Пример #1
0
def xy_completed_bayesian_analysis(xy_fitted_joint_likelihood):

    jl, _, _ = xy_fitted_joint_likelihood

    jl.restore_best_fit()

    model = jl.likelihood_model
    data = jl.data_list

    model.fake.spectrum.main.composite.a_1.set_uninformative_prior(
        Uniform_prior)
    model.fake.spectrum.main.composite.b_1.set_uninformative_prior(
        Uniform_prior)
    model.fake.spectrum.main.composite.F_2.set_uninformative_prior(
        Log_uniform_prior)
    model.fake.spectrum.main.composite.mu_2.set_uninformative_prior(
        Uniform_prior)
    model.fake.spectrum.main.composite.sigma_2.set_uninformative_prior(
        Log_uniform_prior)

    bs = BayesianAnalysis(model, data)

    bs.set_sampler("emcee")

    bs.sampler.setup(n_burn_in=100, n_iterations=100, n_walkers=20)

    samples = bs.sample()

    return bs, samples
Пример #2
0
def xy_completed_bayesian_analysis(xy_fitted_joint_likelihood):

    jl, _, _ = xy_fitted_joint_likelihood

    jl.restore_best_fit()

    model = jl.likelihood_model
    data = jl.data_list

    model.fake.spectrum.main.composite.a_1.set_uninformative_prior(
        Uniform_prior)
    model.fake.spectrum.main.composite.b_1.set_uninformative_prior(
        Uniform_prior)
    model.fake.spectrum.main.composite.F_2.set_uninformative_prior(
        Log_uniform_prior)
    model.fake.spectrum.main.composite.mu_2.set_uninformative_prior(
        Uniform_prior)
    model.fake.spectrum.main.composite.sigma_2.set_uninformative_prior(
        Log_uniform_prior)

    bs = BayesianAnalysis(model, data)

    samples = bs.sample(20, 100, 1000)

    return bs, samples
Пример #3
0
def completed_bn090217206_bayesian_analysis_multicomp(
    fitted_joint_likelihood_bn090217206_nai_multicomp, ):

    jl, _, _ = fitted_joint_likelihood_bn090217206_nai_multicomp

    # This is necessary because other tests/functions might have messed up with the
    # model stored within
    jl.restore_best_fit()

    model = jl.likelihood_model
    data_list = jl.data_list
    spectrum = jl.likelihood_model.bn090217206.spectrum.main.shape

    spectrum.index_1.prior = Uniform_prior(lower_bound=-5.0, upper_bound=5.0)
    spectrum.K_1.prior = Log_uniform_prior(lower_bound=1.0, upper_bound=10)
    spectrum.K_2.prior = Log_uniform_prior(lower_bound=1e-20, upper_bound=10)
    spectrum.kT_2.prior = Log_uniform_prior(lower_bound=1e0, upper_bound=1e3)

    bayes = BayesianAnalysis(model, data_list)

    bayes.set_sampler("emcee")

    bayes.sampler.setup(n_walkers=50,
                        n_burn_in=50,
                        n_iterations=100,
                        seed=1234)

    samples = bayes.sample()

    return bayes, bayes.samples
Пример #4
0
def completed_bn090217206_bayesian_analysis(fitted_joint_likelihood_bn090217206_nai):

    jl, _, _ = fitted_joint_likelihood_bn090217206_nai

    jl.restore_best_fit()

    model = jl.likelihood_model
    data_list = jl.data_list
    powerlaw = jl.likelihood_model.bn090217206.spectrum.main.Powerlaw

    powerlaw.index.prior = Uniform_prior(lower_bound=-5.0, upper_bound=5.0)
    powerlaw.K.prior = Log_uniform_prior(lower_bound=1.0, upper_bound=10)

    bayes = BayesianAnalysis(model, data_list)

    samples = bayes.sample(n_walkers=50, burn_in=50, n_samples=100, seed=1234)

    return bayes, samples
Пример #5
0
def completed_bn090217206_bayesian_analysis(
        fitted_joint_likelihood_bn090217206_nai):

    jl, _, _ = fitted_joint_likelihood_bn090217206_nai

    jl.restore_best_fit()

    model = jl.likelihood_model
    data_list = jl.data_list
    powerlaw = jl.likelihood_model.bn090217206.spectrum.main.Powerlaw

    powerlaw.index.prior = Uniform_prior(lower_bound=-5.0, upper_bound=5.0)
    powerlaw.K.prior = Log_uniform_prior(lower_bound=1.0, upper_bound=10)

    bayes = BayesianAnalysis(model, data_list)

    samples = bayes.sample(n_walkers=50, burn_in=50, n_samples=100, seed=1234)

    return bayes, samples
Пример #6
0
def xy_completed_bayesian_analysis(xy_fitted_joint_likelihood):

    jl, _, _ = xy_fitted_joint_likelihood

    jl.restore_best_fit()

    model = jl.likelihood_model
    data = jl.data_list

    model.fake.spectrum.main.composite.a_1.set_uninformative_prior(Uniform_prior)
    model.fake.spectrum.main.composite.b_1.set_uninformative_prior(Uniform_prior)
    model.fake.spectrum.main.composite.F_2.set_uninformative_prior(Log_uniform_prior)
    model.fake.spectrum.main.composite.mu_2.set_uninformative_prior(Uniform_prior)
    model.fake.spectrum.main.composite.sigma_2.set_uninformative_prior(Log_uniform_prior)

    bs = BayesianAnalysis(model, data)

    samples = bs.sample(20, 100, 1000)

    return bs, samples
Пример #7
0
def completed_bn090217206_bayesian_analysis_multicomp(fitted_joint_likelihood_bn090217206_nai_multicomp):

    jl, _, _ = fitted_joint_likelihood_bn090217206_nai_multicomp

    # This is necessary because other tests/functions might have messed up with the
    # model stored within
    jl.restore_best_fit()

    model = jl.likelihood_model
    data_list = jl.data_list
    spectrum = jl.likelihood_model.bn090217206.spectrum.main.shape

    spectrum.index_1.prior = Uniform_prior(lower_bound=-5.0, upper_bound=5.0)
    spectrum.K_1.prior = Log_uniform_prior(lower_bound=1.0, upper_bound=10)
    spectrum.K_2.prior = Log_uniform_prior(lower_bound=1E-20, upper_bound=10)
    spectrum.kT_2.prior = Log_uniform_prior(lower_bound=1E0, upper_bound=1E3)

    bayes = BayesianAnalysis(model, data_list)

    samples = bayes.sample(n_walkers=50, burn_in=50, n_samples=100, seed=1234)

    return bayes, samples
Пример #8
0
def test_ubinned_poisson_full(event_observation_contiguous, event_observation_split):

    s = Line()

    ps = PointSource("s", 0, 0, spectral_shape=s)

    s.a.bounds = (0, None)
    s.a.value = .1
    s.b.value = .1

    s.a.prior = Log_normal(mu=np.log(10), sigma=1)
    s.b.prior = Gaussian(mu=0, sigma=1)

    m = Model(ps)

    ######
    ######
    ######

    
    ub1 = UnbinnedPoissonLike("test", observation=event_observation_contiguous)

    jl = JointLikelihood(m, DataList(ub1))

    jl.fit(quiet=True)

    np.testing.assert_allclose([s.a.value, s.b.value], [6.11, 1.45], rtol=.5)

    ba = BayesianAnalysis(m, DataList(ub1))

    ba.set_sampler("emcee")

    ba.sampler.setup(n_burn_in=100, n_walkers=20, n_iterations=500)

    ba.sample(quiet=True)

    ba.restore_median_fit()

    np.testing.assert_allclose([s.a.value, s.b.value], [6.11, 1.45], rtol=.5)

    ######
    ######
    ######

    ub2 = UnbinnedPoissonLike("test", observation=event_observation_split)

    jl = JointLikelihood(m, DataList(ub2))

    jl.fit(quiet=True)

    np.testing.assert_allclose([s.a.value, s.b.value], [2., .2], rtol=.5)

    ba = BayesianAnalysis(m, DataList(ub2))

    ba.set_sampler("emcee")

    ba.sampler.setup(n_burn_in=100, n_walkers=20, n_iterations=500)

    ba.sample(quiet=True)

    ba.restore_median_fit()

    np.testing.assert_allclose([s.a.value, s.b.value], [2., .2], rtol=.5)