Executor invokes a training_fn callback function provided by
    the user via the module_file parameter.  With the tf.estimator returned by
    this function, the Trainer Executor then builds a TensorFlow model using the
    user-provided tf.estimator.

    Args:
      input_dict: Input dict from input key to a list of ML-Metadata Artifacts.
        - transformed_examples: Transformed example.
        - transform_output: Input transform graph.
        - schema: Schema of the data.
      output_dict: Output dict from output key to a list of Artifacts.
        - output: Exported model.
      exec_properties: A dict of execution properties.
        - train_args: JSON string of trainer_pb2.TrainArgs instance, providing
          args for training.
        - eval_args: JSON string of trainer_pb2.EvalArgs instance, providing
          args for eval.
        - module_file: Python module file containing UDF model definition.
        - warm_starting: Whether or not we need to do warm starting.
        - warm_start_from: Optional. If warm_starting is True, this is the
          directory to find previous model to warm start on.

    Returns:
      None

    Raises:
      None
    """
        self._log_startup(input_dict, output_dict, exec_properties)

        # TODO(zhitaoli): Deprecate this in a future version.
        if exec_properties.get('custom_config', None):
            cmle_args = exec_properties.get('custom_config',
                                            {}).get('cmle_training_args')
            if cmle_args:
                executor_class_path = '.'.join(
                    [Executor.__module__, Executor.__name__])
                tf.logging.warn(
                    'Passing \'cmle_training_args\' to trainer directly is deprecated, '
                    'please use extension executor at '
                    'tfx.extensions.google_cloud_ai_platform.trainer.executor instead'
                )

                return cmle_runner.start_cmle_training(input_dict, output_dict,
                                                       exec_properties,
                                                       executor_class_path,
                                                       cmle_args)

        trainer_fn = io_utils.import_func(exec_properties['module_file'],
                                          'trainer_fn')

        # Set up training parameters
        train_files = [
            _all_files_pattern(
                types.get_split_uri(input_dict['transformed_examples'],
                                    'train'))
        ]
        transform_output = types.get_single_uri(input_dict['transform_output'])
        eval_files = [
            _all_files_pattern(
                types.get_split_uri(input_dict['transformed_examples'],
                                    'eval'))
        ]
        schema_file = io_utils.get_only_uri_in_dir(
            types.get_single_uri(input_dict['schema']))

        train_args = trainer_pb2.TrainArgs()
        eval_args = trainer_pb2.EvalArgs()
        json_format.Parse(exec_properties['train_args'], train_args)
        json_format.Parse(exec_properties['eval_args'], eval_args)

        # https://github.com/tensorflow/tfx/issues/45: Replace num_steps=0 with
        # num_steps=None.  Conversion of the proto to python will set the default
        # value of an int as 0 so modify the value here.  Tensorflow will raise an
        # error if num_steps <= 0.
        train_steps = train_args.num_steps or None
        eval_steps = eval_args.num_steps or None

        output_path = types.get_single_uri(output_dict['output'])
        serving_model_dir = path_utils.serving_model_dir(output_path)
        eval_model_dir = path_utils.eval_model_dir(output_path)

        # Assemble warm start path if needed.
        warm_start_from = None
        if exec_properties.get('warm_starting') and exec_properties.get(
                'warm_start_from'):
            previous_model_dir = os.path.join(
                exec_properties['warm_start_from'],
                path_utils.SERVING_MODEL_DIR)
            if previous_model_dir and tf.gfile.Exists(
                    os.path.join(previous_model_dir,
                                 self._CHECKPOINT_FILE_NAME)):
                warm_start_from = previous_model_dir

        # TODO(b/126242806) Use PipelineInputs when it is available in third_party.
        hparams = tf.contrib.training.HParams(
            # A list of uris for train files.
            train_files=train_files,
            # A single uri for transform graph produced by TFT.
            transform_output=transform_output,
            # A single uri for the output directory of the serving model.
            serving_model_dir=serving_model_dir,
            # A list of uris for eval files.
            eval_files=eval_files,
            # A single uri for schema file.
            schema_file=schema_file,
            # Number of train steps.
            train_steps=train_steps,
            # Number of eval steps.
            eval_steps=eval_steps,
            # A single uri for the model directory to warm start from.
            warm_start_from=warm_start_from)

        schema = io_utils.parse_pbtxt_file(schema_file, schema_pb2.Schema())

        training_spec = trainer_fn(hparams, schema)

        # Train the model
        tf.logging.info('Training model.')
        tf.estimator.train_and_evaluate(training_spec['estimator'],
                                        training_spec['train_spec'],
                                        training_spec['eval_spec'])
        tf.logging.info('Training complete.  Model written to %s',
                        serving_model_dir)

        # Export an eval savedmodel for TFMA
        tf.logging.info('Exporting eval_savedmodel for TFMA.')
        tfma.export.export_eval_savedmodel(
            estimator=training_spec['estimator'],
            export_dir_base=eval_model_dir,
            eval_input_receiver_fn=training_spec['eval_input_receiver_fn'])

        tf.logging.info('Exported eval_savedmodel to %s.', eval_model_dir)
Пример #4
0
    def Do(self, input_dict, output_dict, exec_properties):
        """Runs trainer job the given input.

    Args:
      input_dict: Input dict from input key to a list of Artifacts.
        - transformed_examples: Transformed example.
        - transform_output: Input transform graph.
        - schema: Schema of the data.
      output_dict: Output dict from output key to a list of Artifacts.
        - output: Exported model.
      exec_properties: A dict of execution properties.
        - train_args: JSON string of trainer_pb2.TrainArgs instance, providing
          args for training.
        - eval_args: JSON string of trainer_pb2.EvalArgs instance, providing
          args for eval.
        - module_file: Python module file containing UDF model definition.
        - warm_starting: Whether or not we need to do warm starting.
        - warm_start_from: Optional. If warm_starting is True, this is the
          directory to find previous model to warm start on.

    Returns:
      None
    """
        self._log_startup(input_dict, output_dict, exec_properties)

        # TODO(khaas): Move this to tfx/extensions.
        if exec_properties.get('custom_config', None):
            cmle_args = exec_properties.get('custom_config',
                                            {}).get('cmle_training_args')
            if cmle_args:
                return cmle_runner.start_cmle_training(input_dict, output_dict,
                                                       exec_properties,
                                                       cmle_args)

        trainer_fn = io_utils.import_func(exec_properties['module_file'],
                                          'trainer_fn')

        # Set up training parameters
        train_files = [
            _all_files_pattern(
                types.get_split_uri(input_dict['transformed_examples'],
                                    'train'))
        ]
        transform_output = types.get_single_uri(input_dict['transform_output'])
        eval_files = _all_files_pattern(
            types.get_split_uri(input_dict['transformed_examples'], 'eval'))
        schema_file = io_utils.get_only_uri_in_dir(
            types.get_single_uri(input_dict['schema']))

        train_args = trainer_pb2.TrainArgs()
        eval_args = trainer_pb2.EvalArgs()
        json_format.Parse(exec_properties['train_args'], train_args)
        json_format.Parse(exec_properties['eval_args'], eval_args)

        # https://github.com/tensorflow/tfx/issues/45: Replace num_steps=0 with
        # num_steps=None.  Conversion of the proto to python will set the default
        # value of an int as 0 so modify the value here.  Tensorflow will raise an
        # error if num_steps <= 0.
        train_steps = train_args.num_steps or None
        eval_steps = eval_args.num_steps or None

        output_path = types.get_single_uri(output_dict['output'])
        serving_model_dir = path_utils.serving_model_dir(output_path)
        eval_model_dir = path_utils.eval_model_dir(output_path)

        # Assemble warm start path if needed.
        warm_start_from = None
        if exec_properties.get('warm_starting') and exec_properties.get(
                'warm_start_from'):
            previous_model_dir = os.path.join(
                exec_properties['warm_start_from'],
                path_utils.SERVING_MODEL_DIR)
            if previous_model_dir and tf.gfile.Exists(
                    os.path.join(previous_model_dir,
                                 self._CHECKPOINT_FILE_NAME)):
                warm_start_from = previous_model_dir

        # TODO(b/126242806) Use PipelineInputs when it is available in third_party.
        hparams = tf.contrib.training.HParams(
            train_files=train_files,
            transform_output=transform_output,
            output_dir=output_path,
            serving_model_dir=serving_model_dir,
            eval_files=eval_files,
            schema_file=schema_file,
            train_steps=train_steps,
            eval_steps=eval_steps,
            warm_start_from=warm_start_from)

        schema = io_utils.parse_pbtxt_file(schema_file, schema_pb2.Schema())

        training_spec = trainer_fn(hparams, schema)

        # Train the model
        tf.logging.info('Training model.')
        tf.estimator.train_and_evaluate(training_spec['estimator'],
                                        training_spec['train_spec'],
                                        training_spec['eval_spec'])
        tf.logging.info('Training complete.  Model written to %s',
                        serving_model_dir)

        # Export an eval savedmodel for TFMA
        tf.logging.info('Exporting eval_savedmodel for TFMA.')
        tfma.export.export_eval_savedmodel(
            estimator=training_spec['estimator'],
            export_dir_base=eval_model_dir,
            eval_input_receiver_fn=training_spec['eval_input_receiver_fn'])

        tf.logging.info('Exported eval_savedmodel to %s.', eval_model_dir)