Пример #1
0
def psd_solve_with_chol(node):
    if node.op == solve:
        A, b = node.inputs  # result is solution Ax=b
        if is_psd(A):
            L = cholesky(A)
            # N.B. this can be further reduced to a yet-unwritten cho_solve Op
            #     __if__ no other Op makes use of the the L matrix during the
            #     stabilization
            Li_b = Solve('lower_triangular')(L, b)
            x = Solve('upper_triangular')(L.T, Li_b)
            return [x]
Пример #2
0
def tag_solve_triangular(node):
    """
    If a general solve() is applied to the output of a cholesky op, then
    replace it with a triangular solve.
    """
    if node.op == solve:
        if node.op.A_structure == 'general':
            A, b = node.inputs  # result is solution Ax=b
            if A.owner and isinstance(A.owner.op, type(cholesky)):
                if A.owner.op.lower:
                    return [Solve('lower_triangular')(A, b)]
                else:
                    return [Solve('upper_triangular')(A, b)]
            if (A.owner and isinstance(A.owner.op, DimShuffle)
                and A.owner.op.new_order == (1, 0)):
                A_T, = A.owner.inputs
                if A_T.owner and isinstance(A_T.owner.op, type(cholesky)):
                    if A_T.owner.op.lower:
                        return [Solve('upper_triangular')(A, b)]
                    else:
                        return [Solve('lower_triangular')(A, b)]
Пример #3
0
 def verify_solve_grad(self, m, n, A_structure, lower, rng):
     # ensure diagonal elements of A relatively large to avoid numerical
     # precision issues
     A_val = (rng.normal(size=(m, m)) * 0.5 + np.eye(m)).astype(config.floatX)
     if A_structure == "lower_triangular":
         A_val = np.tril(A_val)
     elif A_structure == "upper_triangular":
         A_val = np.triu(A_val)
     if n is None:
         b_val = rng.normal(size=m).astype(config.floatX)
     else:
         b_val = rng.normal(size=(m, n)).astype(config.floatX)
     eps = None
     if config.floatX == "float64":
         eps = 2e-8
     solve_op = Solve(A_structure=A_structure, lower=lower)
     utt.verify_grad(solve_op, [A_val, b_val], 3, rng, eps=eps)
Пример #4
0
 def setUp(self):
     super(test_Solve, self).setUp()
     self.op_class = Solve
     self.op = Solve()
Пример #5
0
import numpy as np

try:
    import scipy.linalg
    imported_scipy = True
except ImportError:
    # some ops (e.g. Cholesky, Solve, A_Xinv_b) won't work
    imported_scipy = False

from theano import tensor
import theano.tensor
from theano.tensor import as_tensor_variable
from theano.gof import Op, Apply
from theano.tensor.slinalg import Solve

solve_upper_triangular = Solve(A_structure='upper_triangular', lower=False)


class QR_Chol(Op):
    """
    (mostly) Copy from theano:
    
    Incomplete QR Decomposition.
    Computes the QR decomposition of a matrix.
    Factor the matrix a as qr and return a single matrix.
    """
    __props__ = ('mode', )

    def __init__(self, mode):
        self.mode = mode
Пример #6
0
 def setup_method(self):
     self.op_class = Solve
     self.op = Solve()
     super().setup_method()
Пример #7
0
    def __init__(self, driver='gelsy'):

        self.driver = driver
        Solve.__init__(self)
Пример #8
0
    def __init__(self, lambda_=None):

        Solve.__init__(self)
        self.lambda_ = lambda_ if lambda_ is not None else 0.