Пример #1
0
def draw_computational_graph(var_or_func, save_path=None):
    '''
    Use d3viz to provide interactive html graph for theano
    For tensorflow, use: tensorboard --logdir [save_path]
    '''
    from matplotlib import pyplot as plt
    import matplotlib.image as mpimg

    if save_path is None:
        save_path = os.path.join(utils.get_tmp_dir(), 'tmp.html')

    if config.backend() == 'theano':
        import theano.d3viz as d3v
        d3v.d3viz(var_or_func, save_path)
        # theano.printing.pydotprint(
        #     var_or_func,
        #     outfile = save_path)
        return save_path
    elif config.backend() == 'tensorflow':
        import tensorflow as tf
        sess = tensor.get_session()
        writer = tf.python.training.summary_io.SummaryWriter(
            save_path, sess.graph_def)
        tensor.eval(var_or_func)
        writer.close()
        return save_path
Пример #2
0
 def check(self, f, reference=None, verbose=False):
     tmp_dir = tempfile.mkdtemp()
     html_file = pt.join(tmp_dir, 'index.html')
     if verbose:
         print(html_file)
     d3v.d3viz(f, html_file)
     assert pt.getsize(html_file) > 0
     if reference:
         assert filecmp.cmp(html_file, reference)
Пример #3
0
    def train(self, Xtrain, Ytrain, batchSize):
        X = T.matrix("X")
        Y = T.matrix("Y")
        index = T.iscalar("index")
        cost = self.binaryCrossEntropyCostFunction(self.forwardProp(X, True), Y)
        inputs = [index]

        if self.optAlg.lower() == "irpropplus":
            updates = iRpropPlus(cost, self.params, self.c)
        elif self.optAlg.lower() == "vsgdfd":
            slowStart = T.fscalar("slowStart")
            updates = vSGDfd(cost, self.params, batchSize, self.layers[0].theta.shape.eval()[1], self.c, slowStart)
            inputs.append(slowStart)
        elif self.optAlg.lower() == "rmsprop":
            updates = RMSProp(cost, self.params, self.c, self.learningRate, self.rho, self.epsilon, self.momentum)
        elif self.optAlg.lower() == "adadelta":
            updates = adaDelta(cost, self.params, self.c, self.rho, self.epsilon)
        else:
            updates = RMSProp(cost, self.params, self.c, self.learningRate, self.rho, self.epsilon, self.momentum)

        train = theano.function(
            inputs=inputs,
            outputs=theano.Out(cost, borrow=True),
            updates=updates + self.extraParams,
            name="train",
            givens={
                X: Xtrain[index * batchSize : (index + 1) * batchSize, :],
                Y: Ytrain[index * batchSize : (index + 1) * batchSize, :],
            },
            allow_input_downcast=True
            # ,mode = theano.compile.MonitorMode(pre_func = inspect_inputs, post_func = inspect_outputs)
            # ,mode = NanGuardMode(nan_is_error = True, inf_is_error = True, big_is_error = True)
            # ,mode = theano.compile.MonitorMode(post_func = detect_nan)
            # ,mode = theano.compile.MonitorMode(post_func = detect_inf)
            ,
            profile=True,
        )
        # print theano.printing.debugprint(train)
        # theano.printing.pydotprint(train, outfile="symbolic_graph_of_nn_opt.svg", format='svg', var_with_name_simple=True)
        d3v.d3viz(train, "d3viz/mlp.html")
        return train
    def build_model(self):
        self.w1 = theano.shared(np.random.uniform(-1,
                                                  1,
                                                  size=(3072,
                                                        self.hidden_layer)),
                                name="w1")
        self.b1 = theano.shared(np.zeros((self.hidden_layer, )), name="b1")
        self.w2 = theano.shared(np.random.uniform(-1,
                                                  1,
                                                  size=(self.hidden_layer,
                                                        10)),
                                name="w2")
        self.b2 = theano.shared(np.zeros((10, )), name="b2")
        self.p = T.dmatrix("input")
        self.target = T.dmatrix("target")
        self.net1 = T.dot(self.p, self.w1) + self.b1
        #print theano.printing.debugprint(self.net1)
        self.a1 = self.activation(self.net1)
        self.net2 = T.dot(self.a1, self.w2) + self.b2
        self.a2 = T.nnet.softmax(self.net2)
        self.output = T.argmax(self.a2, axis=1)
        self.target_one = np.argmax(self.target, axis=1)
        self.cost = T.mean(
            T.nnet.categorical_crossentropy(
                self.a2, self.target)) + self.Lambda * (
                    self.w1**2).sum() + self.Lambda * (self.w2**2).sum()
        self.error = T.mean(T.neq(self.output, self.target_one))

        self.dw1, self.db1, self.dw2, self.db2 = T.grad(
            self.cost, wrt=[self.w1, self.b1, self.w2, self.b2])
        self.train = theano.function(
            [self.p, self.target],
            self.error,
            updates=[[self.w1, self.w1 - self.alpha * self.dw1],
                     [self.b1, self.b1 - self.alpha * self.db1],
                     [self.w2, self.w2 - self.alpha * self.dw2],
                     [self.b2, self.b2 - self.alpha * self.db2]])
        self.predict = theano.function(inputs=[self.p],
                                       outputs=self.output,
                                       on_unused_input="ignore")
        d3viz(self.cost, "sample.html")
Пример #5
0
def write_profile_files(gp):
    d3viz.d3viz(gp.dnlml, 'dnlml.html')
    d3viz.d3viz(gp.predict_fn, 'predict.html')
Пример #6
0
import numpy as np
from pprint import pprint

ninputs = 1000
nfeatures = 100
noutputs = 10
nhiddens = 50

rng = np.random.RandomState(0)
x = T.dmatrix('x')
wh = th.shared(rng.normal(0, 1, (nfeatures, nhiddens)), borrow=True)
bh = th.shared(np.zeros(nhiddens), borrow=True)
h = T.nnet.sigmoid(T.dot(x, wh) + bh)

wy = th.shared(rng.normal(0, 1, (nhiddens, noutputs)))
by = th.shared(np.zeros(noutputs), borrow=True)
y = T.nnet.softmax(T.dot(h, wy) + by)

predict = th.function([x], y)
pprint(predict)

from theano.printing import pydotprint
import os

if not os.path.exists('examples'):
    os.makedirs('examples')
pydotprint(predict, 'examples/mlp.png')

import theano.d3viz as d3v
d3v.d3viz(predict, 'examples/mlp.html')
Пример #7
0
 def dumpToHTML(self, filename):
     """saves the function graph into an interactive html file, requires pydot and potentially an internet connection"""
     import theano.d3viz as d3v
     d3v.d3viz(self.theano_fct, filename)
Пример #8
0
	def dumpToHTML(self, filename) :
		"""saves the function graph into an interactive html file, requires pydot and potentially an internet connection"""
		import theano.d3viz as d3v
		d3v.d3viz(self.theano_fct, filename)
Пример #9
0
    def dumpToHTML(self, filename):
        """dumps the graph into a interactive html file"""
        import theano.d3viz as d3v

        d3v.d3viz(self.theano_fct, filename)
Пример #10
0
def plot(thing):
    theano.printing.pydotprint(thing,
                               outfile="think.png",
                               var_with_name_simple=True)
    import theano.d3viz as d3v
    d3v.d3viz(thing, 'think.html')
hidden = T.nnet.sigmoid(T.dot(x, weightH) + biasH)

weightY = theano.shared(rand_num_gen.normal(0, 1, (nhiddens, noutputs)))
biasY = theano.shared(np.zeros(noutputs), borrow=True)

y = T.nnet.softmax(T.dot(hidden, weightY) + biasY)

predict = theano.function(inputs=[x], outputs=y) #outputs the probability of 10 classes

import pydot
import theano.d3viz as d3v
import os

if not os.path.exists('/Users/dannyg/Desktop/Projects/TheanoCreations/Outputs'):
	os.makedirs('/Users/dannyg/Desktop/Projects/TheanoCreations/Outputs')

d3v.d3viz(predict, '/Users/dannyg/Desktop/Projects/TheanoCreations/Outputs/graph.html')












import theano as th
import theano.tensor as T
import numpy as np

ninputs = 1000
nfeatures = 100
noutputs = 10
nhiddens = 50

rng = np.random.RandomState(0)
x = T.dmatrix("x")
wh = th.shared(rng.normal(0, 1, (nfeatures, nhiddens)), borrow=True)
bh = th.shared(np.zeros(nhiddens), borrow=True)
h = T.nnet.sigmoid(T.dot(x, wh) + bh)

wy = th.shared(rng.normal(0, 1, (nhiddens, noutputs)))
by = th.shared(np.zeros(noutputs), borrow=True)
y = T.nnet.softmax(T.dot(h, wy) + by)

predict = th.function([x], y)

import theano.d3viz as d3v

d3v.d3viz(predict, "examples/mlp.html")
def trainWithEarlyStopping(model, numEpochs, patience, validationFrequency, data, variables, batchSize, errorDict = None, AUCDict = None, logfile = None, name = "", debug = False, verbose = True, save = True, subfolder = "", visualize = False):
    Xtrain, Ytrain, Xval, Yval, mu, sig, AUCindices = data
    numTrainBatches = Xtrain.get_value(borrow=True).shape[0] / batchSize
    numValidBatches = Xval.get_value(borrow=True).shape[0] / batchSize
    patienceIncrease = 1.75
    improvementThreshold = 0.999
    stoppingCriteria = 10
    bestValError = np.inf
    bestvalIter = 0
    bestAUCval = 0
    skipAUCEval = 0 #800
    endIteration = False
    t0 = time.time()
    trainFunction = model.train(Xtrain, Ytrain, batchSize)
    validationErrorFunction = model.validationError(Xval, Yval)
    import theano.d3viz as d3v
    print "Building graph..."
    d3v.d3viz(trainFunction, 'd3viz/mlp.html')
    if verbose: print "Compilation time:", (time.time() - t0) / 60.0, "minutes"
    if logfile: logfile.write("Compilation time: " + str((time.time() - t0) / 60.0) + " minutes" + "\n")
    generalizationLoss = 0
    trainingProgress = 0
    trainingStrip = deque([0.0 for i in xrange(max(validationFrequency, 20))])
    timestamp = time.strftime("%d%H%M%S")
    folder = ""
    printFrequency = 10
    iter = 0
    if visualize: import matplotlib.pyplot as plt
    if errorDict is not None:
        if visualize:
            fig = plt.figure(1)
            fig.canvas.set_window_title('Error/Epochs')
            plt.title('Error/Epochs ' + model.optAlg)
            plt.ylabel('Error')
            plt.xlabel('Epochs')
            plt.axis([0, numEpochs, 0, 50000])
        errorDict["epoch"] = []
        errorDict["trainError"] = []
        errorDict["valError"] = []
    if AUCDict is not None:
        if visualize:
            fig = plt.figure(2)
            fig.canvas.set_window_title('AUC/Epochs')
            plt.title('AUC/Epochs ' + model.optAlg)
            plt.ylabel('AUC')
            plt.xlabel('Epochs')
            plt.axis([0, numEpochs, 0.5, 1])
        AUCDict["epoch"] = []
        AUCDict["trainAUC"] = []
        AUCDict["valAUC"] = []
    if visualize:
        plt.ion()
        plt.show()
    if save:
        folder = 'saves\\' + subfolder + name + timestamp + '\\'
        if logfile: logfile.write("Folder to save in " + folder + "\n")
        os.makedirs(folder)
    if model.optAlg == "vSGDfd":
        if verbose: print "Slow starting vSGDfd..."
        for i in xrange(int(np.clip(0.001 * Xtrain.get_value(borrow=True).shape[0] / batchSize, 1, numTrainBatches))):
            cost = trainFunction(i, 1)
        if verbose: print "Done with slow start"
    t0 = time.time()
    if verbose: print "Training..."
    if logfile: logfile.write("Training..." + "\n")
    for epoch in xrange(numEpochs):
        for minibatchIndex in xrange(numTrainBatches):
            if model.optAlg == "vSGDfd": 
                cost = trainFunction(minibatchIndex, 0)
            else:
                cost = trainFunction(minibatchIndex)
            trainingStrip.pop()
            trainingStrip.appendleft(cost)
            iter = epoch * numTrainBatches + minibatchIndex
            if (iter + 1) % validationFrequency == 0:
                #valError = np.mean([validationErrorFunction(i) for i in xrange(numValidBatches)])
                valError = validationErrorFunction()
                if logfile: logfile.write("Iteration: " + str(iter + 1) + ", epoch: " + str(epoch) + ", minibatchIndex: " + str(minibatchIndex) +", validation frequency: " + str(validationFrequency) + ", Error: " + str(cost) + ", validation error: " + str(valError) + "\n")
                if valError < bestValError:
                    if verbose: print "Iteration:", iter + 1, ", epoch", epoch, ", minibatchIndex", minibatchIndex, ", validation frequency:", validationFrequency, ", Error:", cost, ", validation error:", valError
                    if valError < bestValError * improvementThreshold:
                        newPatience = max(patience, int(iter * patienceIncrease))
                        if newPatience > patience:
                            patience = newPatience
                            if verbose: print "valError has decreased significantly so the patience is updated to:", patience
                            if logfile: logfile.write("valError has decreased significantly so the patience is updated to: " + str(patience) + "\n")
                    if verbose: print "Best valError updated to:" , valError
                    if logfile: logfile.write("Best valError updated to: " + str(valError) + "\n")
                    AUCval = 0
                    if iter > skipAUCEval: AUCval = AUC(model, Xval, Yval, AUCindices["val"])
                    if verbose: print "current AUCval:", AUCval, ", bestAUCval:", bestAUCval
                    if logfile: logfile.write("current AUCval: " + str(AUCval) + ", bestAUCval: " + str(bestAUCval) + "\n")
                    if save and AUCval > bestAUCval:
                        if verbose: print "AUC has improved. Saving..."
                        if logfile: logfile.write("AUC has improved. Saving..." + "\n")
                        model.saveModel(name = "", folder = folder, verbose = False)
                        bestAUCval = AUCval
                    bestvalIter = iter
                    bestValError = valError
                # to limit the amount of printing to console
                elif (iter + 1) % (printFrequency * validationFrequency) == 0:
                    if verbose: print "Iteration:", iter + 1, ", epoch", epoch, ", minibatchIndex", minibatchIndex, ", validation frequency:", validationFrequency, ", Error:", cost, ", validation error:", valError
                if iter - bestvalIter > validationFrequency * 20 and validationFrequency != 1:
                    validationFrequency -= 1
                    bestvalIter = iter
                    if verbose: print "Validation error has not improved for 20 validations so validation frequency is updated to", validationFrequency
                    if logfile: logfile.write("Validation error has not improved for 20 validations so validation frequency is updated to " + str(validationFrequency) + "\n")
                if iter >= 20 and iter >= validationFrequency: # ensure the strip is filled
                    # from "Early Stopping - but when?" by Lutz Prechelt
                    generalizationLoss = 100 * (valError / (bestValError + 1e-9) - 1)
                    trainingProgress = 1000 * (sum(trainingStrip) / (len(trainingStrip) * min(trainingStrip) + 1e-9) - 1)
                    if generalizationLoss / (trainingProgress + 1e-9) > stoppingCriteria:
                            if verbose: print "PQ stopping criteria has been triggered. GL/P:", generalizationLoss / (trainingProgress + 1e-9)
                            if logfile: logfile.write("PQ stopping criteria has been triggered. GL/P: " + str(generalizationLoss / (trainingProgress + 1e-9)) + "\n")
                            endIteration = True
                            break
            if patience <= iter:
                if verbose: print "Patience exceeded"
                if logfile: logfile.write("Patience exceeded" + "\n")
                endIteration = True
                break
        if errorDict is not None:
            errorDict["epoch"].append(epoch)
            errorDict["trainError"].append(cost)
            errorDict["valError"].append(valError)
            if visualize:
                plt.figure(1)
                plt.plot(errorDict["epoch"], errorDict["trainError"], 'r-', errorDict["epoch"], errorDict["valError"], 'b-')
                plt.axis([0, max(1, errorDict["epoch"][-1]), min(errorDict["trainError"] + errorDict["valError"]), max(errorDict["trainError"] + errorDict["valError"])])
        if AUCDict is not None:
            AUCtrain = AUC(model, Xtrain, Ytrain, AUCindices["train"])
            AUCval = AUC(model, Xval, Yval, AUCindices["val"])
            AUCDict["epoch"].append(epoch)
            AUCDict["trainAUC"].append(AUCtrain)
            AUCDict["valAUC"].append(AUCval)
            if visualize:
                plt.figure(2)
                plt.plot(AUCDict["epoch"], AUCDict["trainAUC"], 'r-', AUCDict["epoch"], AUCDict["valAUC"], 'b-')
                plt.axis([0, max(1, AUCDict["epoch"][-1]), min(AUCDict["trainAUC"] + AUCDict["valAUC"]), max(AUCDict["trainAUC"] + AUCDict["valAUC"])])
        if visualize: 
            plt.draw()
            plt.pause(0.0001)
        if endIteration: break
    if verbose: print "Execution time:", (time.time() - t0) / 60.0, " minutes"
    if logfile: logfile.write("Execution time: " + str((time.time() - t0) / 60.0) + " minutes" + "\n")
    if save: model.loadModel(name = "", folder = folder, verbose = False)
    ks = agreement(model, variables, mu, sig)
    cvm = correlation(model, variables, mu, sig)
    AUCval = AUC(model, Xval, Yval, AUCindices["val"])
    if verbose: 
        print "Agreement: " + str(ks) + " under 0.09 " + str(ks < 0.09) + ", Correlation: " + str(cvm) + " under 0.002 " + str(cvm < 0.002)
        print "AUCval: " + str(AUCval)
    if logfile: 
        logfile.write("Agreement: " + str(ks) + " under 0.09 " + str(ks < 0.09) + ", Correlation: " + str(cvm) + " under 0.002 " + str(cvm < 0.002) + "\n")
        logfile.write("AUCval: " + str(AUCval) + "\n")
    return -AUCval + ((ks > 0.09) + (cvm > 0.002))