Пример #1
0
def sample(args):
    numpy.random.seed(args.random_seed)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'

    with h5py.File(args.model_path, 'r') as state:
        print("Reading vocabulary from network state.")
        sys.stdout.flush()
        vocabulary = Vocabulary.from_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())
        print("Building neural network.")
        sys.stdout.flush()
        architecture = Architecture.from_state(state)
        network = Network(vocabulary, architecture,
                          predict_next_distribution=True)
        print("Restoring neural network state.")
        network.set_state(state)

    print("Building text sampler.")
    sys.stdout.flush()
    sampler = TextSampler(network)

    for i in range(args.num_sentences):
        words = sampler.generate()
        args.output_file.write('{}: {}\n'.format(
            i, ' '.join(words)))
Пример #2
0
def sample(args):
    numpy.random.seed(args.random_seed)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'

    with h5py.File(args.model_path, 'r') as state:
        print("Reading vocabulary from network state.")
        sys.stdout.flush()
        vocabulary = Vocabulary.from_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())
        print("Building neural network.")
        sys.stdout.flush()
        architecture = Architecture.from_state(state)
        network = Network(vocabulary,
                          architecture,
                          mode=Network.Mode(minibatch=False))
        print("Restoring neural network state.")
        network.set_state(state)

    print("Building text sampler.")
    sys.stdout.flush()
    sampler = TextSampler(network)

    sequences = sampler.generate(30, args.num_sentences)
    for sequence in sequences:
        try:
            eos_pos = sequence.index('</s>')
            sequence = sequence[:eos_pos + 1]
        except:
            pass
        args.output_file.write(' '.join(sequence) + '\n')
Пример #3
0
def sample(args):
    numpy.random.seed(args.random_seed)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'

    with h5py.File(args.model_path, 'r') as state:
        print("Reading vocabulary from network state.")
        sys.stdout.flush()
        vocabulary = Vocabulary.from_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())
        print("Building neural network.")
        sys.stdout.flush()
        architecture = Architecture.from_state(state)
        network = Network(architecture, vocabulary, mode=Network.Mode(minibatch=False))
        print("Restoring neural network state.")
        network.set_state(state)

    print("Building text sampler.")
    sys.stdout.flush()
    sampler = TextSampler(network)

    sequences = sampler.generate(30, args.num_sentences)
    for sequence in sequences:
        try:
            eos_pos = sequence.index('</s>')
            sequence = sequence[:eos_pos+1]
        except:
            pass
        args.output_file.write(' '.join(sequence) + '\n')
Пример #4
0
class Sampler:

    def __init__(self, model_path):
        self.model_path = model_path
        numpy.random.seed()
        theano.config.compute_test_value = 'off'

        with h5py.File(model_path, 'r') as self.state:
            print("Reading vocabulary from network state.")
            #sys.stdout.flush()
            self.vocabulary = Vocabulary.from_state(self.state)
            print("Number of words in vocabulary:", self.vocabulary.num_words())
            print("Number of words in shortlist:", self.vocabulary.num_shortlist_words())
            print("Number of word classes:", self.vocabulary.num_classes())
            print("Building neural network.")
            #sys.stdout.flush()
            self.architecture = Architecture.from_state(self.state)
            self.network = Network(self.architecture, self.vocabulary, mode=Network.Mode(minibatch=False))
            print("Restoring neural network state.")
            self.network.set_state(self.state)

        print("Building text sampler.")
        #sys.stdout.flush()
        self.sampler = TextSampler(self.network)

    def sample(self, sen_len, sen_num):
        sequences = self.sampler.generate(sen_len, sen_num)
        ret = ""
        seqnum = 0
        for sequence in sequences:
            try:
                eos_pos = sequence.index('</s>')
                sequence = sequence[:eos_pos+1]
            except ValueError:
                pass
            except TypeError:
                pass

            if (len(sequence) < 4):
                continue

            ret = ret + ' '.join(sequence)
            if (seqnum == 0):
                ret = "<div class=\"col-md-4\">\n" + ret
            elif (seqnum % 2 == 0):
                ret = ret + "\n</div><div class=\"col-md-4\">\n"

            seqnum = seqnum + 1

        return ret + "\n<div>\n"
Пример #5
0
def restoreModel(path):
    with h5py.File(path, 'r') as state:
        print("Reading vocabulary from network state.")
        sys.stdout.flush()
        vocabulary = Vocabulary.from_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of words in shortlist:", vocabulary.num_shortlist_words())
        print("Number of word classes:", vocabulary.num_classes())
        print("Building neural network.")
        sys.stdout.flush()
        architecture = Architecture.from_state(state)
        network = Network(architecture, vocabulary, mode=Network.Mode(minibatch=False))
        print("Restoring neural network state.")
        network.set_state(state)
        return network
Пример #6
0
def sample(args):
    """A function that performs the "theanolm sample" command.

    :type args: argparse.Namespace
    :param args: a collection of command line arguments
    """

    numpy.random.seed(args.random_seed)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'

    with h5py.File(args.model_path, 'r') as state:
        logging.info("Reading vocabulary from network state.")
        vocabulary = Vocabulary.from_state(state)
        logging.info("Number of words in vocabulary: %d",
                     vocabulary.num_words())
        logging.info("Number of words in shortlist: %d",
                     vocabulary.num_shortlist_words())
        logging.info("Number of word classes: %d", vocabulary.num_classes())
        logging.info("Building neural network.")
        architecture = Architecture.from_state(state)
        default_device = get_default_device(args.default_device)
        network = Network(architecture,
                          vocabulary,
                          mode=Network.Mode(minibatch=False),
                          default_device=default_device)
        logging.info("Restoring neural network state.")
        network.set_state(state)

    logging.info("Building text sampler.")
    sampler = TextSampler(network)

    sequences = sampler.generate(args.sentence_length,
                                 args.num_sentences,
                                 seed_sequence=args.seed_sequence)
    for sequence in sequences:
        try:
            eos_pos = sequence.index('</s>')
            sequence = sequence[:eos_pos + 1]
        except ValueError:
            pass
        args.output_file.write(' '.join(sequence) + '\n')
Пример #7
0
def score(args):
    with h5py.File(args.model_path, 'r') as state:
        print("Reading vocabulary from network state.")
        sys.stdout.flush()
        vocabulary = Vocabulary.from_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())
        print("Building neural network.")
        sys.stdout.flush()
        architecture = Architecture.from_state(state)
        network = Network(architecture, vocabulary)
        print("Restoring neural network state.")
        sys.stdout.flush()
        network.set_state(state)

    print("Building text scorer.")
    sys.stdout.flush()
    if args.unk_penalty is None:
        ignore_unk = False
        unk_penalty = None
    elif args.unk_penalty == 0:
        ignore_unk = True
        unk_penalty = None
    else:
        ignore_unk = False
        unk_penalty = args.unk_penalty
    scorer = TextScorer(network, ignore_unk, unk_penalty)

    print("Scoring text.")
    if args.output == 'perplexity':
        _score_text(args.input_file, vocabulary, scorer, args.output_file,
                    args.log_base, False)
    elif args.output == 'word-scores':
        _score_text(args.input_file, vocabulary, scorer, args.output_file,
                    args.log_base, True)
    elif args.output == 'utterance-scores':
        _score_utterances(args.input_file, vocabulary, scorer, args.output_file,
                          args.log_base)
    else:
        print("Invalid output format requested:", args.output)
        sys.exit(1)
Пример #8
0
def score(args):
    """A function that performs the "theanolm score" command.

    :type args: argparse.Namespace
    :param args: a collection of command line arguments
    """

    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        print("Invalid logging level requested:", args.log_level)
        sys.exit(1)
    log_format = '%(asctime)s %(funcName)s: %(message)s'
    if args.log_file == '-':
        logging.basicConfig(stream=sys.stdout,
                            format=log_format,
                            level=log_level)
    else:
        logging.basicConfig(filename=log_file,
                            format=log_format,
                            level=log_level)

    if args.debug:
        theano.config.compute_test_value = 'warn'
        logging.info("Enabled computing test values for tensor variables.")
        logging.warning("GpuArray backend will fail random number generation!")
    else:
        theano.config.compute_test_value = 'off'
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    default_device = get_default_device(args.default_device)
    network = Network.from_file(args.model_path,
                                exclude_unk=args.exclude_unk,
                                default_device=default_device)

    logging.info("Building text scorer.")
    scorer = TextScorer(network, args.shortlist, args.exclude_unk,
                        args.profile)

    logging.info("Scoring text.")
    if args.output == 'perplexity':
        _score_text(args.input_file, network.vocabulary, scorer,
                    args.output_file, args.log_base, args.subwords, False)
    elif args.output == 'word-scores':
        _score_text(args.input_file, network.vocabulary, scorer,
                    args.output_file, args.log_base, args.subwords, True)
    elif args.output == 'utterance-scores':
        _score_utterances(args.input_file, network.vocabulary, scorer,
                          args.output_file, args.log_base)
    else:
        print("Invalid output format requested:", args.output)
        sys.exit(1)
Пример #9
0
    def __init__(self, model_path):
        self.model_path = model_path
        numpy.random.seed()
        theano.config.compute_test_value = 'off'

        with h5py.File(model_path, 'r') as self.state:
            print("Reading vocabulary from network state.")
            #sys.stdout.flush()
            self.vocabulary = Vocabulary.from_state(self.state)
            print("Number of words in vocabulary:", self.vocabulary.num_words())
            print("Number of words in shortlist:", self.vocabulary.num_shortlist_words())
            print("Number of word classes:", self.vocabulary.num_classes())
            print("Building neural network.")
            #sys.stdout.flush()
            self.architecture = Architecture.from_state(self.state)
            self.network = Network(self.architecture, self.vocabulary, mode=Network.Mode(minibatch=False))
            print("Restoring neural network state.")
            self.network.set_state(self.state)

        print("Building text sampler.")
        #sys.stdout.flush()
        self.sampler = TextSampler(self.network)
Пример #10
0
def score(args):
    with h5py.File(args.model_path, 'r') as state:
        print("Reading vocabulary from network state.")
        sys.stdout.flush()
        vocabulary = Vocabulary.from_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())
        print("Building neural network.")
        sys.stdout.flush()
        architecture = Architecture.from_state(state)
        network = Network(vocabulary, architecture)
        print("Restoring neural network state.")
        sys.stdout.flush()
        network.set_state(state)

    print("Building text scorer.")
    sys.stdout.flush()
    if args.unk_penalty is None:
        ignore_unk = False
        unk_penalty = None
    elif args.unk_penalty == 0:
        ignore_unk = True
        unk_penalty = None
    else:
        ignore_unk = False
        unk_penalty = args.unk_penalty
    scorer = TextScorer(network, ignore_unk, unk_penalty)

    print("Scoring text.")
    if args.output == 'perplexity':
        _score_text(args.input_file, vocabulary, scorer, args.output_file,
                    args.log_base, False)
    elif args.output == 'word-scores':
        _score_text(args.input_file, vocabulary, scorer, args.output_file,
                    args.log_base, True)
    elif args.output == 'utterance-scores':
        _score_utterances(args.input_file, vocabulary, scorer,
                          args.output_file, args.log_base)
Пример #11
0
def train(args):
    numpy.random.seed(args.random_seed)

    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        print("Invalid logging level requested:", args.log_level)
        sys.exit(1)
    log_format = '%(asctime)s %(funcName)s: %(message)s'
    if args.log_file == '-':
        logging.basicConfig(stream=sys.stdout, format=log_format, level=log_level)
    else:
        logging.basicConfig(filename=log_file, format=log_format, level=log_level)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    with h5py.File(args.model_path, 'a', driver='core') as state:
        if state.keys():
            print("Reading vocabulary from existing network state.")
            sys.stdout.flush()
            vocabulary = Vocabulary.from_state(state)
        elif args.vocabulary is None:
            print("Constructing vocabulary from training set.")
            sys.stdout.flush()
            vocabulary = Vocabulary.from_corpus(args.training_set,
                                                args.num_classes)
            for training_file in args.training_set:
                training_file.seek(0)
            vocabulary.get_state(state)
        else:
            print("Reading vocabulary from {}.".format(args.vocabulary))
            sys.stdout.flush()
            with open(args.vocabulary, 'rt', encoding='utf-8') as vocab_file:
                vocabulary = Vocabulary.from_file(vocab_file,
                                                  args.vocabulary_format)
                if args.vocabulary_format == 'classes':
                    print("Computing class membership probabilities from "
                          "unigram word counts.")
                    sys.stdout.flush()
                    vocabulary.compute_probs(args.training_set)
            vocabulary.get_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())

        print("Building neural network.")
        sys.stdout.flush()
        if args.architecture == 'lstm300' or args.architecture == 'lstm1500':
            architecture = Architecture.from_package(args.architecture)
        else:
            with open(args.architecture, 'rt', encoding='utf-8') as arch_file:
                architecture = Architecture.from_description(arch_file)
        network = Network(vocabulary, architecture, profile=args.profile)

        sys.stdout.flush()
        if args.unk_penalty is None:
            ignore_unk = False
            unk_penalty = None
        elif args.unk_penalty == 0:
            ignore_unk = True
            unk_penalty = None
        else:
            ignore_unk = False
            unk_penalty = args.unk_penalty

        num_training_files = len(args.training_set)
        if len(args.weights) > num_training_files:
            print("You specified more weights than training files.")
            sys.exit(1)
        weights = numpy.ones(num_training_files).astype(theano.config.floatX)
        for index, weight in enumerate(args.weights):
            weights[index] = weight

        print("Building text scorer.")
        scorer = TextScorer(network, ignore_unk, unk_penalty, args.profile)

        validation_mmap = mmap.mmap(args.validation_file.fileno(),
                                    0,
                                    prot=mmap.PROT_READ)
        validation_iter = \
            LinearBatchIterator(validation_mmap,
                                vocabulary,
                                batch_size=args.batch_size,
                                max_sequence_length=None)

        optimization_options = {
            'method': args.optimization_method,
            'epsilon': args.numerical_stability_term,
            'gradient_decay_rate': args.gradient_decay_rate,
            'sqr_gradient_decay_rate': args.sqr_gradient_decay_rate,
            'learning_rate': args.learning_rate,
            'weights': weights,
            'momentum': args.momentum,
            'max_gradient_norm': args.gradient_normalization,
            'cost_function': args.cost,
            'num_noise_samples': args.num_noise_samples,
            'ignore_unk': ignore_unk,
            'unk_penalty': unk_penalty
        }
        logging.debug("OPTIMIZATION OPTIONS")
        for option_name, option_value in optimization_options.items():
            if type(option_value) is list:
                value_str = ', '.join(str(x) for x in option_value)
                logging.debug("%s: [%s]", option_name, value_str)
            else:
                logging.debug("%s: %s", option_name, str(option_value))

        training_options = {
            'strategy': args.training_strategy,
            'batch_size': args.batch_size,
            'sequence_length': args.sequence_length,
            'validation_frequency': args.validation_frequency,
            'patience': args.patience,
            'stopping_criterion': args.stopping_criterion,
            'max_epochs': args.max_epochs,
            'min_epochs': args.min_epochs,
            'max_annealing_count': args.max_annealing_count
        }
        logging.debug("TRAINING OPTIONS")
        for option_name, option_value in training_options.items():
            logging.debug("%s: %s", option_name, str(option_value))

        print("Building neural network trainer.")
        sys.stdout.flush()
        if len(args.sampling) > len(args.training_set):
            print("You specified more sampling coefficients than training "
                  "files.")
            sys.exit(1)
        trainer = create_trainer(
            training_options, optimization_options,
            network, vocabulary, scorer,
            args.training_set, args.sampling, validation_iter,
            state, args.profile)
        trainer.set_logging(args.log_interval)

        print("Training neural network.")
        sys.stdout.flush()
        trainer.train()

        if not 'layers' in state.keys():
            print("The model has not been trained. No cross-validations were "
                  "performed or training did not improve the model.")
        else:
            network.set_state(state)
            perplexity = scorer.compute_perplexity(validation_iter)
            print("Best validation set perplexity:", perplexity)
Пример #12
0
def train(args):
    """A function that performs the "theanolm train" command.

    :type args: argparse.Namespace
    :param args: a collection of command line arguments
    """

    numpy.random.seed(args.random_seed)

    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        print("Invalid logging level requested:", args.log_level)
        sys.exit(1)
    log_format = '%(asctime)s %(funcName)s: %(message)s'
    if args.log_file == '-':
        logging.basicConfig(stream=sys.stdout,
                            format=log_format,
                            level=log_level)
    else:
        logging.basicConfig(filename=log_file,
                            format=log_format,
                            level=log_level)

    if args.debug:
        theano.config.compute_test_value = 'warn'
        print("Enabled computing test values for tensor variables.")
        print("Warning: GpuArray backend will fail random number generation!")
    else:
        theano.config.compute_test_value = 'off'
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    with h5py.File(args.model_path, 'a', driver='core') as state:
        vocabulary = _read_vocabulary(args, state)

        if args.num_noise_samples > vocabulary.num_classes():
            print("Number of noise samples ({}) is larger than the number of "
                  "classes. This doesn't make sense and would cause sampling "
                  "to fail.".format(args.num_noise_samples))
            sys.exit(1)

        num_training_files = len(args.training_set)
        if len(args.weights) > num_training_files:
            print("You specified more weights than training files.")
            sys.exit(1)
        weights = numpy.ones(num_training_files).astype(theano.config.floatX)
        for index, weight in enumerate(args.weights):
            weights[index] = weight

        training_options = {
            'batch_size': args.batch_size,
            'sequence_length': args.sequence_length,
            'validation_frequency': args.validation_frequency,
            'patience': args.patience,
            'stopping_criterion': args.stopping_criterion,
            'max_epochs': args.max_epochs,
            'min_epochs': args.min_epochs,
            'max_annealing_count': args.max_annealing_count
        }
        logging.debug("TRAINING OPTIONS")
        for option_name, option_value in training_options.items():
            logging.debug("%s: %s", option_name, str(option_value))

        optimization_options = {
            'method': args.optimization_method,
            'epsilon': args.numerical_stability_term,
            'gradient_decay_rate': args.gradient_decay_rate,
            'sqr_gradient_decay_rate': args.sqr_gradient_decay_rate,
            'learning_rate': args.learning_rate,
            'weights': weights,
            'momentum': args.momentum,
            'max_gradient_norm': args.gradient_normalization,
            'cost_function': args.cost,
            'num_noise_samples': args.num_noise_samples,
            'noise_sharing': args.noise_sharing,
            'exclude_unk': args.exclude_unk
        }
        logging.debug("OPTIMIZATION OPTIONS")
        for option_name, option_value in optimization_options.items():
            if isinstance(option_value, list):
                value_str = ', '.join(str(x) for x in option_value)
                logging.debug("%s: [%s]", option_name, value_str)
            else:
                logging.debug("%s: %s", option_name, str(option_value))

        if len(args.sampling) > len(args.training_set):
            print("You specified more sampling coefficients than training "
                  "files.")
            sys.exit(1)

        print("Creating trainer.")
        sys.stdout.flush()
        trainer = Trainer(training_options, vocabulary, args.training_set,
                          args.sampling)
        trainer.set_logging(args.log_interval)

        print("Building neural network.")
        sys.stdout.flush()
        if args.architecture == 'lstm300' or args.architecture == 'lstm1500':
            architecture = Architecture.from_package(args.architecture)
        else:
            with open(args.architecture, 'rt', encoding='utf-8') as arch_file:
                architecture = Architecture.from_description(arch_file)

        network = Network(architecture,
                          vocabulary,
                          trainer.class_prior_probs,
                          args.noise_dampening,
                          default_device=args.default_device,
                          profile=args.profile)

        print("Compiling optimization function.")
        sys.stdout.flush()
        optimizer = create_optimizer(optimization_options,
                                     network,
                                     profile=args.profile)

        if args.print_graph:
            print("Cost function computation graph:")
            theano.printing.debugprint(optimizer.gradient_update_function)

        trainer.initialize(network, state, optimizer)
        # XXX Write the model instantly back to disk. Just adds word unigram
        # counts. This is a temporary hack. Remove at some point.
        trainer.get_state(state)
        state.flush()
        # XXX

        if args.validation_file is not None:
            print("Building text scorer for cross-validation.")
            sys.stdout.flush()
            scorer = TextScorer(network,
                                use_shortlist=True,
                                exclude_unk=args.exclude_unk,
                                profile=args.profile)
            print("Validation text:", args.validation_file.name)
            validation_mmap = mmap.mmap(args.validation_file.fileno(),
                                        0,
                                        prot=mmap.PROT_READ)
            validation_iter = \
                LinearBatchIterator(validation_mmap,
                                    vocabulary,
                                    batch_size=args.batch_size,
                                    max_sequence_length=args.sequence_length,
                                    map_oos_to_unk=False)
            trainer.set_validation(validation_iter, scorer)
        else:
            print("Cross-validation will not be performed.")
            validation_iter = None

        print("Training neural network.")
        sys.stdout.flush()
        trainer.train()

        if 'layers' not in state.keys():
            print("The model has not been trained. No cross-validations were "
                  "performed or training did not improve the model.")
        elif validation_iter is not None:
            network.set_state(state)
            perplexity = scorer.compute_perplexity(validation_iter)
            print("Best validation set perplexity:", perplexity)
Пример #13
0
def decode(args):
    """A function that performs the "theanolm decode" command.

    :type args: argparse.Namespace
    :param args: a collection of command line arguments
    """

    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        print("Invalid logging level requested:", args.log_level,
              file=sys.stderr)
        sys.exit(1)
    log_format = '%(asctime)s %(funcName)s: %(message)s'
    if args.log_file == '-':
        logging.basicConfig(stream=sys.stdout, format=log_format, level=log_level)
    else:
        logging.basicConfig(filename=log_file, format=log_format, level=log_level)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    if (args.lattice_format == 'kaldi') or (args.output == 'kaldi'):
        if args.kaldi_vocabulary is None:
            print("Kaldi lattice vocabulary is not given.", file=sys.stderr)
            sys.exit(1)

    default_device = get_default_device(args.default_device)
    network = Network.from_file(args.model_path,
                                mode=Network.Mode(minibatch=False),
                                default_device=default_device)

    log_scale = 1.0 if args.log_base is None else numpy.log(args.log_base)
    if (args.log_base is not None) and (args.lattice_format == 'kaldi'):
        logging.info("Warning: Kaldi lattice reader doesn't support logarithm "
                     "base conversion.")

    if args.wi_penalty is None:
        wi_penalty = None
    else:
        wi_penalty = args.wi_penalty * log_scale
    decoding_options = {
        'nnlm_weight': args.nnlm_weight,
        'lm_scale': args.lm_scale,
        'wi_penalty': wi_penalty,
        'unk_penalty': args.unk_penalty,
        'use_shortlist': args.shortlist,
        'unk_from_lattice': args.unk_from_lattice,
        'linear_interpolation': args.linear_interpolation,
        'max_tokens_per_node': args.max_tokens_per_node,
        'beam': args.beam,
        'recombination_order': args.recombination_order,
        'prune_relative': args.prune_relative,
        'abs_min_max_tokens': args.abs_min_max_tokens,
        'abs_min_beam': args.abs_min_beam
    }
    logging.debug("DECODING OPTIONS")
    for option_name, option_value in decoding_options.items():
        logging.debug("%s: %s", option_name, str(option_value))

    logging.info("Building word lattice decoder.")
    decoder = LatticeDecoder(network, decoding_options)

    batch = LatticeBatch(args.lattices, args.lattice_list, args.lattice_format,
                         args.kaldi_vocabulary, args.num_jobs, args.job)
    for lattice_number, lattice in enumerate(batch):
        if lattice.utterance_id is None:
            lattice.utterance_id = str(lattice_number)
        logging.info("Utterance `%s´ -- %d of job %d",
                     lattice.utterance_id,
                     lattice_number + 1,
                     args.job)
        log_free_mem()

        final_tokens, recomb_tokens = decoder.decode(lattice)
        if (args.output == "slf") or (args.output == "kaldi"):
            rescored_lattice = RescoredLattice(lattice,
                                               final_tokens,
                                               recomb_tokens,
                                               network.vocabulary)
            rescored_lattice.lm_scale = args.lm_scale
            rescored_lattice.wi_penalty = args.wi_penalty
            if args.output == "slf":
                rescored_lattice.write_slf(args.output_file)
            else:
                assert args.output == "kaldi"
                rescored_lattice.write_kaldi(args.output_file,
                                             batch.kaldi_word_to_id)
        else:
            for token in final_tokens[:min(args.n_best, len(final_tokens))]:
                line = format_token(token,
                                    lattice.utterance_id,
                                    network.vocabulary,
                                    log_scale,
                                    args.output)
                args.output_file.write(line + "\n")
        gc.collect()
Пример #14
0
def decode(args):
    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        print("Invalid logging level requested:", args.log_level)
        sys.exit(1)
    log_format = '%(asctime)s %(funcName)s: %(message)s'
    if args.log_file == '-':
        logging.basicConfig(stream=sys.stdout, format=log_format, level=log_level)
    else:
        logging.basicConfig(filename=log_file, format=log_format, level=log_level)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    with h5py.File(args.model_path, 'r') as state:
        print("Reading vocabulary from network state.")
        sys.stdout.flush()
        vocabulary = Vocabulary.from_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())
        print("Building neural network.")
        sys.stdout.flush()
        architecture = Architecture.from_state(state)
        network = Network(architecture, vocabulary,
                          mode=Network.Mode(minibatch=False))
        print("Restoring neural network state.")
        sys.stdout.flush()
        network.set_state(state)

    log_scale = 1.0 if args.log_base is None else numpy.log(args.log_base)

    if args.wi_penalty is None:
        wi_penalty = None
    else:
        wi_penalty = args.wi_penalty * log_scale
    if args.unk_penalty is None:
        ignore_unk = False
        unk_penalty = None
    elif args.unk_penalty == 0:
        ignore_unk = True
        unk_penalty = None
    else:
        ignore_unk = False
        unk_penalty = args.unk_penalty
    decoding_options = {
        'nnlm_weight': args.nnlm_weight,
        'lm_scale': args.lm_scale,
        'wi_penalty': wi_penalty,
        'ignore_unk': ignore_unk,
        'unk_penalty': unk_penalty,
        'linear_interpolation': args.linear_interpolation,
        'max_tokens_per_node': args.max_tokens_per_node,
        'beam': args.beam,
        'recombination_order': args.recombination_order
    }
    logging.debug("DECODING OPTIONS")
    for option_name, option_value in decoding_options.items():
        logging.debug("%s: %s", option_name, str(option_value))

    print("Building word lattice decoder.")
    sys.stdout.flush()
    decoder = LatticeDecoder(network, decoding_options)

    # Combine paths from command line and lattice list.
    lattices = args.lattices
    lattices.extend(args.lattice_list.readlines())
    lattices = [path.strip() for path in lattices]
    # Ignore empty lines in the lattice list.
    lattices = list(filter(None, lattices))
    # Pick every Ith lattice, if --num-jobs is specified and > 1.
    if args.num_jobs < 1:
        print("Invalid number of jobs specified:", args.num_jobs)
        sys.exit(1)
    if (args.job < 0) or (args.job > args.num_jobs - 1):
        print("Invalid job specified:", args.job)
        sys.exit(1)
    lattices = lattices[args.job::args.num_jobs]

    file_type = TextFileType('r')
    for index, path in enumerate(lattices):
        logging.info("Reading word lattice: %s", path)
        lattice_file = file_type(path)
        lattice = SLFLattice(lattice_file)

        if not lattice.utterance_id is None:
            utterance_id = lattice.utterance_id
        else:
            utterance_id = os.path.basename(lattice_file.name)
        logging.info("Utterance `%s' -- %d/%d of job %d",
                     utterance_id,
                     index + 1,
                     len(lattices),
                     args.job)
        tokens = decoder.decode(lattice)

        for index in range(min(args.n_best, len(tokens))):
            line = format_token(tokens[index],
                                utterance_id,
                                vocabulary,
                                log_scale,
                                args.output)
            args.output_file.write(line + "\n")
Пример #15
0
def train(args):
    """A function that performs the "theanolm train" command.

    :type args: argparse.Namespace
    :param args: a collection of command line arguments
    """

    numpy.random.seed(args.random_seed)

    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        print("Invalid logging level requested:", args.log_level)
        sys.exit(1)
    log_format = '%(asctime)s %(funcName)s: %(message)s'
    if args.log_file == '-':
        logging.basicConfig(stream=sys.stdout,
                            format=log_format,
                            level=log_level)
    else:
        logging.basicConfig(filename=log_file,
                            format=log_format,
                            level=log_level)

    if args.debug:
        theano.config.compute_test_value = 'warn'
        logging.info("Enabled computing test values for tensor variables.")
        logging.warning("GpuArray backend will fail random number generation!")
    else:
        theano.config.compute_test_value = 'off'
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    with h5py.File(args.model_path, 'a', driver='core') as state:
        vocabulary = _read_vocabulary(args, state)

        if args.num_noise_samples > vocabulary.num_classes():
            print("Number of noise samples ({}) is larger than the number of "
                  "classes. This doesn't make sense and would cause unigram "
                  "sampling to fail.".format(args.num_noise_samples))
            sys.exit(1)

        num_training_files = len(args.training_set)
        if len(args.weights) > num_training_files:
            print("You specified more weights than training files.")
            sys.exit(1)
        weights = numpy.ones(num_training_files).astype(theano.config.floatX)
        for index, weight in enumerate(args.weights):
            weights[index] = weight
        if len(args.sampling) > num_training_files:
            print("You specified more sampling coefficients than training "
                  "files.")
            sys.exit(1)

        training_options = {
            'batch_size': args.batch_size,
            'sequence_length': args.sequence_length,
            'validation_frequency': args.validation_frequency,
            'patience': args.patience,
            'stopping_criterion': args.stopping_criterion,
            'max_epochs': args.max_epochs,
            'min_epochs': args.min_epochs,
            'max_annealing_count': args.max_annealing_count
        }
        optimization_options = {
            'method': args.optimization_method,
            'epsilon': args.numerical_stability_term,
            'gradient_decay_rate': args.gradient_decay_rate,
            'sqr_gradient_decay_rate': args.sqr_gradient_decay_rate,
            'learning_rate': args.learning_rate,
            'weights': weights,
            'momentum': args.momentum,
            'max_gradient_norm': args.gradient_normalization,
            'num_noise_samples': args.num_noise_samples,
            'noise_sharing': args.noise_sharing,
        }

        log_options(training_options, optimization_options, args)

        logging.info("Creating trainer.")
        trainer = Trainer(training_options, vocabulary, args.training_set,
                          args.sampling)
        trainer.set_logging(args.log_interval)

        logging.info("Building neural network.")
        if args.architecture == 'lstm300' or args.architecture == 'lstm1500':
            architecture = Architecture.from_package(args.architecture)
        else:
            with open(args.architecture, 'rt', encoding='utf-8') as arch_file:
                architecture = Architecture.from_description(arch_file)

        default_device = get_default_device(args.default_device)
        network = Network(architecture,
                          vocabulary,
                          trainer.class_prior_probs,
                          default_device=default_device,
                          profile=args.profile)

        network.set_sampling(args.noise_distribution, args.noise_dampening,
                             args.noise_sharing)

        logging.info("Building optimizer.")
        exclude_id = vocabulary.word_to_id['<unk>'] if args.exclude_unk \
                     else None
        epsilon = args.numerical_stability_term
        if args.cost == 'cross-entropy':
            cost_function = CrossEntropyCost(network, exclude_id,
                                             args.l1_regularization,
                                             args.l2_regularization, epsilon)
        elif args.cost == 'nce':
            cost_function = NCECost(network, exclude_id,
                                    args.l1_regularization,
                                    args.l2_regularization, epsilon)
        else:
            assert args.cost == 'blackout'
            cost_function = BlackoutCost(network, exclude_id,
                                         args.l1_regularization,
                                         args.l2_regularization, epsilon)
        try:
            optimizer = create_optimizer(optimization_options,
                                         network,
                                         cost_function,
                                         profile=args.profile)
        except theano.gradient.DisconnectedInputError as e:
            print("Cannot train the neural network because some of the "
                  "parameters are disconnected from the output. Make sure all "
                  "the layers are correctly connected in the network "
                  "architecture. The error message was: `{}´".format(e))

        if args.print_graph:
            print("Cost function computation graph:")
            theano.printing.debugprint(optimizer.gradient_update_function)

        trainer.initialize(network, state, optimizer, args.load_and_train)

        if args.validation_file is not None:
            logging.info("Building text scorer for cross-validation.")
            scorer = TextScorer(network,
                                use_shortlist=True,
                                exclude_unk=args.exclude_unk,
                                profile=args.profile)
            logging.info("Validation text: %s", args.validation_file.name)
            validation_mmap = mmap.mmap(args.validation_file.fileno(),
                                        0,
                                        prot=mmap.PROT_READ)
            validation_iter = \
                LinearBatchIterator(validation_mmap,
                                    vocabulary,
                                    batch_size=args.batch_size,
                                    max_sequence_length=args.sequence_length,
                                    map_oos_to_unk=False)
            trainer.set_validation(validation_iter, scorer)
        else:
            logging.info("Cross-validation will not be performed.")
            validation_iter = None

        logging.info("Training neural network.")
        trainer.train()

        if 'layers' not in state.keys():
            print("The model has not been trained. No cross-validations were "
                  "performed or training did not improve the model.")
        elif validation_iter is not None:
            network.set_state(state)
            perplexity = scorer.compute_perplexity(validation_iter)
            print("Best validation set perplexity:", perplexity)
Пример #16
0
def train(args):
    numpy.random.seed(args.random_seed)

    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        raise ValueError("Invalid logging level requested: " + args.log_level)
    log_format = '%(asctime)s %(funcName)s: %(message)s'
    if args.log_file == '-':
        logging.basicConfig(stream=sys.stdout, format=log_format, level=log_level)
    else:
        logging.basicConfig(filename=log_file, format=log_format, level=log_level)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    with h5py.File(args.model_path, 'a', driver='core') as state:
        if state.keys():
            print("Reading vocabulary from existing network state.")
            sys.stdout.flush()
            vocabulary = Vocabulary.from_state(state)
        elif args.vocabulary is None:
            print("Constructing vocabulary from training set.")
            sys.stdout.flush()
            vocabulary = Vocabulary.from_corpus(args.training_set,
                                                args.num_classes)
            for training_file in args.training_set:
                training_file.seek(0)
            vocabulary.get_state(state)
        else:
            print("Reading vocabulary from {}.".format(args.vocabulary))
            sys.stdout.flush()
            with open(args.vocabulary, 'rt', encoding='utf-8') as vocab_file:
                vocabulary = Vocabulary.from_file(vocab_file,
                                                  args.vocabulary_format)
                if args.vocabulary_format == 'classes':
                    print("Computing class membership probabilities from "
                          "unigram word counts.")
                    sys.stdout.flush()
                    vocabulary.compute_probs(args.training_set)
            vocabulary.get_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())

        print("Building neural network.")
        sys.stdout.flush()
        if args.architecture == 'lstm300' or args.architecture == 'lstm1500':
            architecture = Architecture.from_package(args.architecture)
        else:
            with open(args.architecture, 'rt', encoding='utf-8') as arch_file:
                architecture = Architecture.from_description(arch_file)
        network = Network(vocabulary, architecture, profile=args.profile)

        sys.stdout.flush()
        if args.unk_penalty is None:
            ignore_unk = False
            unk_penalty = None
        elif args.unk_penalty == 0:
            ignore_unk = True
            unk_penalty = None
        else:
            ignore_unk = False
            unk_penalty = args.unk_penalty

        num_training_files = len(args.training_set)
        if len(args.weights) > num_training_files:
            print("You specified more weights than training files.")
            sys.exit(1)
        weights = numpy.ones(num_training_files).astype(theano.config.floatX)
        for index, weight in enumerate(args.weights):
            weights[index] = weight

        print("Building text scorer.")
        scorer = TextScorer(network, ignore_unk, unk_penalty, args.profile)

        validation_mmap = mmap.mmap(args.validation_file.fileno(),
                                    0,
                                    prot=mmap.PROT_READ)
        validation_iter = LinearBatchIterator(validation_mmap,
                                              vocabulary,
                                              batch_size=32)

        optimization_options = {
            'method': args.optimization_method,
            'epsilon': args.numerical_stability_term,
            'gradient_decay_rate': args.gradient_decay_rate,
            'sqr_gradient_decay_rate': args.sqr_gradient_decay_rate,
            'learning_rate': args.learning_rate,
            'weights': weights,
            'momentum': args.momentum,
            'max_gradient_norm': args.gradient_normalization,
            'ignore_unk': ignore_unk,
            'unk_penalty': unk_penalty
        }
        logging.debug("OPTIMIZATION OPTIONS")
        for option_name, option_value in optimization_options.items():
            if type(option_value) is list:
                value_str = ', '.join(str(x) for x in option_value)
                logging.debug("%s: [%s]", option_name, value_str)
            else:
                logging.debug("%s: %s", option_name, str(option_value))

        training_options = {
            'strategy': args.training_strategy,
            'batch_size': args.batch_size,
            'sequence_length': args.sequence_length,
            'validation_frequency': args.validation_frequency,
            'patience': args.patience,
            'stopping_criterion': args.stopping_criterion,
            'max_epochs': args.max_epochs,
            'min_epochs': args.min_epochs,
            'max_annealing_count': args.max_annealing_count
        }
        logging.debug("TRAINING OPTIONS")
        for option_name, option_value in training_options.items():
            logging.debug("%s: %s", option_name, str(option_value))

        print("Building neural network trainer.")
        sys.stdout.flush()
        if len(args.sampling) > len(args.training_set):
            print("You specified more sampling coefficients than training "
                  "files.")
            sys.exit(1)
        trainer = create_trainer(
            training_options, optimization_options,
            network, vocabulary, scorer,
            args.training_set, args.sampling, validation_iter,
            state, args.profile)
        trainer.set_logging(args.log_interval)

        print("Training neural network.")
        sys.stdout.flush()
        trainer.run()

        if not state.keys():
            print("The model has not been trained.")
        else:
            network.set_state(state)
            perplexity = scorer.compute_perplexity(validation_iter)
            print("Best validation set perplexity:", perplexity)
Пример #17
0
def train(args):
    numpy.random.seed(args.random_seed)

    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        print("Invalid logging level requested:", args.log_level)
        sys.exit(1)
    log_format = "%(asctime)s %(funcName)s: %(message)s"
    if args.log_file == "-":
        logging.basicConfig(stream=sys.stdout, format=log_format, level=log_level)
    else:
        logging.basicConfig(filename=log_file, format=log_format, level=log_level)

    if args.debug:
        theano.config.compute_test_value = "warn"
        print("Enabled computing test values for tensor variables.")
        print("Warning: GpuArray backend will fail random number generation!")
    else:
        theano.config.compute_test_value = "off"
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    with h5py.File(args.model_path, "a", driver="core") as state:
        if state.keys():
            print("Reading vocabulary from existing network state.")
            sys.stdout.flush()
            vocabulary = Vocabulary.from_state(state)
        elif args.vocabulary is None:
            print("Constructing vocabulary from training set.")
            sys.stdout.flush()
            vocabulary = Vocabulary.from_corpus(args.training_set, args.num_classes)
            for training_file in args.training_set:
                training_file.seek(0)
            vocabulary.get_state(state)
        else:
            print("Reading vocabulary from {}.".format(args.vocabulary))
            sys.stdout.flush()
            with open(args.vocabulary, "rt", encoding="utf-8") as vocab_file:
                vocabulary = Vocabulary.from_file(vocab_file, args.vocabulary_format)
                if args.vocabulary_format == "classes":
                    print("Computing class membership probabilities from " "unigram word counts.")
                    sys.stdout.flush()
                    vocabulary.compute_probs(args.training_set)
            vocabulary.get_state(state)
        print("Number of words in vocabulary:", vocabulary.num_words())
        print("Number of word classes:", vocabulary.num_classes())

        if args.num_noise_samples > vocabulary.num_classes():
            print(
                "Number of noise samples ({}) is larger than the number of "
                "classes. This doesn't make sense and would cause sampling "
                "to fail.".format(args.num_noise_samples)
            )
            sys.exit(1)

        if args.unk_penalty is None:
            ignore_unk = False
            unk_penalty = None
        elif args.unk_penalty == 0:
            ignore_unk = True
            unk_penalty = None
        else:
            ignore_unk = False
            unk_penalty = args.unk_penalty

        num_training_files = len(args.training_set)
        if len(args.weights) > num_training_files:
            print("You specified more weights than training files.")
            sys.exit(1)
        weights = numpy.ones(num_training_files).astype(theano.config.floatX)
        for index, weight in enumerate(args.weights):
            weights[index] = weight

        training_options = {
            "batch_size": args.batch_size,
            "sequence_length": args.sequence_length,
            "validation_frequency": args.validation_frequency,
            "patience": args.patience,
            "stopping_criterion": args.stopping_criterion,
            "max_epochs": args.max_epochs,
            "min_epochs": args.min_epochs,
            "max_annealing_count": args.max_annealing_count,
        }
        logging.debug("TRAINING OPTIONS")
        for option_name, option_value in training_options.items():
            logging.debug("%s: %s", option_name, str(option_value))

        optimization_options = {
            "method": args.optimization_method,
            "epsilon": args.numerical_stability_term,
            "gradient_decay_rate": args.gradient_decay_rate,
            "sqr_gradient_decay_rate": args.sqr_gradient_decay_rate,
            "learning_rate": args.learning_rate,
            "weights": weights,
            "momentum": args.momentum,
            "max_gradient_norm": args.gradient_normalization,
            "cost_function": args.cost,
            "num_noise_samples": args.num_noise_samples,
            "noise_sharing": args.noise_sharing,
            "ignore_unk": ignore_unk,
            "unk_penalty": unk_penalty,
        }
        logging.debug("OPTIMIZATION OPTIONS")
        for option_name, option_value in optimization_options.items():
            if type(option_value) is list:
                value_str = ", ".join(str(x) for x in option_value)
                logging.debug("%s: [%s]", option_name, value_str)
            else:
                logging.debug("%s: %s", option_name, str(option_value))

        if len(args.sampling) > len(args.training_set):
            print("You specified more sampling coefficients than training " "files.")
            sys.exit(1)

        print("Creating trainer.")
        sys.stdout.flush()
        trainer = Trainer(training_options, vocabulary, args.training_set, args.sampling)
        trainer.set_logging(args.log_interval)

        print("Building neural network.")
        sys.stdout.flush()
        if args.architecture == "lstm300" or args.architecture == "lstm1500":
            architecture = Architecture.from_package(args.architecture)
        else:
            with open(args.architecture, "rt", encoding="utf-8") as arch_file:
                architecture = Architecture.from_description(arch_file)

        network = Network(
            architecture,
            vocabulary,
            trainer.class_prior_probs,
            args.noise_dampening,
            default_device=args.default_device,
            profile=args.profile,
        )

        print("Compiling optimization function.")
        sys.stdout.flush()
        optimizer = create_optimizer(optimization_options, network, device=args.default_device, profile=args.profile)

        if args.print_graph:
            print("Cost function computation graph:")
            theano.printing.debugprint(optimizer.gradient_update_function)

        trainer.initialize(network, state, optimizer)

        if not args.validation_file is None:
            print("Building text scorer for cross-validation.")
            sys.stdout.flush()
            scorer = TextScorer(network, ignore_unk, unk_penalty, args.profile)
            print("Validation text:", args.validation_file.name)
            validation_mmap = mmap.mmap(args.validation_file.fileno(), 0, prot=mmap.PROT_READ)
            validation_iter = LinearBatchIterator(
                validation_mmap, vocabulary, batch_size=args.batch_size, max_sequence_length=None
            )
            trainer.set_validation(validation_iter, scorer)
        else:
            print("Cross-validation will not be performed.")
            validation_iter = None

        print("Training neural network.")
        sys.stdout.flush()
        trainer.train()

        if not "layers" in state.keys():
            print(
                "The model has not been trained. No cross-validations were "
                "performed or training did not improve the model."
            )
        elif not validation_iter is None:
            network.set_state(state)
            perplexity = scorer.compute_perplexity(validation_iter)
            print("Best validation set perplexity:", perplexity)
Пример #18
0
def decode(args):
    """A function that performs the "theanolm decode" command.

    :type args: argparse.Namespace
    :param args: a collection of command line arguments
    """

    log_file = args.log_file
    log_level = getattr(logging, args.log_level.upper(), None)
    if not isinstance(log_level, int):
        print("Invalid logging level requested:", args.log_level)
        sys.exit(1)
    log_format = '%(asctime)s %(funcName)s: %(message)s'
    if args.log_file == '-':
        logging.basicConfig(stream=sys.stdout,
                            format=log_format,
                            level=log_level)
    else:
        logging.basicConfig(filename=log_file,
                            format=log_format,
                            level=log_level)

    if args.debug:
        theano.config.compute_test_value = 'warn'
    else:
        theano.config.compute_test_value = 'off'
    theano.config.profile = args.profile
    theano.config.profile_memory = args.profile

    network = Network.from_file(args.model_path,
                                mode=Network.Mode(minibatch=False))

    log_scale = 1.0 if args.log_base is None else numpy.log(args.log_base)

    if args.wi_penalty is None:
        wi_penalty = None
    else:
        wi_penalty = args.wi_penalty * log_scale
    if args.unk_penalty is None:
        ignore_unk = False
        unk_penalty = None
    elif args.unk_penalty == 0:
        ignore_unk = True
        unk_penalty = None
    else:
        ignore_unk = False
        unk_penalty = args.unk_penalty
    decoding_options = {
        'nnlm_weight': args.nnlm_weight,
        'lm_scale': args.lm_scale,
        'wi_penalty': wi_penalty,
        'ignore_unk': ignore_unk,
        'unk_penalty': unk_penalty,
        'linear_interpolation': args.linear_interpolation,
        'max_tokens_per_node': args.max_tokens_per_node,
        'beam': args.beam,
        'recombination_order': args.recombination_order
    }
    logging.debug("DECODING OPTIONS")
    for option_name, option_value in decoding_options.items():
        logging.debug("%s: %s", option_name, str(option_value))

    print("Building word lattice decoder.")
    sys.stdout.flush()
    decoder = LatticeDecoder(network, decoding_options)

    # Combine paths from command line and lattice list.
    lattices = args.lattices
    if args.lattice_list is not None:
        lattices.extend(args.lattice_list.readlines())
    lattices = [path.strip() for path in lattices]
    # Ignore empty lines in the lattice list.
    lattices = [x for x in lattices if x]
    # Pick every Ith lattice, if --num-jobs is specified and > 1.
    if args.num_jobs < 1:
        print("Invalid number of jobs specified:", args.num_jobs)
        sys.exit(1)
    if (args.job < 0) or (args.job > args.num_jobs - 1):
        print("Invalid job specified:", args.job)
        sys.exit(1)
    lattices = lattices[args.job::args.num_jobs]

    file_type = TextFileType('r')
    for index, path in enumerate(lattices):
        logging.info("Reading word lattice: %s", path)
        lattice_file = file_type(path)
        lattice = SLFLattice(lattice_file)

        if lattice.utterance_id is not None:
            utterance_id = lattice.utterance_id
        else:
            utterance_id = os.path.basename(lattice_file.name)
        logging.info("Utterance `%s' -- %d/%d of job %d", utterance_id,
                     index + 1, len(lattices), args.job)
        tokens = decoder.decode(lattice)

        for index in range(min(args.n_best, len(tokens))):
            line = format_token(tokens[index], utterance_id,
                                network.vocabulary, log_scale, args.output)
            args.output_file.write(line + "\n")