Пример #1
0
def MakeExpoCdf():
    """Generates a plot of the exponential CDF."""

    thinkplot.PrePlot(3)
    for lam in [2.0, 1, 0.5]:
        xs, ps = thinkstats2.RenderExpoCdf(lam, 0, 3.0, 50)
        thinkplot.Plot(xs, ps, label='lam=%g' % lam)

    thinkplot.Save(root='analytic_expo_cdf',
                   title='Exponential CDF',
                   xlabel='x',
                   ylabel='CDF')
Пример #2
0
import nsfg
import first
import analytic

import thinkstats2
import thinkplot

#%% [markdown]
# ## Exponential distribution
#
# Here's what the exponential CDF looks like with a range of parameters.

#%%
thinkplot.PrePlot(3)
for lam in [2.0, 1, 0.5]:
    xs, ps = thinkstats2.RenderExpoCdf(lam, 0, 3.0, 50)
    label = r'$\lambda=%g$' % lam
    thinkplot.Plot(xs, ps, label=label)

thinkplot.Config(title='Exponential CDF',
                 xlabel='x',
                 ylabel='CDF',
                 loc='lower right')

#%% [markdown]
# Here's the distribution of interarrival times from a dataset of birth times.

#%%
df = analytic.ReadBabyBoom()
diffs = df.minutes.diff()
cdf = thinkstats2.Cdf(diffs, label='actual')
Пример #3
0
def CDFVisualDist(cdf):
    xs, ps = cdf.xs, cdf.ps

    # set up subplots
    PrePlot(num=6, cols=3, rows=2)

    # linear plot
    SubPlot(1)
    Cdf(cdf, color='C0')
    Config(xlabel='x', ylabel='CDF', title='Linear Plot')

    # lognormal plot
    SubPlot(2)
    xs_log = np.log10(xs)
    cdf_log = thinkstats2.Cdf(xs_log, ps, label='data')
    median = cdf_log.Percentile(50)
    iqr = thinkstats2.IQRFromCDF(cdf_log)
    std = thinkstats2.StdFromIQR(iqr)
    low = np.nanmin(xs_log[xs_log != -np.inf])
    high = np.nanmax(xs_log[xs_log != np.inf])

    x_norm, p_norm = thinkstats2.RenderNormalCdf(median,
                                                 std,
                                                 low=low,
                                                 high=high)
    Plot(x_norm, p_norm, label='model', color='0.8')

    Cdf(cdf_log, color='C0')
    Config(xlabel='log10 x', ylabel='CDF', title='Lognormal Plot')

    # pareto plot
    SubPlot(3)

    scale = Cdf(cdf, transform='pareto', color='C0')
    Config(xlabel='x', ylabel='CCDF', title='Pareto Plot', **scale)

    # exponential plot
    SubPlot(4)
    mean = cdf.NaNMean()
    lam = 1 / mean
    low = np.nanmin(xs[xs != -np.inf])
    high = np.nanmax(xs[xs != np.inf])
    expo_xs, expo_ps = thinkstats2.RenderExpoCdf(lam, low, high)
    Plot(expo_xs, 1 - expo_ps, label='model', color='0.8')
    scale = Cdf(cdf, transform='exponential', color='C0')
    Config(xlabel='x', ylabel='CCDF', title='Exponential Plot', **scale)

    # normal plot
    SubPlot(5)
    var = cdf.NaNVar()
    std = np.sqrt(var)

    low = mean - 4 * std
    high = mean + 4 * std

    norm_xs, norm_ps = thinkstats2.RenderNormalCdf(mean, std, low, high)
    Cdf(cdf, color='C0')
    Plot(norm_xs, norm_ps, label='model', linewidth=4, color='0.8')
    Config(xlabel='x', ylabel='CDF', title='Normal Plot')

    # weibull plot
    SubPlot(6)
    scale = Cdf(cdf, transform='weibull', color='C0')
    Config(title='weibull transform',
           xlabel='log x',
           ylabel='log log CCDF',
           **scale)
    Show()