Пример #1
0
    def __init__(self,
                 examples: types.Channel = None,
                 model: Optional[types.Channel] = None,
                 model_blessing: Optional[types.Channel] = None,
                 data_spec: Optional[Union[bulk_inferrer_pb2.DataSpec,
                                           Dict[Text, Any]]] = None,
                 model_spec: Optional[Union[bulk_inferrer_pb2.ModelSpec,
                                            Dict[Text, Any]]] = None,
                 output_example_spec: Optional[Union[
                     bulk_inferrer_pb2.OutputExampleSpec, Dict[Text,
                                                               Any]]] = None):
        """Construct an BulkInferrer component.

    Args:
      examples: A Channel of type `standard_artifacts.Examples`, usually
        produced by an ExampleGen component. _required_
      model: A Channel of type `standard_artifacts.Model`, usually produced by
        a Trainer component.
      model_blessing: A Channel of type `standard_artifacts.ModelBlessing`,
        usually produced by a ModelValidator component.
      data_spec: bulk_inferrer_pb2.DataSpec instance that describes data
        selection. If any field is provided as a RuntimeParameter, data_spec
        should be constructed as a dict with the same field names as DataSpec
        proto message.
      model_spec: bulk_inferrer_pb2.ModelSpec instance that describes model
        specification. If any field is provided as a RuntimeParameter,
        model_spec should be constructed as a dict with the same field names as
        ModelSpec proto message.
      output_example_spec: bulk_inferrer_pb2.OutputExampleSpec instance, specify
        if you want BulkInferrer to output examples instead of inference result.
        If any field is provided as a RuntimeParameter, output_example_spec
        should be constructed as a dict with the same field names as
        OutputExampleSpec proto message.
    """
        if output_example_spec:
            output_examples = types.Channel(type=standard_artifacts.Examples)
            inference_result = None
        else:
            inference_result = types.Channel(
                type=standard_artifacts.InferenceResult)
            output_examples = None

        spec = BulkInferrerSpec(examples=examples,
                                model=model,
                                model_blessing=model_blessing,
                                data_spec=data_spec
                                or bulk_inferrer_pb2.DataSpec(),
                                model_spec=model_spec
                                or bulk_inferrer_pb2.ModelSpec(),
                                output_example_spec=output_example_spec,
                                inference_result=inference_result,
                                output_examples=output_examples)
        super(BulkInferrer, self).__init__(spec=spec)
Пример #2
0
    def __init__(self,
                 examples: types.Channel = None,
                 model: Optional[types.Channel] = None,
                 model_blessing: Optional[types.Channel] = None,
                 data_spec: Optional[Union[bulk_inferrer_pb2.DataSpec,
                                           Dict[Text, Any]]] = None,
                 model_spec: Optional[Union[bulk_inferrer_pb2.ModelSpec,
                                            Dict[Text, Any]]] = None,
                 inference_result: Optional[types.Channel] = None,
                 instance_name: Optional[Text] = None,
                 enable_cache: Optional[bool] = None):
        """Construct an BulkInferrer component.

    Args:
      examples: A Channel of type `standard_artifacts.Examples`, usually
        produced by an ExampleGen component. _required_
      model: A Channel of type `standard_artifacts.Model`, usually produced by
        a Trainer component.
      model_blessing: A Channel of type `standard_artifacts.ModelBlessing`,
        usually produced by a ModelValidator component.
      data_spec: bulk_inferrer_pb2.DataSpec instance that describes data
        selection. If any field is provided as a RuntimeParameter, data_spec
        should be constructed as a dict with the same field names as DataSpec
        proto message.
      model_spec: bulk_inferrer_pb2.ModelSpec instance that describes model
        specification. If any field is provided as a RuntimeParameter,
        model_spec should be constructed as a dict with the same field names as
        ModelSpec proto message.
      inference_result: Channel of type `standard_artifacts.InferenceResult`
        to store the inference results.
      instance_name: Optional name assigned to this specific instance of
        BulkInferrer. Required only if multiple BulkInferrer components are
        declared in the same pipeline.
      enable_cache: Optional boolean to indicate if cache is enabled for the
        BulkInferrer component. If not specified, defaults to the value
        specified for pipeline's enable_cache parameter.
    """
        inference_result = inference_result or types.Channel(
            type=standard_artifacts.InferenceResult,
            artifacts=[standard_artifacts.InferenceResult()])
        spec = BulkInferrerSpec(examples=examples,
                                model=model,
                                model_blessing=model_blessing,
                                data_spec=data_spec
                                or bulk_inferrer_pb2.DataSpec(),
                                model_spec=model_spec
                                or bulk_inferrer_pb2.ModelSpec(),
                                inference_result=inference_result)
        super(BulkInferrer, self).__init__(spec=spec,
                                           instance_name=instance_name,
                                           enable_cache=enable_cache)
Пример #3
0
    def __init__(self,
                 examples: types.Channel = None,
                 model_export: Optional[types.Channel] = None,
                 model_blessing: Optional[types.Channel] = None,
                 model_push: Optional[types.Channel] = None,
                 data_spec: Optional[bulk_inferrer_pb2.DataSpec] = None,
                 model_spec: Optional[bulk_inferrer_pb2.ModelSpec] = None,
                 output: Optional[types.Channel] = None,
                 instance_name: Optional[Text] = None):
        """Construct an BulkInferrer component.

    Args:
      examples: A Channel of 'ExamplesPath' type, usually produced by ExampleGen
        component. _required_
      model_export: A Channel of 'ModelExportPath' type, usually produced by
        Trainer component.
      model_blessing: A Channel of 'ModelBlessingPath' type, usually produced by
        Model Validator component.
      model_push: A Channel of 'PushedModel' type, usually produced by Pusher
        component.
      data_spec: bulk_inferrer_pb2.DataSpec instance that describes data
        selection.
      model_spec: bulk_inferrer_pb2.ModelSpec instance that describes model
        specification.
      output: Channel of `InferenceResult` to store the inference results.
      instance_name: Optional name assigned to this specific instance of
        BulkInferrer. Required only if multiple BulkInferrer components are
        declared in the same pipeline.
    """
        output = output or types.Channel(
            type=standard_artifacts.InferenceResult,
            artifacts=[standard_artifacts.InferenceResult()])
        spec = BulkInferrerSpec(examples=examples,
                                model_export=model_export,
                                model_blessing=model_blessing,
                                model_push=model_push,
                                data_spec=data_spec
                                or bulk_inferrer_pb2.DataSpec(),
                                model_spec=model_spec
                                or bulk_inferrer_pb2.ModelSpec(),
                                output=output)
        super(BulkInferrer, self).__init__(spec=spec,
                                           instance_name=instance_name)
Пример #4
0
    def __init__(self,
                 examples: types.Channel = None,
                 model: Optional[types.Channel] = None,
                 model_blessing: Optional[types.Channel] = None,
                 data_spec: Optional[Union[bulk_inferrer_pb2.DataSpec,
                                           Dict[Text, Any]]] = None,
                 model_spec: Optional[Union[bulk_inferrer_pb2.ModelSpec,
                                            Dict[Text, Any]]] = None,
                 output_example_spec: Optional[Union[
                     bulk_inferrer_pb2.OutputExampleSpec, Dict[Text,
                                                               Any]]] = None,
                 inference_result: Optional[types.Channel] = None,
                 output_examples: Optional[types.Channel] = None,
                 instance_name: Optional[Text] = None):
        """Construct an BulkInferrer component.

    Args:
      examples: A Channel of type `standard_artifacts.Examples`, usually
        produced by an ExampleGen component. _required_
      model: A Channel of type `standard_artifacts.Model`, usually produced by
        a Trainer component.
      model_blessing: A Channel of type `standard_artifacts.ModelBlessing`,
        usually produced by a ModelValidator component.
      data_spec: bulk_inferrer_pb2.DataSpec instance that describes data
        selection. If any field is provided as a RuntimeParameter, data_spec
        should be constructed as a dict with the same field names as DataSpec
        proto message.
      model_spec: bulk_inferrer_pb2.ModelSpec instance that describes model
        specification. If any field is provided as a RuntimeParameter,
        model_spec should be constructed as a dict with the same field names as
        ModelSpec proto message.
      output_example_spec: bulk_inferrer_pb2.OutputExampleSpec instance, specify
        if you want BulkInferrer to output examples instead of inference result.
        If any field is provided as a RuntimeParameter, output_example_spec
        should be constructed as a dict with the same field names as
        OutputExampleSpec proto message.
      inference_result: Channel of type `standard_artifacts.InferenceResult`
        to store the inference results, must not be specified when
        output_example_spec is set.
      output_examples: Channel of type `standard_artifacts.Examples`
        to store the output examples, must not be specified when
        output_example_spec is unset. Check output_example_spec for details.
      instance_name: Optional name assigned to this specific instance of
        BulkInferrer. Required only if multiple BulkInferrer components are
        declared in the same pipeline.

    Raises:
      ValueError: Must not specify inference_result or output_examples depends
        on whether output_example_spec is set or not.
    """
        if output_example_spec:
            if inference_result:
                raise ValueError(
                    'Must not specify inference_result when output_example_spec is set.'
                )
            output_examples = output_examples or types.Channel(
                type=standard_artifacts.Examples)
        else:
            if output_examples:
                raise ValueError(
                    'Must not specify output_examples when output_example_spec is unset.'
                )
            inference_result = inference_result or types.Channel(
                type=standard_artifacts.InferenceResult)

        spec = BulkInferrerSpec(examples=examples,
                                model=model,
                                model_blessing=model_blessing,
                                data_spec=data_spec
                                or bulk_inferrer_pb2.DataSpec(),
                                model_spec=model_spec
                                or bulk_inferrer_pb2.ModelSpec(),
                                output_example_spec=output_example_spec,
                                inference_result=inference_result,
                                output_examples=output_examples)
        super(BulkInferrer, self).__init__(spec=spec,
                                           instance_name=instance_name)