def __init__(self, compute_grad=True): if not ctc_available(): raise RuntimeError('Baidu CTC is not available and ' 'GpuConnectionistTemporalClassification Op ' 'can not be constructed.') self.compute_grad = compute_grad # Return only the cost. Gradient will be returned by grad() self.default_output = 0 gof.COp.__init__(self, self.func_file, self.func_name)
def setUp(self): if not ctc_available(): self.skipTest('Optional library warp-ctc not available')
def setup_method(self): if not ctc_available(): pytest.skip("Optional library warp-ctc not available")
from theano.tensor.nnet.ctc import ( ctc, ctc_available, ConnectionistTemporalClassification, ) from tests import unittest_tools as utt from tests.gpuarray.config import mode_with_gpu, mode_without_gpu from tests.tensor.nnet.test_ctc import ( setup_torch_case, setup_ctc_case, setup_grad_case, ) @pytest.mark.skipif(not ctc_available(), reason="Optional library warp-ctc not available") class TestCTC: def check_ctc(self, activations, labels, input_length, expected_costs, expected_grads): # Create symbolic variables t_activations = theano.shared(activations, name="activations") t_activation_times = theano.shared(input_length, name="activation_times") t_labels = theano.shared(labels, name="labels") inputs = [t_activations, t_labels, t_activation_times] # Execute several tests for each test case self.check_expected_values(t_activations, t_labels, t_activation_times, expected_costs, expected_grads)
import theano import theano.gpuarray import theano.tensor as tt from tests import unittest_tools as utt from tests.gpuarray.config import mode_with_gpu, mode_without_gpu from tests.tensor.nnet.test_ctc import setup_ctc_case, setup_grad_case, setup_torch_case from theano.gpuarray.ctc import GpuConnectionistTemporalClassification, gpu_ctc from theano.tensor.nnet.ctc import ( ConnectionistTemporalClassification, ctc, ctc_available, ) @pytest.mark.skipif( not ctc_available(), reason="Optional library warp-ctc not available" ) class TestCTC: def check_ctc( self, activations, labels, input_length, expected_costs, expected_grads ): # Create symbolic variables t_activations = theano.shared(activations, name="activations") t_activation_times = theano.shared(input_length, name="activation_times") t_labels = theano.shared(labels, name="labels") inputs = [t_activations, t_labels, t_activation_times] # Execute several tests for each test case self.check_expected_values( t_activations, t_labels, t_activation_times, expected_costs, expected_grads
def setUp(self): if theano.config.mode == "FAST_COMPILE" or theano.config.cxx == "": raise SkipTest("We need a c compiler") if not ctc_available(): self.skipTest('Optional library warp-ctc not available')
def setup_method(self): if theano.config.mode == "FAST_COMPILE" or theano.config.cxx == "": pytest.skip("We need a c compiler") if not ctc_available(): pytest.skip("Optional library warp-ctc not available")