Пример #1
0
    def from_kwargs(cls, name, filters, **kwargs):
        """
        Example:

        grond = PhotometryLike.from_kwargs('GROND',
                       filters=threeML_filter_library.ESO.GROND,
                       g=(20.93,.23),
                       r=(20.6,0.12),
                       i=(20.4,.07),
                       z=(20.3,.04),
                       J=(20.0,.03),
                       H=(19.8,.03),
                       K=(19.7,.04))


        Magnitudes and errors are entered as keyword arguments where the key is the filter name and
        the argument is a tuple containing the data. You can exclude data for individual filters and
        they will be ignored during the fit.

        NOTE: PhotometryLike expects apparent AB magnitudes. Please calibrate your data to this system


        :param name: plugin name
        :param filters: speclite filters
        :param kwargs: keyword args of band name and tuple(mag, mag error)

        """

        return cls(name, filters,
                   PhotometericObservation.from_kwargs(**kwargs))
Пример #2
0
    def _new_plugin(self, name, x, y, yerr):
        """
        construct a new PhotometryLike plugin. allows for returning a new plugin
        from simulated data set while customizing the constructor
        further down the inheritance tree

        :param name: new name
        :param x: new x
        :param y: new y
        :param yerr: new yerr
        :return: new XYLike


        """

        bands = collections.OrderedDict()

        for i, band in enumerate(self._filter_set.filter_names):

            bands[band] = (y[i], yerr[i])

        new_observation = PhotometericObservation.from_dict(bands)

        new_photo = PhotometryLike(name,
                                   filters=self._filter_set.speclite_filters,
                                   observation=new_observation)

        # apply the current mask

        new_photo._mask = copy.copy(self._mask)

        return new_photo
Пример #3
0
def photo_obs():

    photo_obs = PhotometericObservation.from_kwargs(
        g=(19.92, 0.1),
        r=(19.75, 0.1),
        i=(19.65, 0.1),
        z=(19.56, 0.1),
        J=(19.38, 0.1),
        H=(19.22, 0.1),
        K=(19.07, 0.1),
    )

    fn = Path("grond_observation.h5")

    photo_obs.to_hdf5(fn, overwrite=True)

    restored = PhotometericObservation.from_hdf5(fn)

    yield restored

    fn.unlink()
Пример #4
0
    def from_file(cls, name: str, filters: Union[FilterResponse, FilterSequence], file_name: str):
        """
        Create the a PhotometryLike plugin from a saved HDF5 data file

        :param name: plugin name
        :param filters: speclite filters
        :param file_name: name of the observation file


        """

        return cls(name, filters, PhotometericObservation.from_hdf5(file_name))
Пример #5
0
    def __init__(self, name: str, filters: Union[FilterSequence,
                                                 FilterResponse],
                 observation: PhotometericObservation):
        """
        The photometry plugin is desinged to fit optical/IR/UV photometric data from a given
        filter system. Filters are given in the form a speclite (http://speclite.readthedocs.io)
        FitlerResponse or FilterSequence objects. 3ML contains a vast number of filters via the SVO
        VO service: http://svo2.cab.inta-csic.es/svo/theory/fps/ and can be accessed via:

        from threeML.utils.photometry import get_photometric_filter_library

        filter_lib = get_photometric_filter_library()


        Bands can be turned on and off by setting


        plugin.band_<band name>.on = False/True
        plugin.band_<band name>.off = False/True


        :param name: plugin name
        :param filters: speclite filters
        :param observation: A PhotometricObservation instance
        """

        assert isinstance(observation, PhotometericObservation
                          ), "Observation must be PhotometricObservation"

        # convert names so that only the filters are present
        # speclite uses '-' to separate instrument and filter

        if isinstance(filters, FilterSequence):

            # we have a filter sequence

            names = [fname.split("-")[1] for fname in filters.names]

        elif isinstance(filters, FilterResponse):

            # we have a filter response

            names = [filters.name.split("-")[1]]

            filters = FilterSequence([filters])

        else:

            RuntimeError(
                "filters must be A FilterResponse or a FilterSequence")

        # since we may only have a few of the  filters in use
        # we will mask the filters not needed. The will stay fixed
        # during the life of the plugin

        assert observation.is_compatible_with_filter_set(
            filters), "The data and filters are not congruent"

        mask = observation.get_mask_from_filter_sequence(filters)

        assert mask.sum() > 0, "There are no data in this observation!"

        # create a filter set and use only the bands that were specified

        self._filter_set = FilterSet(filters, mask)

        self._magnitudes = np.zeros(self._filter_set.n_bands)

        self._magnitude_errors = np.zeros(self._filter_set.n_bands)

        # we want to fill the magnitudes in the same order as the
        # the filters

        for i, band in enumerate(self._filter_set.filter_names):

            self._magnitudes[i] = observation[band][0]
            self._magnitude_errors[i] = observation[band][1]

        self._observation = observation

        # pass thru to XYLike

        super(PhotometryLike, self).__init__(
            name=name,
            x=self._filter_set.effective_wavelength,  # dummy x values
            y=self._magnitudes,
            yerr=self._magnitude_errors,
            poisson_data=False,
        )

        # now set up the mask zetting

        for i, band in enumerate(self._filter_set.filter_names):

            node = BandNode(band, i,
                            (self._magnitudes[i], self._magnitude_errors[i]),
                            self._mask)

            setattr(self, f"band_{band}", node)