Пример #1
0
 CommonParams(
     dataset_name="duee1.0",
     experiment_name="commodity_ner",
     train_file=train_text_file,
     eval_file=train_bio_file,
     #test_file=test_file,
     learning_rate=2e-5,
     train_max_seq_length=512,
     eval_max_seq_length=512,
     per_gpu_train_batch_size=4,
     per_gpu_eval_batch_size=4,
     per_gpu_predict_batch_size=4,
     #per_gpu_train_batch_size=16,
     #per_gpu_eval_batch_size=16,
     #per_gpu_predict_batch_size=16,
     seg_len=510,
     seg_backoff=128,
     num_train_epochs=10,
     fold=0,
     #num_augements=3,
     enable_kd=False,
     enable_sda=False,
     sda_teachers=2,
     loss_type="CrossEntropyLoss",
     #  loss_type='FocalLoss',
     focalloss_gamma=2.0,
     model_type="bert",
     model_path=
     #  "/opt/share/pretrained/pytorch/hfl/chinese-electra-large-discriminator",
     r"E:\ai_contest\ccks\mytheta\myRepo\theta-master-0826\theta\examples\LIC2021\model_rbt3",
     #  "/opt/share/pretrained/pytorch/bert-base-chinese",
     fp16=False,
     best_index="f1",
     random_type="np"),
Пример #2
0
 CommonParams(
     dataset_name="xfyun",
     experiment_name="xfyun_ner",
     train_file=train_file,
     eval_file=None,
     test_file=test_file,  #test_spo_file,
     learning_rate=2e-5,
     train_max_seq_length=256,
     eval_max_seq_length=256,
     per_gpu_train_batch_size=16,
     per_gpu_eval_batch_size=16,
     per_gpu_predict_batch_size=16,
     #per_gpu_train_batch_size=16,
     #per_gpu_eval_batch_size=16,
     #per_gpu_predict_batch_size=16,
     seg_len=510,
     seg_backoff=128,
     num_train_epochs=10,
     fold=0,
     num_augements=0,
     enable_kd=False,
     enable_sda=False,
     sda_teachers=2,
     loss_type="CrossEntropyLoss",
     #  loss_type='FocalLoss',
     focalloss_gamma=2.0,
     model_type="bert",
     model_path=
     #  "/opt/share/pretrained/pytorch/hfl/chinese-electra-large-discriminator",
     #r"/opt/kelvin/python/knowledge_graph/theta/theta-master-0826/theta/examples/LIC2021/model_rbt3",
     r"/kaggle/working",
     fp16=False,
     best_index="f1",
     random_type="np"),
Пример #3
0
 CommonParams(
     dataset_name="event_element",
     experiment_name="ccks2020_event_element",
     train_file="data/event_element_train_data_label.txt",
     eval_file="data/event_element_train_data_label.txt",
     test_file="data/event_element_dev_data.txt",
     learning_rate=2e-5,
     train_max_seq_length=512,
     eval_max_seq_length=512,
     per_gpu_train_batch_size=4,
     per_gpu_eval_batch_size=4,
     per_gpu_predict_batch_size=4,
     seg_len=510,
     seg_backoff=128,
     num_train_epochs=10,
     fold=0,
     num_augements=3,
     enable_kd=False,
     enable_sda=False,
     sda_teachers=2,
     loss_type="CrossEntropyLoss",
     #  loss_type='FocalLoss',
     focalloss_gamma=2.0,
     model_type="bert",
     model_path=
     #  "/opt/share/pretrained/pytorch/hfl/chinese-electra-large-discriminator",
     "/kaggle/working",
     #  "/opt/share/pretrained/pytorch/bert-base-chinese",
     fp16=True,
     best_index="f1",
     random_type="np"),
Пример #4
0
experiment_params = GlueAppParams(
    CommonParams(
        dataset_name="o2o_reviews",
        experiment_name="o2o_reviews",
        train_file="data/train.csv",
        eval_file="data/train.csv",
        test_file="data/test_new.csv",
        learning_rate=1e-5,
        train_max_seq_length=256,
        eval_max_seq_length=256,
        per_gpu_train_batch_size=16,
        per_gpu_eval_batch_size=16,
        per_gpu_predict_batch_size=16,
        seg_len=0,
        seg_backoff=0,
        num_train_epochs=10,
        fold=0,
        num_augements=0,
        enable_kd=False,
        enable_sda=False,
        sda_teachers=1,
        loss_type="CrossEntropyLoss",
        model_type="bert",
        model_path="/opt/share/pretrained/pytorch/bert-base-chinese",
        train_rate=0.9,
        fp16=False,
        best_index='f1',
    ), GlueParams(glue_labels=glue_labels, ))

experiment_params.debug()
Пример #5
0
 CommonParams(
     dataset_name="event_classification",
     experiment_name="ccks2020_entity_element",
     train_file="data/event_element_train_data_label.txt",
     eval_file="data/event_element_train_data_label.txt",
     test_file="data/event_element_dev_data.txt",
     learning_rate=1e-5,
     train_max_seq_length=512,
     eval_max_seq_length=512,
     per_gpu_train_batch_size=4,
     per_gpu_eval_batch_size=4,
     per_gpu_predict_batch_size=4,
     seg_len=0,
     seg_backoff=0,
     num_train_epochs=10,
     fold=0,
     num_augements=0,
     enable_kd=False,
     enable_sda=False,
     sda_teachers=3,
     sda_stategy="clone_models",
     sda_empty_first=True,
     loss_type="CrossEntropyLoss",
     #  loss_type="FocalLoss",
     focalloss_gamma=1.5,
     model_type="bert",
     model_path=
     "/opt/share/pretrained/pytorch/roberta-wwm-large-ext-chinese",
     train_rate=0.9,
     fp16=True,
     best_index='f1',
 ),
Пример #6
0
experiment_params = NerAppParams(
    CommonParams(
        dataset_name="medical_entity",
        experiment_name="ccks2020_medical_entity",
        train_file='data/rawdata/ccks2020_2_task1_train/task1_train.txt',
        eval_file='data/rawdata/ccks2020_2_task1_train/task1_train.txt',
        test_file='data/rawdata/ccks2_task1_val/task1_no_val_utf8.txt',
        learning_rate=2e-5,
        train_max_seq_length=512,
        eval_max_seq_length=512,
        per_gpu_train_batch_size=4,
        per_gpu_eval_batch_size=4,
        per_gpu_predict_batch_size=4,
        seg_len=510,
        seg_backoff=128,
        num_train_epochs=10,
        fold=1,
        num_augements=2,
        enable_kd=True,
        enable_sda=False,
        sda_teachers=2,
        loss_type="CrossEntropyLoss",
        model_type="bert",
        model_path=
        #  "/opt/share/pretrained/pytorch/hfl/chinese-electra-large-discriminator",
        "/opt/share/pretrained/pytorch/roberta-wwm-large-ext-chinese",
        fp16=True,
        best_index="f1",
        seed=6636,
        random_type=None),
    NerParams(ner_labels=ner_labels, ner_type='span', no_crf_loss=False))
Пример #7
0
from theta.modeling import Params, CommonParams, NerParams, NerAppParams, log_global_params

experiment_params = NerAppParams(
    CommonParams(
        dataset_name="medical_event",
        experiment_name="ccks2020_medical_event",
        tracking_uri="http://tracking.mlflow:5000",
        train_file='data/task2_train_reformat.tsv',
        eval_file='data/task2_train_reformat.tsv',
        test_file='data/task2_no_val.tsv',
        learning_rate=2e-5,
        train_max_seq_length=512,
        eval_max_seq_length=512,
        per_gpu_train_batch_size=4,
        per_gpu_eval_batch_size=4,
        per_gpu_predict_batch_size=4,
        seg_len=510,
        seg_backoff=128,
        num_train_epochs=10,
        fold=3,
        num_augements=2,
        enable_kd=True,
        loss_type="CrossEntropyLoss",
        model_type="bert",
        model_path=
        "/opt/share/pretrained/pytorch/roberta-wwm-large-ext-chinese",
        fp16=True,
        random_type='np',
    ), NerParams(ner_labels=ner_labels, ner_type='crf', no_crf_loss=True))

experiment_params.debug()
Пример #8
0
 CommonParams(
     dataset_name="entity_typing",
     experiment_name="ccks2020_entity_typing",
     train_file="data/rawdata/ccks_7_1_competition_data/entity_type.txt",
     eval_file="data/rawdata/ccks_7_1_competition_data/entity_type.txt",
     test_file=
     "data/rawdata/ccks_7_1_competition_data/entity_validation.txt",
     learning_rate=1e-5,
     train_max_seq_length=32,
     eval_max_seq_length=32,
     per_gpu_train_batch_size=96,
     per_gpu_eval_batch_size=96,
     per_gpu_predict_batch_size=96,
     seg_len=0,
     seg_backoff=0,
     num_train_epochs=10,
     fold=8,
     num_augements=0,
     enable_kd=False,
     enable_sda=False,
     sda_teachers=3,
     sda_stategy="clone_models",
     sda_empty_first=True,
     #  loss_type="CrossEntropyLoss",
     loss_type="FocalLoss",
     focalloss_gamma=2.0,
     model_type="bert",
     model_path=
     "/opt/share/pretrained/pytorch/roberta-wwm-large-ext-chinese",
     train_rate=0.9,
     fp16=False,
     best_index='f1',
 ),