def test_grad_two_mode_squeezing():
    """Tests the value of the analytic gradient for the S2gate against finite differences"""
    cutoff = 4
    r = 1.0
    theta = np.pi / 8
    T = two_mode_squeezing(r, theta, cutoff)
    Dr, Dtheta = grad_two_mode_squeezing(T, r, theta)
    dr = 0.001
    dtheta = 0.001
    Drp = two_mode_squeezing(r + dr, theta, cutoff)
    Drm = two_mode_squeezing(r - dr, theta, cutoff)
    Dthetap = two_mode_squeezing(r, theta + dtheta, cutoff)
    Dthetam = two_mode_squeezing(r, theta - dtheta, cutoff)
    Drapprox = (Drp - Drm) / (2 * dr)
    Dthetaapprox = (Dthetap - Dthetam) / (2 * dtheta)
    assert np.allclose(Dr, Drapprox, atol=1e-5, rtol=0)
    assert np.allclose(Dtheta, Dthetaapprox, atol=1e-5, rtol=0)
Пример #2
0
def test_two_mode_squeezing_values(tol):
    """Tests the correct construction of the single mode squeezing operation"""
    r = 0.5
    theta = 0.7
    cutoff = 5
    T = two_mode_squeezing(r, theta, cutoff)
    expected = ((np.tanh(r) * np.exp(1j * theta)) ** np.arange(cutoff)) / np.cosh(r)
    assert np.allclose(np.diag(T[:, :, 0, 0]), expected, atol=tol, rtol=0)
def test_S2_selection_rules(tol):
    r"""Tests the selection rules of a two mode squeezing operation.
    If one writes the squeezing gate as :math:`S_2` and its matrix elements as
    :math:`\langle p_0 p_1|S_2|q_0 q_1 \rangle` then these elements are nonzero
    if and only if :math:`p_0 - q_0 = p_1 - q_1`. This test checks that this
    selection rule holds.
    """
    cutoff = 5
    s = np.arcsinh(1.0)
    phi = np.pi / 6
    T = two_mode_squeezing(s, phi, cutoff)
    m = np.arange(cutoff).reshape(-1, 1, 1, 1)
    n = np.arange(cutoff).reshape(1, -1, 1, 1)
    k = np.arange(cutoff).reshape(1, 1, -1, 1)
    l = np.arange(cutoff).reshape(1, 1, 1, -1)

    # create a copy of T, but replace all elements where
    # m+n != k+l with 0.
    S = np.where(m - n != k - l, 0, T)

    # check that S and T remain equal
    assert np.allclose(S, T, atol=tol, rtol=0)