def PatternOptimizer(p1, p2, ign=True):
    return gof.OpKeyOptimizer(gof.PatternSub(p1, p2), ignore_newtrees=ign)
Пример #2
0
softplus = elemwise.Elemwise(scalar_softplus, name="softplus")

pprint.assign(softplus, printing.FunctionPrinter("softplus"))


def _skip_mul_1(r):
    if r.owner and r.owner.op == tensor.mul:
        not_is_1 = [i for i in r.owner.inputs if not _is_1(i)]
        if len(not_is_1) == 1:
            return not_is_1[0]


logsigm_to_softplus = gof.PatternSub(
    (tensor.log, (sigmoid, "x")),
    (tensor.neg, (softplus, (tensor.neg, "x"))),
    allow_multiple_clients=True,
    values_eq_approx=values_eq_approx_remove_inf,
    skip_identities_fn=_skip_mul_1,
)


def _is_1(expr):
    """

    Returns
    -------
    bool
        True iff expr is a constant close to 1.

    """
    try:
Пример #3
0
scalar_softplus = ScalarSoftplus(scalar.upgrade_to_float,
                                 name='scalar_softplus')
softplus = elemwise.Elemwise(scalar_softplus, name='softplus')

pprint.assign(softplus, printing.FunctionPrinter('softplus'))


def _skip_mul_1(r):
    if r.owner and r.owner.op == tensor.mul:
        not_is_1 = [i for i in r.owner.inputs if not _is_1(i)]
        if len(not_is_1) == 1:
            return not_is_1[0]

logsigm_to_softplus = gof.PatternSub(
    (tensor.log, (sigmoid, 'x')),
    (tensor.neg, (softplus, (tensor.neg, 'x'))),
    allow_multiple_clients=True,
    skip_identities_fn=_skip_mul_1)


def _is_1(expr):
    """rtype bool. True iff expr is a constant close to 1
    """
    try:
        v = opt.get_scalar_constant_value(expr)
        return numpy.allclose(v, 1)
    except tensor.NotScalarConstantError:
        return False

log1msigm_to_softplus = gof.PatternSub(
    (tensor.log,
Пример #4
0
from six import iteritems
from theano.compile.io import In, Out
from theano.compile import function
from theano.compile import UnusedInputError
from theano.gof import MissingInputError
from theano.compat import exc_message
from theano.tests.unittest_tools import SkipTest

from theano import tensor
from theano import tensor as T
import theano

import numpy as N

PatternOptimizer = lambda p1, p2, ign=True: gof.OpKeyOptimizer(
    gof.PatternSub(p1, p2), ignore_newtrees=ign)


def checkfor(testcase, fn, E):
    try:
        fn()
    except Exception as e:
        if isinstance(e, E):
            # we got the exception we wanted
            return
        else:
            # we did not get the exception we wanted
            raise
    # fn worked, but it shouldn't have
    testcase.fail()
Пример #5
0
from theano import config, gof
from theano.compile.io import In, Out
from theano.compile import function
from theano.compile import UnusedInputError
from theano.gof import MissingInputError
from theano.gof.python25 import all, any

from theano import tensor
from theano import tensor as T
import theano

import numpy as N
from numpy.testing.noseclasses import KnownFailureTest

PatternOptimizer = lambda p1, p2, ign=True: gof.OpKeyOptimizer(gof.PatternSub(p1, p2), ignore_newtrees=ign)

def checkfor(testcase, fn, E):
    try:
        fn()
    except Exception, e:
        if isinstance(e, E):
            # we got the exception we wanted
            return
        else:
            # we did not get the exception we wanted
            raise
    # fn worked, but it shouldn't have
    testcase.fail()