logvar = enc[-1][latent_dim:] divergence = -0.5 * (np.sum(T.exp(logvar) - logvar + mu**2, 1) - latent_dim) rec = ((X - dec[-1])**2).sum(1) elbo = tf.reduce_mean(rec - divergence) loss = -elbo BS = 100 lr = 0.001 DATA, _ = datasets.make_moons(1000) X = T.Placeholder([BS, 2], 'float32') Z = T.Placeholder([BS, 2], 'float32') G_sample = generator(Z, 2) logits = discriminator(T.concatenate([G_sample[-1], X])) labels = T.concatenate([T.zeros(BS, dtype='int32'), T.ones(BS, dtype='int32')]) disc_loss = losses.sparse_crossentropy_logits(labels, logits[-1]).mean() gen_loss = losses.sparse_crossentropy_logits(1 - labels[:BS], logits[-1][:BS]).mean() masks = T.concatenate([G_sample[1] > 0, G_sample[3] > 0], 1) A = T.stack([ gradients(G_sample[-1][:, 0].sum(), [Z])[0], gradients(G_sample[-1][:, 1].sum(), [Z])[0] ], 1) det = T.abs(T.det(A)) d_variables = sum([l.variables() for l in logits], []) g_variables = sum([l.variables() for l in G_sample], [])
print(image) print(q) asdf T.signal.fft(image, axes=(-1, )) print(image) print(image.get({})) #print(T.gather(image, [0, 1])) #print(T.gather(image, [0, 1]).get({})) #patches = T.extract_image_patches(image, (2, 1)) print(patches.shape) print(patches.get({})[0, 0, 0, 0]) sdf tr = T.Placeholder((10, 10), 'float32') tr2 = T.concatenate([tr, tr], 0) tr3 = tr * 4 print(tr2.roots, tr3.roots) asdf print(patches.get({})) asdf a = T.Placeholder((4, 4), 'float32') print(a.roots) b = a * 3 + a c = b + b + a + b * a print(c.roots) asdf SHAPE = (4, 4)