def plot_regressors_as_RGB(self, fig1, gs, regressors, rsq, b, colors, brightness_scale=3): b_pos = b * (b > 0) # Get positive beta values # Set up colorize function c = Colorize(cmap="indexed", scale=brightness_scale, flag_scale=1) for ii in xrange(0, len(regressors)): ax1 = fig1.add_subplot(gs[0, ii]) c.colors = [colors[ii]] img = c.transform([b_pos[ii, :, :]], mask=rsq, background=self.reference, mixing=0.5) self.image(img) # Plot the unique stimuli in subplots subplot_count = 0 for ii in self.unique_stimuli: b_pos_list = [] color_mat = [] for keys in regressors.iterkeys(): if ii in keys: index = regressors.keys().index(keys) b_pos_list.append(b_pos[index, :, :]) color_mat.append(colors[index]) ax1 = fig1.add_subplot(gs[1, subplot_count]) c.colors = color_mat img = c.transform(b_pos_list, mask=rsq, background=self.reference, mixing=0.5) self.image(img) subplot_count += 1 # Plot the different stimuli parameters in subplots for ii in self.parameters: b_pos_list = [] color_mat = [] for keys in regressors.iterkeys(): if ii in keys: index = regressors.keys().index(keys) b_pos_list.append(b_pos[index, :, :]) color_mat.append(colors[index]) ax1 = fig1.add_subplot(gs[1, subplot_count]) c.colors = color_mat img = c.transform(b_pos_list, mask=rsq, background=self.reference, mixing=0.5) self.image(img) subplot_count += 1 # Plot all together b_pos_list = [] color_mat = [] for ii in xrange(0, len(regressors)): b_pos_list.append(b_pos[ii, :, :]) color_mat.append(colors[ii]) ax1 = fig1.add_subplot(gs[2:4, 1:3]) c.colors = color_mat img = c.transform(b_pos_list, mask=rsq, background=self.reference, mixing=0.5) self.image(img) subplot_count += 1 ax1 = fig1.add_subplot(gs[2, 0]) self.create_colorbar(ax1, regressors, colors)
def plot_all_together_inseperateplot(self, fig1, gs, regressors, rsq, b, colors, brightness_scale=3, gridspecs='[0, 0]'): b_pos = b * (b > 0) # Get positive beta values # Set up colorize function c = Colorize(cmap='indexed', scale=brightness_scale, flag_scale=1) b_pos_list = [] color_mat = [] for ii in xrange(0, len(regressors)): b_pos_list.append(b_pos[ii, :, :]) color_mat.append(colors[ii]) ax1 = eval('fig1.add_subplot(gs' + gridspecs + ')') c.colors = color_mat img = c.transform(b_pos_list, mask=rsq, background=self.reference, mixing=0.5) self.image(img)
def plot_all_together_inseperateplot( self, fig1, gs, regressors, rsq, b, colors, brightness_scale=3, gridspecs="[0, 0]" ): b_pos = b * (b > 0) # Get positive beta values # Set up colorize function c = Colorize(cmap="indexed", scale=brightness_scale, flag_scale=1) b_pos_list = [] color_mat = [] for ii in xrange(0, len(regressors)): b_pos_list.append(b_pos[ii, :, :]) color_mat.append(colors[ii]) ax1 = eval("fig1.add_subplot(gs" + gridspecs + ")") c.colors = color_mat img = c.transform(b_pos_list, mask=rsq, background=self.reference, mixing=0.5) self.image(img)
def plot_regressors_as_RGB(self, fig1, gs, regressors, rsq, b, colors, brightness_scale=3): b_pos = b * (b > 0) # Get positive beta values # Set up colorize function c = Colorize(cmap='indexed', scale=brightness_scale, flag_scale=1) for ii in xrange(0, len(regressors)): ax1 = fig1.add_subplot(gs[0, ii]) c.colors = [colors[ii]] img = c.transform([b_pos[ii, :, :]], mask=rsq, background=self.reference, mixing=0.5) self.image(img) # Plot the unique stimuli in subplots subplot_count = 0 for ii in self.unique_stimuli: b_pos_list = [] color_mat = [] for keys in regressors.iterkeys(): if ii in keys: index = regressors.keys().index(keys) b_pos_list.append(b_pos[index, :, :]) color_mat.append(colors[index]) ax1 = fig1.add_subplot(gs[1, subplot_count]) c.colors = color_mat img = c.transform(b_pos_list, mask=rsq, background=self.reference, mixing=0.5) self.image(img) subplot_count += 1 # Plot the different stimuli parameters in subplots for ii in self.parameters: b_pos_list = [] color_mat = [] for keys in regressors.iterkeys(): if ii in keys: index = regressors.keys().index(keys) b_pos_list.append(b_pos[index, :, :]) color_mat.append(colors[index]) ax1 = fig1.add_subplot(gs[1, subplot_count]) c.colors = color_mat img = c.transform(b_pos_list, mask=rsq, background=self.reference, mixing=0.5) self.image(img) subplot_count += 1 # Plot all together b_pos_list = [] color_mat = [] for ii in xrange(0, len(regressors)): b_pos_list.append(b_pos[ii, :, :]) color_mat.append(colors[ii]) ax1 = fig1.add_subplot(gs[2:4, 1:3]) c.colors = color_mat img = c.transform(b_pos_list, mask=rsq, background=self.reference, mixing=0.5) self.image(img) subplot_count += 1 ax1 = fig1.add_subplot(gs[2, 0]) self.create_colorbar(ax1, regressors, colors)