def test_tssdict_min_date(self): """Tests min date """ # First add a timeseries that is earlier than the others tmp_ts0 = Timeseries() tmp_ts0.key = "First" tmp_ts0.dseries = datetime(2014, 12, 31).toordinal() - np.arange(10) tmp_ts0.tseries = np.arange(10) tmp_ts0.make_arrays() self.tssdict[tmp_ts0.key] = tmp_ts0 self.assertTupleEqual( self.tssdict.min_date(), (date(2014, 12, 22), "First") ) tmp_nodata = Timeseries() tmp_nodata.key = "nothing" tssdict = TssDict() tssdict[tmp_nodata.key] = tmp_nodata self.assertTupleEqual(tssdict.min_date(), (None, "nothing")) tssdict = TssDict() # none timeseries list tssdict["test"] = [ date(2014, 12, 31) + timedelta(days=i) for i in range(10) ] tssdict["test1"] = [ date(2013, 12, 31) + timedelta(days=i) for i in range(10) ] self.assertRaises(ValueError, tssdict.min_date)
def setUp(self): # sample timeseries self.ts_ord = Timeseries() start_date = datetime(2015, 12, 31) # sloppily ends slightly more than two years end_date = datetime(2018, 1, 15) # set up two years of data with weekends skipped date = start_date self.ts_ord.dseries = [] while date <= end_date: if date.weekday() not in [5, 6]: self.ts_ord.dseries.append(date.toordinal()) date += timedelta(days=1) self.ts_ord.tseries = np.arange(len(self.ts_ord.dseries)) self.ts_ord.make_arrays() # timestamp based timeseries self.ts_seconds = Timeseries(frequency="sec") start_date = datetime(2016, 1, 1, 0, 0) end_date = datetime(2016, 1, 4, 0, 0) length = (end_date - start_date).total_seconds() self.ts_seconds.dseries = start_date.timestamp() + np.arange(length) self.ts_seconds.tseries = np.arange(length) self.ts_seconds.make_arrays()
def test_timeseries_from_json(self): """ Tests loading a json formatted string to a timeseries object. """ # NOTE: from_json: only one example tested json_test = """ { "data": [ ["2015-12-31", [0.0, 1.0]], ["2016-01-01", [2.0, 3.0]], ["2016-01-02", [4.0, 5.0]], ["2016-01-03", [6.0, 7.0]], ["2016-01-04", [8.0, 9.0]] ], "header": { "key": "test_key", "columns": ["test"], "frequency": "d", "end_of_period": true } } """ ts_tmp = Timeseries() ts_tmp.from_json(json_test) # header self.assertEqual(ts_tmp.key, "test_key") self.assertListEqual(ts_tmp.columns, ["test"]) self.assertEqual(ts_tmp.frequency, "d") self.assertTrue(ts_tmp.end_of_period) # dseries self.assertListEqual( ts_tmp.date_string_series(), [ "2015-12-31", "2016-01-01", "2016-01-02", "2016-01-03", "2016-01-04", ], ) self.assertListEqual( ts_tmp.tseries.tolist(), [ [0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0], ], )
def test_timeseries_start_date(self): """Tests start date regardless of date sorts and types.""" # get as ordinal self.assertEqual(self.ts.dseries[0], self.ts.start_date()) # reverse - now new to old self.ts.reverse() self.assertEqual(self.ts.dseries[-1], self.ts.start_date()) # get as datetime from ordinal self.assertEqual(date(2015, 12, 31), self.ts.start_date("datetime")) # get as timestamp ts = Timeseries(frequency="sec") self.assertEqual("timestamp", ts.get_date_series_type()) ts.dseries = datetime(2015, 12, 31).timestamp() + np.arange(10) ts.tseries = np.arange(10) self.assertEqual(ts.dseries[0], ts.start_date()) # reverse - now new to old ts.reverse() self.assertEqual(ts.dseries[-1], ts.start_date()) # get as datetime from timestamp self.assertEqual(date(2015, 12, 31), self.ts.start_date("datetime")) # string date self.assertEqual(self.ts.start_date("str"), "2015-12-31") # bad format self.assertRaises(ValueError, self.ts.start_date, "bad")
def test_class_init_(self): """Test class initialization.""" self.assertEqual(len(self.tssdict), 3) tmp_ts0 = Timeseries() tmp_ts1 = Timeseries() tmp_ts2 = Timeseries() tmp_ts0.key = "ts0" tmp_ts1.key = "ts1" tmp_ts2.key = "ts2" tssdict = TssDict([tmp_ts0, tmp_ts1, tmp_ts2]) self.assertEqual(len(tssdict), 3) tssdict = TssDict() tssdict["ts0"] = tmp_ts0 tssdict["ts1"] = tmp_ts1 tssdict["ts2"] = tmp_ts2 self.assertEqual(len(tssdict), 3) tssdict = TssDict( { tmp_ts0.key: tmp_ts0, tmp_ts1.key: tmp_ts1, tmp_ts2.key: tmp_ts2, } ) self.assertEqual(len(tssdict), 3)
def setUp(self): # three timeseries self.ts = Timeseries() self.ts.key = "Test Key" self.ts.columns = ["dog", "cat", "squirrel"] self.start_date = datetime(2021, 1, 29).toordinal() self.ts.dseries = self.start_date + np.arange(5) self.ts.tseries = np.arange(15).reshape((5, 3)) / 10.33 self.ts.make_arrays()
def test_timeseries_series_direction(self): """Tests series direction flags.""" # -1 or +1 self.assertEqual(self.ts.series_direction(), 1) self.ts.reverse() self.assertEqual(self.ts.series_direction(), -1) # one row timeseries ts = Timeseries(dseries=[1], tseries=[1]) self.assertEqual(ts.series_direction(), 0)
def test_timeseries_get_datetime(self): """Tests conversion to datetime from ordinal/timestamps""" tmp_date = self.ts.start_date() self.assertEqual(date(2015, 12, 31), self.ts.get_datetime(tmp_date)) ts = Timeseries(frequency="sec") ts.dseries = datetime(2015, 12, 31).timestamp() + np.arange(10) ts.tseries = np.arange(10) tmp_date = self.ts.start_date() self.assertEqual(date(2015, 12, 31), self.ts.get_datetime(tmp_date))
def setUp(self): # three timeseries self.ts = Timeseries() self.ts.key = "Test Key" self.ts.columns = ["F1"] start_date = datetime(2015, 12, 31).toordinal() self.ts.dseries = start_date + np.arange(10) self.ts.tseries = np.arange(10) self.ts.make_arrays() # longer timeseries self.ts_long = Timeseries() start_date = datetime(2015, 12, 31).toordinal() self.ts_long.dseries = start_date + np.arange(20) self.ts_long.tseries = np.arange(20) self.ts_long.make_arrays() # shorter timeseries self.ts_short = Timeseries() start_date = datetime(2015, 12, 31).toordinal() self.ts_short.dseries = start_date + np.arange(5) self.ts_short.tseries = np.arange(5) self.ts_short.make_arrays() # timeseries with multiple columns self.ts_mult = Timeseries() self.ts_mult.key = "ts_mult_key" start_date = datetime(2015, 12, 31).toordinal() self.ts_mult.dseries = start_date + np.arange(5) self.ts_mult.tseries = np.arange(10).reshape((5, 2)) self.ts_mult.make_arrays()
def test_timeseries_closest_date(self): """Tests returning the closest date in the series to the input date.""" ts = Timeseries() ts.dseries = [] ts.tseries = [] start_date = datetime(2015, 12, 31) for i in range(40): date = start_date + timedelta(days=i) if date.weekday() not in [5, 6]: ts.dseries.append(date.toordinal()) ts.tseries.append(i) ts.make_arrays() date1 = datetime(2016, 1, 7) # existing date within date series date2 = datetime(2016, 1, 16) # date falling on a weekend date3 = datetime(2015, 6, 16) # date prior to start of date series date4 = datetime(2016, 3, 8) # date after to end of date series # as datetime and in the series test_date = ts.closest_date(rowdate=date1, closest=1) self.assertEqual(test_date, date1.toordinal()) # as ordinal and in the series test_date = ts.closest_date(rowdate=date1, closest=1) self.assertEqual(test_date, date1.toordinal()) # as datetime but date not in series test_date = ts.closest_date(rowdate=date2, closest=1) self.assertEqual(test_date, datetime(2016, 1, 18).toordinal()) test_date = ts.closest_date(rowdate=date2, closest=-1) self.assertEqual(test_date, datetime(2016, 1, 15).toordinal()) # as datetime but date not in series, look for earlier date self.assertRaises(ValueError, ts.closest_date, rowdate=date3, closest=-1) # as datetime but date not in series, look for later date self.assertRaises(ValueError, ts.closest_date, rowdate=date4, closest=1)
def test_timeseries__repr__(self): """ <Timeseries> key: Test Key columns: [] frequency: d daterange: ('2016-01-09', '2015-12-31') end-of-period: True shape: (10,) """ str_ts = str(self.ts).split("\n") self.assertEqual("<Timeseries>", str_ts[0]) self.assertEqual("key: Test Key", str_ts[1]) self.assertEqual("columns: ['F1']", str_ts[2]) self.assertEqual("frequency: d", str_ts[3]) self.assertEqual("daterange: ('2015-12-31', '2016-01-09')", str_ts[4]) self.assertEqual("end-of-period: True", str_ts[5]) self.assertEqual("shape: (10,)", str_ts[6]) # test blank Timeseries ts = Timeseries() str_ts = str(ts).split("\n") self.assertEqual("<Timeseries>", str_ts[0]) self.assertEqual("key: ", str_ts[1]) self.assertEqual("columns: None", str_ts[2]) self.assertEqual("frequency: d", str_ts[3]) self.assertEqual("daterange: (None, None)", str_ts[4]) self.assertEqual("end-of-period: True", str_ts[5]) self.assertEqual("shape: None", str_ts[6])
def test_timeseries_years(self): """Tests returning the ending values by years in a dict.""" ts = Timeseries() ts.dseries = datetime(2015, 12, 31).toordinal() + np.arange(1000) ts.tseries = np.arange(1000) self.assertDictEqual( ts.years(), { 2015: 0, 2016: 366, 2017: 731, 2018: 999, }, )
def test_convert(self): """ This function is a pass-through to the convert function. This version basically checks to see if the plumbing works. However, until the design decision is made on how to transition from intraday to monthly, etc., this cannot be considered complete. """ ts = Timeseries() ts.dseries = datetime(2015, 12, 31).toordinal() + np.arange(1000) ts.tseries = np.arange(1000) ts_monthly = ts.convert(new_freq=FREQ_M, include_partial=True) self.assertEqual(ts_monthly.dseries[0], 735963) self.assertEqual(ts_monthly.dseries[1], 735994) self.assertEqual(ts_monthly.dseries[2], 736023) self.assertEqual(ts_monthly.dseries[3], 736054) self.assertEqual(ts_monthly.dseries[4], 736084) self.assertEqual(ts_monthly.dseries[5], 736115) self.assertEqual(ts_monthly.dseries[6], 736145) self.assertEqual(ts_monthly.dseries[7], 736176) self.assertEqual(ts_monthly.dseries[8], 736207) self.assertEqual(ts_monthly.dseries[9], 736237) self.assertEqual(ts_monthly.tseries[0], 0) self.assertEqual(ts_monthly.tseries[1], 31) self.assertEqual(ts_monthly.tseries[2], 60) self.assertEqual(ts_monthly.tseries[3], 91) self.assertEqual(ts_monthly.tseries[4], 121) self.assertEqual(ts_monthly.tseries[5], 152) self.assertEqual(ts_monthly.tseries[6], 182) self.assertEqual(ts_monthly.tseries[7], 213) self.assertEqual(ts_monthly.tseries[8], 244) self.assertEqual(ts_monthly.tseries[9], 274) self.assertEqual(ts_monthly.dseries[-1], 736962) self.assertEqual(ts_monthly.tseries[-1], 999) # bad frequency self.assertRaises(ValueError, ts.convert, new_freq="bad", include_partial=True)
def test_timeseries_months(self): """Tests returning the ending values by months in a dict.""" ts = Timeseries() ts.dseries = datetime(2015, 12, 31).toordinal() + np.arange(1000) ts.tseries = np.arange(1000) self.assertDictEqual( ts.months(), { "2015-12": 0, "2016-01": 31, "2016-02": 60, "2016-03": 91, "2016-04": 121, "2016-05": 152, "2016-06": 182, "2016-07": 213, "2016-08": 244, "2016-09": 274, "2016-10": 305, "2016-11": 335, "2016-12": 366, "2017-01": 397, "2017-02": 425, "2017-03": 456, "2017-04": 486, "2017-05": 517, "2017-06": 547, "2017-07": 578, "2017-08": 609, "2017-09": 639, "2017-10": 670, "2017-11": 700, "2017-12": 731, "2018-01": 762, "2018-02": 790, "2018-03": 821, "2018-04": 851, "2018-05": 882, "2018-06": 912, "2018-07": 943, "2018-08": 974, "2018-09": 999, }, )
def test_date_string_series(self): """Tests returning a list of dates in string format.""" # ordinal default fmt str_series = self.ts.date_string_series() self.assertEqual(str_series[0], "2015-12-31") self.assertEqual(str_series[1], "2016-01-01") self.assertEqual(str_series[2], "2016-01-02") self.assertEqual(str_series[3], "2016-01-03") self.assertEqual(str_series[4], "2016-01-04") # timestamp default fmt ts = Timeseries(frequency="sec") ts.dseries = datetime(2016, 1, 1, 0, 0, 0).timestamp() + np.arange(10) ts.tseries = np.arange(10) ts.make_arrays() str_series = ts.date_string_series() self.assertEqual(str_series[0], "2016-01-01 00:00:00") self.assertEqual(str_series[1], "2016-01-01 00:00:01") self.assertEqual(str_series[2], "2016-01-01 00:00:02") self.assertEqual(str_series[3], "2016-01-01 00:00:03") self.assertEqual(str_series[4], "2016-01-01 00:00:04") # ordinal custom fmt str_series = self.ts.date_string_series("%Y-%b-%d") self.assertEqual(str_series[0], "2015-Dec-31") self.assertEqual(str_series[1], "2016-Jan-01") self.assertEqual(str_series[2], "2016-Jan-02") self.assertEqual(str_series[3], "2016-Jan-03") self.assertEqual(str_series[4], "2016-Jan-04")
def test_class_init_(self): """Test class initialization.""" tmp_ts = Timeseries() # this may change back to lists # self.assertIsInstance(tmp_ts.dseries, list) # self.assertIsInstance(tmp_ts.tseries, list) self.assertIsNone(tmp_ts.columns) self.assertEqual(tmp_ts.frequency, "d") # no particular error checking on frequency values # however, will fail during frequency conversions tmp_ts = Timeseries("m") self.assertEqual(tmp_ts.frequency, "m") # no tseries, dseries ts = Timeseries(dseries=np.arange(10), tseries=np.arange(10)) self.assertListEqual(ts.tseries.tolist(), np.arange(10).tolist()) self.assertListEqual(ts.dseries.tolist(), np.arange(10).tolist())
def setUp(self): # three timeseries self.ts = Timeseries() self.ts.key = "Main" self.ts.columns = ["F1"] start_date = datetime(2015, 12, 31).toordinal() self.ts.dseries = start_date + np.arange(10) self.ts.tseries = np.arange(10) self.ts.make_arrays() # longer timeseries self.ts_long = Timeseries() self.ts_long.key = "Long" start_date = datetime(2015, 12, 31).toordinal() self.ts_long.dseries = start_date + np.arange(20) self.ts_long.tseries = np.arange(20) self.ts_long.make_arrays() # shorter timeseries self.ts_short = Timeseries() self.ts_short.key = "Short" start_date = datetime(2015, 12, 31).toordinal() self.ts_short.dseries = start_date + np.arange(5) self.ts_short.tseries = np.arange(5) self.ts_short.make_arrays() self.tssdict = TssDict([self.ts, self.ts_long, self.ts_short])
def test_timeseries_extend(self): """Tests adding rows to a timeseries.""" # create overlapping timeseries ts = Timeseries() start_date = datetime(2016, 1, 5).toordinal() ts.dseries = start_date + np.arange(10) ts.tseries = np.arange(10, 20) ts.make_arrays() ts_copy = self.ts.clone() self.assertRaises(ValueError, self.ts.extend, ts, overlay=False) # [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] # # [ 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.] ts_copy.extend(ts, overlay=True) self.assertEqual(ts_copy.tseries[4], 4) self.assertEqual(ts_copy.tseries[5], 10) self.assertEqual(ts_copy.tseries[6], 11) self.assertEqual(ts_copy.tseries[7], 12) self.assertEqual(ts_copy.tseries[8], 13) self.assertEqual(ts_copy.tseries[9], 14) self.assertEqual(ts_copy.tseries[10], 15) self.assertEqual(ts_copy.tseries[11], 16)
def test_timeseries_get_duped_dates(self): """Test the dupes works properly.""" ts = self.ts.clone() ts.dseries[3] = ts.dseries[4] ts = Timeseries(frequency="sec") ts.dseries = datetime(2015, 12, 31).timestamp() + np.arange(10) ts.tseries = np.arange(10) ts.make_arrays() ts.dseries[3] = ts.dseries[4]
def test_timeseries_datetime_series(self): """ Tests returning a date series converted to date/datetime objects. """ ord_list = datetime(2016, 1, 1).toordinal() + np.arange(20) tstamp_list = datetime(2016, 1, 1).timestamp() + np.arange(20) ts = Timeseries() ts.dseries = ord_list ts.tseries = np.arange(20) # gilding the lily dt_list = [date(2016, 1, 1) + timedelta(days=i) for i in range(20)] self.assertListEqual(ts.datetime_series(), dt_list) ts.frequency = FREQ_SEC ts.dseries = tstamp_list ts.tseries = np.arange(20) dt_list = [ datetime(2016, 1, 1) + timedelta(seconds=i) for i in range(20) ] self.assertListEqual(ts.datetime_series(), dt_list)
def test_timeseries_fmt_date(self): """Tests formatting str dates based on date types.""" # ordinal date default format ts = Timeseries() str_date = ts.fmt_date(datetime(2016, 3, 1).toordinal(), dt_type=TS_ORDINAL) self.assertEqual(str_date, "2016-03-01") # ordinal date custom format str_date = ts.fmt_date( datetime(2016, 3, 1).toordinal(), dt_type=TS_ORDINAL, dt_fmt="%g %b %d", ) self.assertEqual(str_date, "16 Mar 01") # timestamp date default format ts = Timeseries(frequency=FREQ_SEC) str_date = ts.fmt_date(datetime(2016, 3, 1).timestamp(), dt_type=TS_TIMESTAMP) self.assertEqual(str_date, "2016-03-01 00:00:00") # timestamp date custom format str_date = ts.fmt_date( datetime(2016, 3, 1, 10, 5, 23, 45).timestamp(), dt_type=TS_TIMESTAMP, dt_fmt="%F at %H:%M and %S seconds", ) self.assertEqual(str_date, "2016-03-01 at 10:05 and 23 seconds") # invalid date type self.assertRaises( ValueError, ts.fmt_date, datetime(2020, 1, 29), dt_type=None, dt_fmt="%F", )
def test_tssdict_shortest_ts(self): """ This test tests for the shortest timeseries. """ length, key = self.tssdict.shortest_ts() self.assertTupleEqual( (length, key), (self.ts_short.tseries.shape[0], "Short") ) # zero length self.tssdict["nothing"] = Timeseries() self.assertIsNone(self.tssdict.shortest_ts()) del self.tssdict["nothing"] # bad data self.tssdict["bad"] = "something else" self.assertRaises(ValueError, self.tssdict.shortest_ts)
def test_header(self): """Tests whether header data is complete.""" ts = Timeseries( key="test", columns=["this", "is", "a", "test"], frequency="d", end_of_period=True, ) self.assertDictEqual( ts.header(), { "key": "test", "columns": ["this", "is", "a", "test"], "frequency": "d", "end_of_period": True, }, ) # add extraneous descriptive data ts = Timeseries( key="test", columns=["this", "is", "a", "test"], frequency="d", end_of_period=True, ) ts.description = "Here is a description of the timeseries." self.assertDictEqual( ts.header(), { "key": "test", "columns": ["this", "is", "a", "test"], "frequency": "d", "end_of_period": True, "description": "Here is a description of the timeseries.", }, )
class TestFreqConversions(unittest.TestCase): """ This class tests conversions of timeseries. """ def setUp(self): # sample timeseries self.ts_ord = Timeseries() start_date = datetime(2015, 12, 31) # sloppily ends slightly more than two years end_date = datetime(2018, 1, 15) # set up two years of data with weekends skipped date = start_date self.ts_ord.dseries = [] while date <= end_date: if date.weekday() not in [5, 6]: self.ts_ord.dseries.append(date.toordinal()) date += timedelta(days=1) self.ts_ord.tseries = np.arange(len(self.ts_ord.dseries)) self.ts_ord.make_arrays() # timestamp based timeseries self.ts_seconds = Timeseries(frequency="sec") start_date = datetime(2016, 1, 1, 0, 0) end_date = datetime(2016, 1, 4, 0, 0) length = (end_date - start_date).total_seconds() self.ts_seconds.dseries = start_date.timestamp() + np.arange(length) self.ts_seconds.tseries = np.arange(length) self.ts_seconds.make_arrays() def test_convweekly_period_start(self): """ Test timeseries conversion to weekly with start-of-period data. """ ts = self.ts_ord.clone() ts.end_of_period = False # conv_weekly with defaults ts1 = convert(ts, new_freq=FREQ_W) self.assertEqual(ts1.frequency, FREQ_W) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 4).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 11).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 18).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 25).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 2, 1).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 2, 8).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 8).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_weekly with include_partial=True ts1 = convert(ts, new_freq=FREQ_W, include_partial=True) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 4).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 11).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 18).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 25).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 2, 1).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 2, 8).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 8).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) ts1 = convert(ts, new_freq=FREQ_W, include_partial=False) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 4).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 11).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 18).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 25).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 2, 1).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 2, 8).toordinal()) # ending values self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) ts1 = convert(ts, new_freq=FREQ_W, weekday=2) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 7).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 14).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 21).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 28).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 2, 4).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 2, 11).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 11).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # test lower frequency data self.assertRaises( ValueError, convert, convert(self.ts_ord, new_freq=FREQ_Y), new_freq=FREQ_W, ) def test_convweekly_period_end(self): """ Test timeseries conversion to weekly with end-of-period data. """ ts = self.ts_ord.clone() # conv_weekly with defaults ts1 = convert(ts, new_freq=FREQ_W) self.assertEqual(ts1.frequency, FREQ_W) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 8).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 15).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 22).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 1, 29).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 2, 5).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 12).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_weekly with include_partial=True ts1 = convert(ts, new_freq=FREQ_W, include_partial=True) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 8).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 15).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 22).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 1, 29).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 2, 5).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 12).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_weekly with include_partial=False ts1 = convert(ts, new_freq=FREQ_W, include_partial=False) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 8).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 15).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 22).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 1, 29).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 2, 5).toordinal()) # ending values self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 12).toordinal()) # conv_weekly with weekday=2 ts1 = convert(ts, new_freq=FREQ_W, weekday=2) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 6).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 13).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 20).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 27).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 2, 3).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 2, 10).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 10).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # test lower frequency data self.assertRaises( ValueError, convert, convert(self.ts_ord, new_freq=FREQ_Y), new_freq=FREQ_W, ) def test_convmonthly_period_start(self): """ This function tests converting timeseries to monthly data that have starting period data. """ # daily_monthly(ts, new_freq): ts = self.ts_ord.clone() ts.end_of_period = False # daily_monthly with defaults ts1 = convert(ts, new_freq=FREQ_M) self.assertEqual(ts1.frequency, FREQ_M) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 2, 1).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 3, 1).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 4, 1).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 5, 2).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 6, 1).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2016, 7, 1).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 1).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_monthly with include_partial=True ts1 = convert(ts, new_freq=FREQ_M, include_partial=True) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 2, 1).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 3, 1).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 4, 1).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 5, 2).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 6, 1).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2016, 7, 1).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 1).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_monthly with include_partial=False ts1 = convert(ts, new_freq=FREQ_M, include_partial=False) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 2, 1).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 3, 1).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 4, 1).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 5, 2).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 6, 1).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2016, 7, 1).toordinal()) # ending values self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 1).toordinal()) # test lower frequency data self.assertRaises( ValueError, convert, convert(self.ts_ord, new_freq="y"), new_freq=FREQ_M, ) # timestamp conversion goes here def test_convmonthly_period_end(self): """ This function tests converting timeseries to monthly data that have ending period data. """ ts = self.ts_ord.clone() # daily_monthly with defaults ts1 = convert(ts, new_freq=FREQ_M) self.assertEqual(ts1.frequency, FREQ_M) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 29).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 2, 29).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 3, 31).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 4, 29).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 5, 31).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2016, 6, 30).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2017, 12, 29).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_monthly with include_partial=True ts1 = convert(ts, new_freq=FREQ_M, include_partial=True) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 29).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 2, 29).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 3, 31).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 4, 29).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 5, 31).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2016, 6, 30).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2017, 12, 29).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_monthly with include_partial=False ts1 = convert(ts, new_freq=FREQ_M, include_partial=False) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 29).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 2, 29).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 3, 31).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 4, 29).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2016, 5, 31).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2016, 6, 30).toordinal()) # ending values self.assertEqual(ts1.dseries[-1], datetime(2017, 12, 29).toordinal()) # test lower frequency data self.assertRaises( ValueError, convert, convert(self.ts_ord, new_freq=FREQ_Y), new_freq=FREQ_M, ) # timestamp conversion goes here def test_convquarterly_period_start(self): """ This function tests converting timeseries to quarterly data that have starting period data. """ # conv_quarterly(ts, new_freq): ts = self.ts_ord.clone() ts.end_of_period = False # conv_quarterly with defaults ts1 = convert(ts, new_freq=FREQ_Q) self.assertEqual(ts1.frequency, FREQ_Q) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 4, 1).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 7, 1).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 10, 3).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2017, 1, 2).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2017, 4, 3).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2017, 7, 3).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 1).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_quarterly with include_partial=True ts1 = convert(ts, new_freq=FREQ_Q, include_partial=True) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 4, 1).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 7, 1).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 10, 3).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2017, 1, 2).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2017, 4, 3).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2017, 7, 3).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2018, 1, 1).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_quarterly with include_partial=False ts1 = convert(ts, new_freq=FREQ_Q, include_partial=False) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 4, 1).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 7, 1).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 10, 3).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2017, 1, 2).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2017, 4, 3).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2017, 7, 3).toordinal()) # ending values self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 1).toordinal()) # unresolved design decision # with monthly data # ts1 = convert( # convert(ts, new_freq=FREQ_M, include_partial=False), # new_freq=FREQ_Q, # include_partial=False) # self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1).toordinal()) # self.assertEqual(ts1.dseries[1], datetime(2016, 4, 1).toordinal()) # self.assertEqual(ts1.dseries[2], datetime(2016, 7, 1).toordinal()) # self.assertEqual(ts1.dseries[3], datetime(2016, 10, 3).toordinal()) # self.assertEqual(ts1.dseries[4], datetime(2017, 1, 2).toordinal()) # self.assertEqual(ts1.dseries[5], datetime(2017, 4, 3).toordinal()) # self.assertEqual(ts1.dseries[6], datetime(2017, 7, 3).toordinal()) # ending values # self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 1).toordinal()) # test lower frequency data self.assertRaises( ValueError, convert, convert(self.ts_ord, new_freq=FREQ_Y), new_freq=FREQ_Q, ) # timestamp conversion goes here def test_convquarterly_period_end(self): """ This function tests converting timeseries to quarterly data that have ending period data. """ ts = self.ts_ord.clone() ts1 = convert(ts, new_freq=FREQ_Q) self.assertEqual(ts1.frequency, FREQ_Q) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 3, 31).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 6, 30).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 9, 30).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2017, 3, 31).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2017, 6, 30).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2017, 12, 29).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_quarterly with include_partial=True ts1 = convert(ts, new_freq=FREQ_Q, include_partial=True) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 3, 31).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 6, 30).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 9, 30).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2017, 3, 31).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2017, 6, 30).toordinal()) # ending values self.assertEqual(ts1.dseries[-2], datetime(2017, 12, 29).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_quarterly with include_partial=False ts1 = convert(ts, new_freq=FREQ_Q, include_partial=False) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 3, 31).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 6, 30).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 9, 30).toordinal()) self.assertEqual(ts1.dseries[4], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[5], datetime(2017, 3, 31).toordinal()) self.assertEqual(ts1.dseries[6], datetime(2017, 6, 30).toordinal()) # ending values self.assertEqual(ts1.dseries[-1], datetime(2017, 12, 29).toordinal()) # resolve design decision # ts1 = convert( # convert(ts, new_freq=FREQ_M, include_partial=False), # new_freq=FREQ_Q, # include_partial=False) # self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) # self.assertEqual(ts1.dseries[1], datetime(2016, 3, 31).toordinal()) # self.assertEqual(ts1.dseries[2], datetime(2016, 6, 30).toordinal()) # self.assertEqual(ts1.dseries[3], datetime(2016, 9, 30).toordinal()) # self.assertEqual(ts1.dseries[4], datetime(2016, 12, 30).toordinal()) # self.assertEqual(ts1.dseries[5], datetime(2017, 3, 31).toordinal()) # self.assertEqual(ts1.dseries[6], datetime(2017, 6, 30).toordinal()) # ending values # self.assertEqual(ts1.dseries[-1], datetime(2017, 12, 29).toordinal()) # test lower frequency data # test lower frequency data self.assertRaises( ValueError, convert, convert(self.ts_ord, new_freq=FREQ_Y), new_freq=FREQ_Q, ) # timestamp conversion goes here def test_convyearly_period_start(self): """ This function tests converting timeseries to yearly data that have starting period data. """ ts = self.ts_ord.clone() # conv_yearly with defaults ts1 = convert(ts, new_freq=FREQ_Y) self.assertEqual(ts1.frequency, FREQ_Y) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2017, 12, 29).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_yearly with include_partial=True ts1 = convert(ts, new_freq=FREQ_Y, include_partial=True) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2017, 12, 29).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_yearly with include_partial=False ts1 = convert(ts, new_freq=FREQ_Y, include_partial=False) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2017, 12, 29).toordinal()) # resolve design decision # with monthly data # ts1 = convert( # convert(ts, new_freq=FREQ_M, include_partial=False), # new_freq=FREQ_Y, # include_partial=False) # self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) # self.assertEqual(ts1.dseries[1], datetime(2016, 12, 30).toordinal()) # self.assertEqual(ts1.dseries[2], datetime(2017, 12, 29).toordinal()) # timestamp conversion goes here def test_convyearly_period_end(self): """ This function tests converting timeseries to yearly data that have ending period data. """ ts = self.ts_ord.clone() # conv_yearly with defaults ts1 = convert(ts, new_freq=FREQ_Y) self.assertEqual(ts1.frequency, FREQ_Y) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2017, 12, 29).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_yearly with include_partial=True ts1 = convert(ts, new_freq=FREQ_Y, include_partial=True) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2017, 12, 29).toordinal()) self.assertEqual(ts1.dseries[-1], datetime(2018, 1, 15).toordinal()) # conv_yearly with include_partial=False ts1 = convert(ts, new_freq=FREQ_Y, include_partial=False) self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 12, 30).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2017, 12, 29).toordinal()) # resolve design decision # with monthly data # ts1 = convert( # convert(ts, new_freq=FREQ_M, include_partial=False), # new_freq=FREQ_Y, # include_partial=False) # self.assertEqual(ts1.dseries[0], datetime(2015, 12, 31).toordinal()) # self.assertEqual(ts1.dseries[1], datetime(2016, 12, 30).toordinal()) # self.assertEqual(ts1.dseries[2], datetime(2017, 12, 29).toordinal()) # timestamp conversion goes here def test_convminutes_period_start(self): """ This function tests converting timeseries to minute data that have starting period data. """ ts = self.ts_seconds.clone() ts.end_of_period = False ts1 = convert(ts, new_freq=FREQ_MIN) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1, 0, 0, 0).timestamp()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 1, 0, 1, 0).timestamp()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 1, 0, 2, 0).timestamp()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 1, 0, 3, 0).timestamp()) @unittest.skip def test_convminutes_period_end(self): """ This function tests converting timeseries to minute data that have ending period data. Needs design decision. """ ts = self.ts_seconds.clone() ts1 = convert(ts, new_freq=FREQ_MIN) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1, 0, 0, 59).timestamp()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 1, 0, 1, 59).timestamp()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 1, 0, 2, 59).timestamp()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 1, 0, 3, 59).timestamp()) self.assertEqual(ts1.dseries[4], datetime(2016, 1, 1, 0, 4, 59).timestamp()) self.assertEqual(ts1.dseries[5], datetime(2016, 1, 1, 0, 5, 59).timestamp()) def test_convhours_period_start(self): """ This function tests conversion to hours. Currently there is a problem with this. At the moment it a design decision needs to be made on how to handle end-of-period conversions. """ ts = self.ts_seconds.clone() ts.end_of_period = False ts1 = convert(ts, new_freq=FREQ_H) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1, 0, 0, 0).timestamp()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 1, 1, 0, 0).timestamp()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 1, 2, 0, 0).timestamp()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 1, 3, 0, 0).timestamp()) self.assertEqual(ts1.dseries[4], datetime(2016, 1, 1, 4, 0, 0).timestamp()) self.assertEqual(ts1.dseries[5], datetime(2016, 1, 1, 5, 0, 0).timestamp()) @unittest.skip def test_convhours_period_end(self): """ This function tests conversion to hours. Currently there is a problem with this. At the moment a design decision needs to be made on how to handle end-of-period conversions. """ ts = self.ts_seconds.clone() ts.end_of_period = False ts1 = convert(ts, new_freq=FREQ_H) ts = self.ts_seconds.clone() ts.end_of_period = True ts1 = convert(ts, new_freq=FREQ_H) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1, 0, 0, 0).timestamp()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 1, 1, 0, 0).timestamp()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 1, 2, 0, 0).timestamp()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 1, 3, 0, 0).timestamp()) self.assertEqual(ts1.dseries[4], datetime(2016, 1, 1, 4, 0, 0).timestamp()) self.assertEqual(ts1.dseries[5], datetime(2016, 1, 1, 5, 0, 0).timestamp()) @unittest.skip def test_conv_days(self): """ This function converts timestamp data to a daily frequency with ordinal dates. Currently, there is a problem with this. """ ts = self.ts_seconds.clone() ts.end_of_period = False ts1 = convert(ts, new_freq=FREQ_D) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1, 0, 0, 0).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 2, 0, 0, 0).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 3, 0, 0, 0).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 4, 0, 0, 0).toordinal()) ts = self.ts_seconds.clone() ts.end_of_period = True ts1 = convert(ts, new_freq=FREQ_D) self.assertEqual(ts1.dseries[0], datetime(2016, 1, 1, 0, 0, 0).toordinal()) self.assertEqual(ts1.dseries[1], datetime(2016, 1, 2, 0, 0, 0).toordinal()) self.assertEqual(ts1.dseries[2], datetime(2016, 1, 3, 0, 0, 0).toordinal()) self.assertEqual(ts1.dseries[3], datetime(2016, 1, 4, 0, 0, 0).toordinal())
def test_tssdict_combine(self): """ A batch of tests combining columns to one timeseries. Tests check to see whether the parameters are passed down properly to each timeseries. """ # combine(self, discard=True, pad=None) ts_new, _ = self.tssdict.combine(discard=True, pad=None) # shape corresponds to the shortest length self.assertEqual( ts_new.tseries.shape[0], self.ts_short.tseries.shape[0] ) self.assertEqual(ts_new.tseries.shape[1], 3) # combine(self, discard=False, pad=0) ts_new, _ = self.tssdict.combine(discard=False, pad=0) # shape corresponds to the longest length self.assertEqual( ts_new.tseries.shape[0], self.ts_long.tseries.shape[0] ) self.assertEqual(ts_new.tseries.shape[1], 3) # test with TssList tmp_ts0 = Timeseries() tmp_ts0.key = "First" tmp_ts0.dseries = datetime(2014, 12, 31).toordinal() - np.arange(10) tmp_ts0.tseries = np.arange(10) tmp_ts0.make_arrays() tmp_ts1 = Timeseries() tmp_ts1.key = "Second" tmp_ts1.dseries = datetime(2014, 12, 31).toordinal() - np.arange(10) tmp_ts1.tseries = np.arange(10) tmp_ts1.make_arrays() tssdict = TssDict(TssList([tmp_ts0, tmp_ts1])) ts, _ = tssdict.combine() self.assertTupleEqual(ts.tseries.shape, (10, 2)) # test with TssDict tssdict = TssDict(TssDict([tmp_ts0, tmp_ts1])) ts, _ = tssdict.combine() self.assertTupleEqual(ts.tseries.shape, (10, 2))
class TestTssDict(unittest.TestCase): """ This class tests the class TssDict. """ def setUp(self): # three timeseries self.ts = Timeseries() self.ts.key = "Main" self.ts.columns = ["F1"] start_date = datetime(2015, 12, 31).toordinal() self.ts.dseries = start_date + np.arange(10) self.ts.tseries = np.arange(10) self.ts.make_arrays() # longer timeseries self.ts_long = Timeseries() self.ts_long.key = "Long" start_date = datetime(2015, 12, 31).toordinal() self.ts_long.dseries = start_date + np.arange(20) self.ts_long.tseries = np.arange(20) self.ts_long.make_arrays() # shorter timeseries self.ts_short = Timeseries() self.ts_short.key = "Short" start_date = datetime(2015, 12, 31).toordinal() self.ts_short.dseries = start_date + np.arange(5) self.ts_short.tseries = np.arange(5) self.ts_short.make_arrays() self.tssdict = TssDict([self.ts, self.ts_long, self.ts_short]) def test_class_init_(self): """Test class initialization.""" self.assertEqual(len(self.tssdict), 3) tmp_ts0 = Timeseries() tmp_ts1 = Timeseries() tmp_ts2 = Timeseries() tmp_ts0.key = "ts0" tmp_ts1.key = "ts1" tmp_ts2.key = "ts2" tssdict = TssDict([tmp_ts0, tmp_ts1, tmp_ts2]) self.assertEqual(len(tssdict), 3) tssdict = TssDict() tssdict["ts0"] = tmp_ts0 tssdict["ts1"] = tmp_ts1 tssdict["ts2"] = tmp_ts2 self.assertEqual(len(tssdict), 3) tssdict = TssDict( { tmp_ts0.key: tmp_ts0, tmp_ts1.key: tmp_ts1, tmp_ts2.key: tmp_ts2, } ) self.assertEqual(len(tssdict), 3) def test_tssdict_min_date(self): """Tests min date """ # First add a timeseries that is earlier than the others tmp_ts0 = Timeseries() tmp_ts0.key = "First" tmp_ts0.dseries = datetime(2014, 12, 31).toordinal() - np.arange(10) tmp_ts0.tseries = np.arange(10) tmp_ts0.make_arrays() self.tssdict[tmp_ts0.key] = tmp_ts0 self.assertTupleEqual( self.tssdict.min_date(), (date(2014, 12, 22), "First") ) tmp_nodata = Timeseries() tmp_nodata.key = "nothing" tssdict = TssDict() tssdict[tmp_nodata.key] = tmp_nodata self.assertTupleEqual(tssdict.min_date(), (None, "nothing")) tssdict = TssDict() # none timeseries list tssdict["test"] = [ date(2014, 12, 31) + timedelta(days=i) for i in range(10) ] tssdict["test1"] = [ date(2013, 12, 31) + timedelta(days=i) for i in range(10) ] self.assertRaises(ValueError, tssdict.min_date) def test_tssdict_max_date(self): """Tests max date """ self.assertTupleEqual( self.tssdict.max_date(), (date(2016, 1, 19), "Long") ) tssdict = TssDict() # none timeseries list tssdict["test"] = [ date(2014, 12, 31) + timedelta(days=i) for i in range(10) ] tssdict["test1"] = [ date(2013, 12, 31) + timedelta(days=i) for i in range(10) ] self.assertRaises(ValueError, tssdict.max_date) def test_tssdict_longest_ts(self): """ This test tests for the longest timeseries. """ length, key = self.tssdict.longest_ts() self.assertTupleEqual( (length, key), (self.ts_long.tseries.shape[0], "Long") ) self.tssdict["test"] = "something else" self.assertRaises(ValueError, self.tssdict.longest_ts) def test_tssdict_shortest_ts(self): """ This test tests for the shortest timeseries. """ length, key = self.tssdict.shortest_ts() self.assertTupleEqual( (length, key), (self.ts_short.tseries.shape[0], "Short") ) # zero length self.tssdict["nothing"] = Timeseries() self.assertIsNone(self.tssdict.shortest_ts()) del self.tssdict["nothing"] # bad data self.tssdict["bad"] = "something else" self.assertRaises(ValueError, self.tssdict.shortest_ts) def test_tssdict_combine(self): """ A batch of tests combining columns to one timeseries. Tests check to see whether the parameters are passed down properly to each timeseries. """ # combine(self, discard=True, pad=None) ts_new, _ = self.tssdict.combine(discard=True, pad=None) # shape corresponds to the shortest length self.assertEqual( ts_new.tseries.shape[0], self.ts_short.tseries.shape[0] ) self.assertEqual(ts_new.tseries.shape[1], 3) # combine(self, discard=False, pad=0) ts_new, _ = self.tssdict.combine(discard=False, pad=0) # shape corresponds to the longest length self.assertEqual( ts_new.tseries.shape[0], self.ts_long.tseries.shape[0] ) self.assertEqual(ts_new.tseries.shape[1], 3) # test with TssList tmp_ts0 = Timeseries() tmp_ts0.key = "First" tmp_ts0.dseries = datetime(2014, 12, 31).toordinal() - np.arange(10) tmp_ts0.tseries = np.arange(10) tmp_ts0.make_arrays() tmp_ts1 = Timeseries() tmp_ts1.key = "Second" tmp_ts1.dseries = datetime(2014, 12, 31).toordinal() - np.arange(10) tmp_ts1.tseries = np.arange(10) tmp_ts1.make_arrays() tssdict = TssDict(TssList([tmp_ts0, tmp_ts1])) ts, _ = tssdict.combine() self.assertTupleEqual(ts.tseries.shape, (10, 2)) # test with TssDict tssdict = TssDict(TssDict([tmp_ts0, tmp_ts1])) ts, _ = tssdict.combine() self.assertTupleEqual(ts.tseries.shape, (10, 2)) def test_tssdict_get_values(self): """ Tests the ability to locate the correct row of data. """ date1 = datetime(2016, 1, 4) # existing date within date series date2 = datetime(2016, 1, 16) # date falling on a weekend # get data from existing date self.assertTupleEqual( self.tssdict.get_values( date=date1, keys=["Main", "Long", "Short"] ), ((4.0, 4.0, 4.0), ("Main", "Long", "Short")), ) # attempt to get data from date not present, with notify self.assertRaises( ValueError, self.tssdict.get_values, date2, notify=True ) # attempt to get data from date not present, no notify self.assertTupleEqual( self.tssdict.get_values( date=date2, keys=["Main", "Long", "Short"] ), ((None, 16.0, None), ("Main", "Long", "Short")), ) def test_clone(self): """Verifies that a copy is made.""" tssdict = self.tssdict.clone() # is it a separate object for key, ts_new in tssdict.items(): ts_orig = self.tssdict[key] self.assertNotEqual(ts_new, ts_orig) # do the characteristics match up? self.assertEqual(len(tssdict), 3) def test_to_json(self): """ This function tests sending a TssList to a json format. Using a cheap assumption that since it is simply a dict, that as long as the timeseries are converted, the list is what is needed to check. More needs to be checked. """ json_str = self.tssdict.to_json() self.assertIsInstance(json.loads(json_str), dict) def test_from_dict(self): """ This function tests creating a TssDict instance from a dict of timeseries. The format of the incoming timeseries is to_dict(dt_fmt='str') """ tssdict = TssDict().from_dict( { self.ts.key: self.ts.to_dict(dt_fmt="str"), self.ts_long.key: self.ts_long.to_dict(dt_fmt="str"), self.ts_short.key: self.ts_short.to_dict(dt_fmt="str"), } ) self.assertListEqual( list(self.tssdict.keys()), [self.ts.key, self.ts_long.key, self.ts_short.key], ) def test_from_json(self): """ This function tests building back a tsslist from json fmt string. This relies heavily on the test for Timeseries.from_json. """ json_str = self.tssdict.to_json() tssdict = TssDict() tssdict.from_json(json_str) self.assertEqual(len(tssdict), 3) self.assertTupleEqual(tssdict["Main"].shape(), self.ts.shape()) self.assertTupleEqual(tssdict["Long"].shape(), self.ts_long.shape()) self.assertTupleEqual(tssdict["Short"].shape(), self.ts_short.shape()) test = json.dumps(["test"]) self.assertRaises(ValueError, tssdict.from_json, json.dumps(["test"])) def test_tssdict_do_func(self): """Placeholder for future function.""" pass
def test_timeseries_daterange(self): """Tests returning the starting and ending dates in various formats.""" # ordinal daterange as ordinals, self.assertTupleEqual( self.ts.daterange(), ( datetime(2015, 12, 31).toordinal(), datetime(2016, 1, 9).toordinal(), ), ) # ordinal daterange as string self.assertTupleEqual(self.ts.daterange("str"), ("2015-12-31", "2016-01-09")) # ordinal daterange as datetimes self.assertTupleEqual( self.ts.daterange("datetime"), (date(2015, 12, 31), date(2016, 1, 9)), ) # timestamp tstamp_list = datetime(2016, 1, 1).timestamp() + np.arange(20) ts = Timeseries() ts.frequency = FREQ_SEC ts.dseries = tstamp_list ts.tseries = np.arange(20) # timestamp daterange as timestamps self.assertTupleEqual( ts.daterange(), ( datetime(2016, 1, 1).timestamp(), datetime(2016, 1, 1, 0, 0, 19).timestamp(), ), ) # timestamp daterange as string self.assertTupleEqual( ts.daterange("str"), ("2016-01-01 00:00:00", "2016-01-01 00:00:19"), ) # timestamp daterange as datetimes self.assertTupleEqual( ts.daterange("datetime"), ( datetime(2016, 1, 1, 0, 0, 0), datetime(2016, 1, 1, 0, 0, 19), ), ) # test blank Timeseries ts = Timeseries() self.assertTupleEqual(ts.daterange(), (None, None)) # test invalid format flag self.assertRaises(ValueError, self.ts.daterange, fmt="wrong")
def test_timeseries_row_no(self): """ Tests the ability to locate the correct row. """ ts = Timeseries() ts.dseries = [] ts.tseries = [] start_date = datetime(2015, 12, 31) for i in range(40): date = start_date + timedelta(days=i) if date.weekday() not in [5, 6]: ts.dseries.append(date.toordinal()) ts.tseries.append(i) ts.make_arrays() date1 = datetime(2016, 1, 7) # existing date within date series date2 = datetime(2016, 1, 16) # date falling on a weekend date3 = datetime(2015, 6, 16) # date prior to start of date series date4 = datetime(2016, 3, 8) # date after to end of date series # as datetime row_no = ts.row_no(rowdate=date1, closest=0, no_error=False) self.assertEqual(row_no, 5) # as ordinal row_no = ts.row_no(rowdate=date1.toordinal(), closest=0, no_error=False) self.assertEqual(row_no, 5) # as datetime but date not in series self.assertRaises( ValueError, ts.row_no, rowdate=date2, closest=0, no_error=False, ) row_no = ts.row_no(rowdate=date2, closest=0, no_error=True) self.assertEqual(row_no, -1) # as datetime but date not in series, look for earlier date row_no = ts.row_no(rowdate=date2, closest=-1, no_error=False) self.assertEqual(row_no, 11) # as datetime but date not in series, look for later date row_no = ts.row_no(rowdate=date2, closest=1, no_error=False) self.assertEqual(row_no, 12) # as datetime but date not in series, look for earlier date self.assertRaises( ValueError, ts.row_no, rowdate=date3, closest=-1, no_error=False, ) # as datetime but date not in series, look for later date self.assertRaises( ValueError, ts.row_no, rowdate=date4, closest=1, no_error=False, ) # now change series direction ts.reverse() # as datetime row_no = ts.row_no(rowdate=date1, closest=0, no_error=False) self.assertEqual(row_no, 22) # as ordinal row_no = ts.row_no(rowdate=date1.toordinal(), closest=0, no_error=False) self.assertEqual(row_no, 22) # as datetime but date not in series self.assertRaises( ValueError, ts.row_no, rowdate=date2, closest=0, no_error=False, ) row_no = ts.row_no(rowdate=date2, closest=0, no_error=True) self.assertEqual(row_no, -1) # as datetime but date not in series, look for earlier date row_no = ts.row_no(rowdate=date2, closest=-1, no_error=False) self.assertEqual(row_no, 16) # as datetime but date not in series, look for later date row_no = ts.row_no(rowdate=date2, closest=1, no_error=False) self.assertEqual(row_no, 15) # as datetime but date not in series, look for earlier date self.assertRaises( ValueError, ts.row_no, rowdate=date3, closest=-1, no_error=False, ) # as datetime but date not in series, look for later date self.assertRaises( ValueError, ts.row_no, rowdate=date4, closest=1, no_error=False, )
def test_timeseries_truncdate(self): """ Tests returning a timeseries that is a subset, but selected by date. """ # set up separate timeseries with weekends skipped ts = Timeseries() ts.dseries = [] ts.tseries = [] start_date = datetime(2015, 12, 31) for i in range(40): date = start_date + timedelta(days=i) if date.weekday() not in [5, 6]: ts.dseries.append(date.toordinal()) ts.tseries.append(i) ts.make_arrays() date1 = datetime(2016, 1, 7) # existing date within date series date2 = datetime(2016, 1, 25) # existing date within date series date3 = datetime(2016, 1, 16) # date falling on a weekend # date as datetime ts1 = ts.clone() ts1.truncdate(start=date1, finish=None, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:])) # date as ordinal ts1 = ts.clone() ts1.truncdate(start=date1.toordinal(), finish=None, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:])) # finish date ts1 = ts.clone() ts1.truncdate(start=None, finish=date2, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[:18])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[:18])) # finish date that is not in dseries ts1 = ts.clone() ts1.truncdate(start=None, finish=date3, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[:12])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[:12])) # start and finish date ts1 = ts.clone() ts1.truncdate(start=date1, finish=date2, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:18])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:18])) # start and finish date that is not in dseries ts1 = ts.clone() ts1.truncdate(start=date1, finish=date3, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:12])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:12])) # start and finish date as a list ts1 = ts.clone() ts1.truncdate([date1, date3], new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:12])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:12])) # start and finish date as a tuple ts1 = ts.clone() ts1.truncdate((date1, date3), new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:12])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:12])) # start and finish date as a tuple new=True ts1 = ts.clone() ts2 = ts1.truncdate((date1, date3), new=True) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries)) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries)) self.assertTrue(np.array_equal(ts2.tseries, ts.tseries[5:12])) self.assertTrue(np.array_equal(ts2.dseries, ts.dseries[5:12]))
class TestTimeseries(unittest.TestCase): """ This class tests the base class of Timeseries. """ def setUp(self): # three timeseries self.ts = Timeseries() self.ts.key = "Test Key" self.ts.columns = ["F1"] start_date = datetime(2015, 12, 31).toordinal() self.ts.dseries = start_date + np.arange(10) self.ts.tseries = np.arange(10) self.ts.make_arrays() # longer timeseries self.ts_long = Timeseries() start_date = datetime(2015, 12, 31).toordinal() self.ts_long.dseries = start_date + np.arange(20) self.ts_long.tseries = np.arange(20) self.ts_long.make_arrays() # shorter timeseries self.ts_short = Timeseries() start_date = datetime(2015, 12, 31).toordinal() self.ts_short.dseries = start_date + np.arange(5) self.ts_short.tseries = np.arange(5) self.ts_short.make_arrays() # timeseries with multiple columns self.ts_mult = Timeseries() self.ts_mult.key = "ts_mult_key" start_date = datetime(2015, 12, 31).toordinal() self.ts_mult.dseries = start_date + np.arange(5) self.ts_mult.tseries = np.arange(10).reshape((5, 2)) self.ts_mult.make_arrays() def test_class_init_(self): """Test class initialization.""" tmp_ts = Timeseries() # this may change back to lists # self.assertIsInstance(tmp_ts.dseries, list) # self.assertIsInstance(tmp_ts.tseries, list) self.assertIsNone(tmp_ts.columns) self.assertEqual(tmp_ts.frequency, "d") # no particular error checking on frequency values # however, will fail during frequency conversions tmp_ts = Timeseries("m") self.assertEqual(tmp_ts.frequency, "m") # no tseries, dseries ts = Timeseries(dseries=np.arange(10), tseries=np.arange(10)) self.assertListEqual(ts.tseries.tolist(), np.arange(10).tolist()) self.assertListEqual(ts.dseries.tolist(), np.arange(10).tolist()) @unittest.skip def test_setup(self): """Attempts to prove numpy arrays are created.""" # should be numpy arrays # figure out the problem here self.assertIsInstance(self.ts.tseries, np.array) self.assertIsInstance(self.ts.dseries, np.array) def test_timeseries_series_direction(self): """Tests series direction flags.""" # -1 or +1 self.assertEqual(self.ts.series_direction(), 1) self.ts.reverse() self.assertEqual(self.ts.series_direction(), -1) # one row timeseries ts = Timeseries(dseries=[1], tseries=[1]) self.assertEqual(ts.series_direction(), 0) def test_timeseries_start_date(self): """Tests start date regardless of date sorts and types.""" # get as ordinal self.assertEqual(self.ts.dseries[0], self.ts.start_date()) # reverse - now new to old self.ts.reverse() self.assertEqual(self.ts.dseries[-1], self.ts.start_date()) # get as datetime from ordinal self.assertEqual(date(2015, 12, 31), self.ts.start_date("datetime")) # get as timestamp ts = Timeseries(frequency="sec") self.assertEqual("timestamp", ts.get_date_series_type()) ts.dseries = datetime(2015, 12, 31).timestamp() + np.arange(10) ts.tseries = np.arange(10) self.assertEqual(ts.dseries[0], ts.start_date()) # reverse - now new to old ts.reverse() self.assertEqual(ts.dseries[-1], ts.start_date()) # get as datetime from timestamp self.assertEqual(date(2015, 12, 31), self.ts.start_date("datetime")) # string date self.assertEqual(self.ts.start_date("str"), "2015-12-31") # bad format self.assertRaises(ValueError, self.ts.start_date, "bad") def test_timeseries_end_date(self): """Tests end date regardless of date sorts and types.""" # get as ordinal self.assertEqual(self.ts.dseries[-1], self.ts.end_date()) # reverse - now new to old self.ts.reverse() self.assertEqual(self.ts.dseries[0], self.ts.end_date()) # get as datetime from ordinal self.assertEqual(date(2016, 1, 9), self.ts.end_date("datetime")) # get as timestamp ts = Timeseries(frequency="sec") self.assertEqual("timestamp", ts.get_date_series_type()) ts.dseries = datetime(2015, 12, 31, 0, 0, 0).timestamp() + np.arange(10) ts.tseries = np.arange(10) self.assertEqual(ts.dseries[-1], ts.end_date()) # reverse - now new to old ts.reverse() self.assertEqual(ts.dseries[0], ts.end_date()) # get as datetime from timestamp self.assertEqual(datetime(2015, 12, 31, 0, 0, 9), ts.end_date("datetime")) # string date self.assertEqual(self.ts.end_date("str"), "2016-01-09") # bad format self.assertRaises(ValueError, self.ts.end_date, "bad") def test_timeseries_get_datetime(self): """Tests conversion to datetime from ordinal/timestamps""" tmp_date = self.ts.start_date() self.assertEqual(date(2015, 12, 31), self.ts.get_datetime(tmp_date)) ts = Timeseries(frequency="sec") ts.dseries = datetime(2015, 12, 31).timestamp() + np.arange(10) ts.tseries = np.arange(10) tmp_date = self.ts.start_date() self.assertEqual(date(2015, 12, 31), self.ts.get_datetime(tmp_date)) def test_timeseries_to_dict(self): """Tests conversion of dates and values to a dict.""" tdict = self.ts.to_dict() self.assertDictEqual( tdict["data"], { "735963": 0.0, "735964": 1.0, "735965": 2.0, "735966": 3.0, "735967": 4.0, "735968": 5.0, "735969": 6.0, "735970": 7.0, "735971": 8.0, "735972": 9.0, }, ) # NOTE: to_dict: needs test for datetime series # NOTE: 'to_dict: needs test for string dates def test_header(self): """Tests whether header data is complete.""" ts = Timeseries( key="test", columns=["this", "is", "a", "test"], frequency="d", end_of_period=True, ) self.assertDictEqual( ts.header(), { "key": "test", "columns": ["this", "is", "a", "test"], "frequency": "d", "end_of_period": True, }, ) # add extraneous descriptive data ts = Timeseries( key="test", columns=["this", "is", "a", "test"], frequency="d", end_of_period=True, ) ts.description = "Here is a description of the timeseries." self.assertDictEqual( ts.header(), { "key": "test", "columns": ["this", "is", "a", "test"], "frequency": "d", "end_of_period": True, "description": "Here is a description of the timeseries.", }, ) def test_timeseries_to_list(self): """Tests conversion of dates and values to a list.""" tlist = self.ts.to_list() self.assertListEqual( tlist, [ ("735963", 0.0), ("735964", 1.0), ("735965", 2.0), ("735966", 3.0), ("735967", 4.0), ("735968", 5.0), ("735969", 6.0), ("735970", 7.0), ("735971", 8.0), ("735972", 9.0), ], ) def test_timeseries_to_json(self): """ Tests conversion of dates and values to json format. """ # NOTE: to_json: only one example tested json_test = self.ts_mult.to_json(dt_fmt="str") self.maxDiff = None self.assertDictEqual( json.loads(json_test)["header"], { "end_of_period": True, "key": "ts_mult_key", "columns": None, "frequency": "d", }, ) self.assertListEqual( json.loads(json_test)["data"], [ ["2015-12-31", [0.0, 1.0]], ["2016-01-01", [2.0, 3.0]], ["2016-01-02", [4.0, 5.0]], ["2016-01-03", [6.0, 7.0]], ["2016-01-04", [8.0, 9.0]], ], ) def test_timeseries_from_json(self): """ Tests loading a json formatted string to a timeseries object. """ # NOTE: from_json: only one example tested json_test = """ { "data": [ ["2015-12-31", [0.0, 1.0]], ["2016-01-01", [2.0, 3.0]], ["2016-01-02", [4.0, 5.0]], ["2016-01-03", [6.0, 7.0]], ["2016-01-04", [8.0, 9.0]] ], "header": { "key": "test_key", "columns": ["test"], "frequency": "d", "end_of_period": true } } """ ts_tmp = Timeseries() ts_tmp.from_json(json_test) # header self.assertEqual(ts_tmp.key, "test_key") self.assertListEqual(ts_tmp.columns, ["test"]) self.assertEqual(ts_tmp.frequency, "d") self.assertTrue(ts_tmp.end_of_period) # dseries self.assertListEqual( ts_tmp.date_string_series(), [ "2015-12-31", "2016-01-01", "2016-01-02", "2016-01-03", "2016-01-04", ], ) self.assertListEqual( ts_tmp.tseries.tolist(), [ [0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0], ], ) def test_timeseries_extend(self): """Tests adding rows to a timeseries.""" # create overlapping timeseries ts = Timeseries() start_date = datetime(2016, 1, 5).toordinal() ts.dseries = start_date + np.arange(10) ts.tseries = np.arange(10, 20) ts.make_arrays() ts_copy = self.ts.clone() self.assertRaises(ValueError, self.ts.extend, ts, overlay=False) # [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] # # [ 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.] ts_copy.extend(ts, overlay=True) self.assertEqual(ts_copy.tseries[4], 4) self.assertEqual(ts_copy.tseries[5], 10) self.assertEqual(ts_copy.tseries[6], 11) self.assertEqual(ts_copy.tseries[7], 12) self.assertEqual(ts_copy.tseries[8], 13) self.assertEqual(ts_copy.tseries[9], 14) self.assertEqual(ts_copy.tseries[10], 15) self.assertEqual(ts_copy.tseries[11], 16) def test_timeseries_add(self): """Tests adding values to a timeseries.""" # add same length ts = self.ts.clone() ts_new = self.ts.add(ts) # [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] self.assertEqual(ts_new.tseries[0], 0) self.assertEqual(ts_new.tseries[1], 2) self.assertEqual(ts_new.tseries[2], 4) self.assertEqual(ts_new.tseries[3], 6) self.assertEqual(ts_new.tseries[4], 8) self.assertEqual(ts_new.shape(), self.ts.shape()) # add different length -- match True # [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] # default is match=True self.assertRaises(ValueError, self.ts.add, self.ts_short) self.assertRaises(ValueError, self.ts.add, self.ts_short, match=True) # add different length -- match False ts_new = self.ts.add(self.ts_short, match=False) self.assertEqual(ts_new.tseries[0], 0) self.assertEqual(ts_new.tseries[1], 2) self.assertEqual(ts_new.tseries[2], 4) self.assertEqual(ts_new.tseries[3], 6) self.assertEqual(ts_new.tseries[4], 8) self.assertEqual(ts_new.tseries[5], 5) self.assertEqual(ts_new.tseries[6], 6) # add timeseries with more than one column ts_new = ts_new.combine(ts_new) ts_new1 = ts_new.add(ts_new) self.assertListEqual( ts_new1.tseries.tolist(), [ [0.0, 0.0], [4.0, 4.0], [8.0, 8.0], [12.0, 12.0], [16.0, 16.0], [10.0, 10.0], [12.0, 12.0], [14.0, 14.0], [16.0, 16.0], [18.0, 18.0], ], ) def test_timeseries_replace(self): """Tests replacing values in a timeseries.""" ts = self.ts_short.clone() ts.tseries = ts.tseries**2 ts_new = self.ts.replace(ts) self.assertEqual(ts_new.tseries[0], 0) self.assertEqual(ts_new.tseries[1], 1) self.assertEqual(ts_new.tseries[2], 4) self.assertEqual(ts_new.tseries[3], 9) self.assertEqual(ts_new.tseries[4], 16) self.assertEqual(ts_new.tseries[5], 5) self.assertEqual(ts_new.tseries[6], 6) self.assertEqual(ts_new.tseries[7], 7) self.assertEqual(ts_new.tseries[8], 8) self.assertEqual(ts_new.tseries[9], 9) def test_timeseries_combine_1(self): """A batch of tests adding columns to a timeseries.""" # combine(self, tss, discard=True, pad=None) ts = self.ts.clone() # combine with defaults ts_new = self.ts.combine(ts) self.assertEqual(ts_new.tseries.shape[0], ts.tseries.shape[0]) self.assertEqual(ts_new.tseries.shape[1], 2) for i in range(len(ts_new.tseries)): self.assertEqual(ts_new.tseries[i][1], i) # combine with the same length ts_new = self.ts.combine(ts) self.assertEqual(ts_new.tseries.shape[0], ts.tseries.shape[0]) self.assertEqual(ts_new.tseries.shape[1], 2) for i in range(len(ts_new.tseries)): self.assertEqual(ts_new.tseries[i][1], i) # combine list of timeseries with the same length ts1 = self.ts.clone() ts_new = self.ts.combine([ts, ts1]) self.assertEqual(ts_new.tseries.shape[0], ts.tseries.shape[0]) self.assertEqual(ts_new.tseries.shape[1], 3) for i in range(len(ts_new.tseries)): self.assertEqual(ts_new.tseries[i][1], i) self.assertEqual(ts_new.tseries[i][2], i) # combine with shorter timeseries discard=True ts_short = self.ts_short.clone() ts_new = self.ts.combine(ts_short, discard=True) self.assertEqual(ts_new.tseries.shape[0], ts_short.tseries.shape[0]) self.assertEqual(ts_new.tseries.shape[1], 2) for i in range(len(ts_new.tseries)): self.assertEqual(ts_new.tseries[i][1], i) # combine with shorter timeseries discard=False pad=None self.assertRaises(ValueError, ts.combine, ts_short, discard=False, pad=None) # combine with shorter timeseries discard=False pad=0 ts_new = self.ts.combine(ts_short, discard=False, pad=0) self.assertEqual(ts_new.tseries.shape[0], self.ts.tseries.shape[0]) self.assertEqual(ts_new.tseries.shape[1], 2) for i in range(len(ts_new.tseries)): if i < len(ts_short.tseries): self.assertEqual(ts_new.tseries[i][1], i) else: self.assertEqual(ts_new.tseries[i][1], 0) # combine with longer timeseries discard=True ts_long = self.ts_long.clone() ts_new = self.ts.combine(ts_long, discard=True) self.assertEqual(ts_new.tseries.shape[0], self.ts.tseries.shape[0]) self.assertEqual(ts_new.tseries.shape[1], 2) # combine with longer timeseries discard=False pad=None self.assertRaises(ValueError, ts.combine, ts_long, discard=False, pad=None) # combine with longer timeseries discard=False pad=0 ts_new = self.ts.combine(ts_long, discard=False, pad=0.0) for i in range(len(ts_new.tseries)): if i < len(self.ts.tseries): self.assertEqual(ts_new.tseries[i][0], i) else: self.assertEqual(ts_new.tseries[i][0], 0.0) def test_get_date_series_type(self): """Tests returning an appropriate date series type.""" # Day types self.assertEqual(self.ts.get_date_series_type(), TS_ORDINAL) self.ts.frequeny = "w" self.assertEqual(self.ts.get_date_series_type(), TS_ORDINAL) self.ts.frequeny = "m" self.assertEqual(self.ts.get_date_series_type(), TS_ORDINAL) self.ts.frequeny = "q" self.assertEqual(self.ts.get_date_series_type(), TS_ORDINAL) self.ts.frequeny = "y" self.assertEqual(self.ts.get_date_series_type(), TS_ORDINAL) # Intraday types self.ts.frequency = "h" self.assertEqual(self.ts.get_date_series_type(), TS_TIMESTAMP) self.ts.frequency = "min" self.assertEqual(self.ts.get_date_series_type(), TS_TIMESTAMP) self.ts.frequency = "sec" self.assertEqual(self.ts.get_date_series_type(), TS_TIMESTAMP) def test_date_string_series(self): """Tests returning a list of dates in string format.""" # ordinal default fmt str_series = self.ts.date_string_series() self.assertEqual(str_series[0], "2015-12-31") self.assertEqual(str_series[1], "2016-01-01") self.assertEqual(str_series[2], "2016-01-02") self.assertEqual(str_series[3], "2016-01-03") self.assertEqual(str_series[4], "2016-01-04") # timestamp default fmt ts = Timeseries(frequency="sec") ts.dseries = datetime(2016, 1, 1, 0, 0, 0).timestamp() + np.arange(10) ts.tseries = np.arange(10) ts.make_arrays() str_series = ts.date_string_series() self.assertEqual(str_series[0], "2016-01-01 00:00:00") self.assertEqual(str_series[1], "2016-01-01 00:00:01") self.assertEqual(str_series[2], "2016-01-01 00:00:02") self.assertEqual(str_series[3], "2016-01-01 00:00:03") self.assertEqual(str_series[4], "2016-01-01 00:00:04") # ordinal custom fmt str_series = self.ts.date_string_series("%Y-%b-%d") self.assertEqual(str_series[0], "2015-Dec-31") self.assertEqual(str_series[1], "2016-Jan-01") self.assertEqual(str_series[2], "2016-Jan-02") self.assertEqual(str_series[3], "2016-Jan-03") self.assertEqual(str_series[4], "2016-Jan-04") def test_timeseries_shape(self): """Tests returning the .shape of the tseries array.""" self.assertTupleEqual(self.ts.shape(), self.ts.tseries.shape) self.assertTupleEqual( self.ts.combine(self.ts).shape(), (self.ts.tseries.shape[0], 2), ) def test_sort_by_date(self): """Tests sorting the data by date.""" # sort in reverse date order self.ts.sort_by_date(reverse=True) self.assertEqual(self.ts.dseries[0], datetime(2016, 1, 9).toordinal()) self.assertEqual(self.ts.dseries[1], datetime(2016, 1, 8).toordinal()) self.assertEqual(self.ts.dseries[2], datetime(2016, 1, 7).toordinal()) self.assertEqual(self.ts.dseries[3], datetime(2016, 1, 6).toordinal()) self.assertEqual(self.ts.dseries[4], datetime(2016, 1, 5).toordinal()) self.assertEqual(self.ts.dseries[5], datetime(2016, 1, 4).toordinal()) # sort in date order self.ts.sort_by_date(reverse=False) self.assertEqual(self.ts.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(self.ts.dseries[1], datetime(2016, 1, 1).toordinal()) self.assertEqual(self.ts.dseries[2], datetime(2016, 1, 2).toordinal()) self.assertEqual(self.ts.dseries[3], datetime(2016, 1, 3).toordinal()) self.assertEqual(self.ts.dseries[4], datetime(2016, 1, 4).toordinal()) self.assertEqual(self.ts.dseries[5], datetime(2016, 1, 5).toordinal()) # start with jumble of dates and sort in date order ts = self.ts.clone() ts.dateseries = [ datetime(2016, 1, 9, 0, 0).toordinal(), datetime(2015, 12, 31, 0, 0).toordinal(), datetime(2016, 1, 8, 0, 0).toordinal(), datetime(2016, 1, 4, 0, 0).toordinal(), datetime(2016, 1, 7, 0, 0).toordinal(), datetime(2016, 1, 6, 0, 0).toordinal(), datetime(2016, 1, 1, 0, 0).toordinal(), datetime(2016, 1, 5, 0, 0).toordinal(), datetime(2016, 1, 3, 0, 0).toordinal(), datetime(2016, 1, 2, 0, 0).toordinal(), ] self.ts.sort_by_date(reverse=False, force=True) self.assertEqual(self.ts.dseries[0], datetime(2015, 12, 31).toordinal()) self.assertEqual(self.ts.dseries[1], datetime(2016, 1, 1).toordinal()) self.assertEqual(self.ts.dseries[2], datetime(2016, 1, 2).toordinal()) self.assertEqual(self.ts.dseries[3], datetime(2016, 1, 3).toordinal()) self.assertEqual(self.ts.dseries[4], datetime(2016, 1, 4).toordinal()) self.assertEqual(self.ts.dseries[5], datetime(2016, 1, 5).toordinal()) def test_convert(self): """ This function is a pass-through to the convert function. This version basically checks to see if the plumbing works. However, until the design decision is made on how to transition from intraday to monthly, etc., this cannot be considered complete. """ ts = Timeseries() ts.dseries = datetime(2015, 12, 31).toordinal() + np.arange(1000) ts.tseries = np.arange(1000) ts_monthly = ts.convert(new_freq=FREQ_M, include_partial=True) self.assertEqual(ts_monthly.dseries[0], 735963) self.assertEqual(ts_monthly.dseries[1], 735994) self.assertEqual(ts_monthly.dseries[2], 736023) self.assertEqual(ts_monthly.dseries[3], 736054) self.assertEqual(ts_monthly.dseries[4], 736084) self.assertEqual(ts_monthly.dseries[5], 736115) self.assertEqual(ts_monthly.dseries[6], 736145) self.assertEqual(ts_monthly.dseries[7], 736176) self.assertEqual(ts_monthly.dseries[8], 736207) self.assertEqual(ts_monthly.dseries[9], 736237) self.assertEqual(ts_monthly.tseries[0], 0) self.assertEqual(ts_monthly.tseries[1], 31) self.assertEqual(ts_monthly.tseries[2], 60) self.assertEqual(ts_monthly.tseries[3], 91) self.assertEqual(ts_monthly.tseries[4], 121) self.assertEqual(ts_monthly.tseries[5], 152) self.assertEqual(ts_monthly.tseries[6], 182) self.assertEqual(ts_monthly.tseries[7], 213) self.assertEqual(ts_monthly.tseries[8], 244) self.assertEqual(ts_monthly.tseries[9], 274) self.assertEqual(ts_monthly.dseries[-1], 736962) self.assertEqual(ts_monthly.tseries[-1], 999) # bad frequency self.assertRaises(ValueError, ts.convert, new_freq="bad", include_partial=True) def test_timeseries_reverse(self): """Tests reversing the order of both the dates and values.""" ts = self.ts.clone() ts.reverse() # verify dateseries self.assertEqual(ts.dseries[0], datetime(2016, 1, 9).toordinal()) self.assertEqual(ts.dseries[1], datetime(2016, 1, 8).toordinal()) self.assertEqual(ts.dseries[2], datetime(2016, 1, 7).toordinal()) self.assertEqual(ts.dseries[3], datetime(2016, 1, 6).toordinal()) self.assertEqual(ts.dseries[4], datetime(2016, 1, 5).toordinal()) self.assertEqual(ts.dseries[5], datetime(2016, 1, 4).toordinal()) # verify values self.assertEqual(ts.tseries[0], 9) self.assertEqual(ts.tseries[1], 8) self.assertEqual(ts.tseries[2], 7) self.assertEqual(ts.tseries[3], 6) self.assertEqual(ts.tseries[4], 5) self.assertEqual(ts.tseries[5], 4) # verify with more than one column of data ts = self.ts.clone() ts = ts.combine(ts) ts.reverse() # verify values self.assertEqual(ts.tseries[0][0], 9) self.assertEqual(ts.tseries[1][0], 8) self.assertEqual(ts.tseries[2][0], 7) self.assertEqual(ts.tseries[3][0], 6) self.assertEqual(ts.tseries[4][0], 5) self.assertEqual(ts.tseries[5][0], 4) self.assertEqual(ts.tseries[0][1], 9) self.assertEqual(ts.tseries[1][1], 8) self.assertEqual(ts.tseries[2][1], 7) self.assertEqual(ts.tseries[3][1], 6) self.assertEqual(ts.tseries[4][1], 5) self.assertEqual(ts.tseries[5][1], 4) def test_timeseries_get_diffs(self): """Tests returning a timeseries that is the change in values.""" ts = self.ts.get_diffs() self.assertListEqual( ts.tseries.tolist(), [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ) self.assertEqual(len(ts.tseries), len(self.ts.tseries) - 1) self.assertTrue(np.array_equal(self.ts.dseries[1:], ts.dseries)) def test_timeseries_get_pcdiffs(self): """Tests returning a timeseries that is % change in values.""" ts = self.ts ts.tseries += 1 ts1 = ts.get_pcdiffs() self.assertAlmostEqual(ts1.tseries[0], 100.0) self.assertAlmostEqual(ts1.tseries[1], 50.0) self.assertAlmostEqual(ts1.tseries[2], 33.33333333) self.assertAlmostEqual(ts1.tseries[3], 25.0) self.assertAlmostEqual(ts1.tseries[4], 20.0) self.assertAlmostEqual(ts1.tseries[5], 16.66666667) self.assertEqual(len(ts1.tseries), len(ts.tseries) - 1) self.assertTrue(np.array_equal(self.ts.dseries[1:], ts1.dseries)) def test_timeseries_trunc(self): """Tests returning a timeseries that is a subset.""" ts = self.ts.clone() ts.trunc(start=2, finish=None, new=False) self.assertTrue(np.array_equal(ts.tseries, self.ts.tseries[2:])) self.assertTrue(np.array_equal(ts.dseries, self.ts.dseries[2:])) ts = self.ts.clone() ts.trunc(start=None, finish=2, new=False) self.assertTrue(np.array_equal(ts.tseries, self.ts.tseries[:2])) self.assertTrue(np.array_equal(ts.dseries, self.ts.dseries[:2])) ts = self.ts.clone() ts.trunc(start=2, finish=4, new=False) self.assertTrue(np.array_equal(ts.tseries, self.ts.tseries[2:4])) self.assertTrue(np.array_equal(ts.dseries, self.ts.dseries[2:4])) ts = self.ts.clone() ts1 = ts.trunc(start=2, finish=4, new=True) self.assertTrue(np.array_equal(ts1.tseries, self.ts.tseries[2:4])) self.assertTrue(np.array_equal(ts1.dseries, self.ts.dseries[2:4])) def test_timeseries_truncdate(self): """ Tests returning a timeseries that is a subset, but selected by date. """ # set up separate timeseries with weekends skipped ts = Timeseries() ts.dseries = [] ts.tseries = [] start_date = datetime(2015, 12, 31) for i in range(40): date = start_date + timedelta(days=i) if date.weekday() not in [5, 6]: ts.dseries.append(date.toordinal()) ts.tseries.append(i) ts.make_arrays() date1 = datetime(2016, 1, 7) # existing date within date series date2 = datetime(2016, 1, 25) # existing date within date series date3 = datetime(2016, 1, 16) # date falling on a weekend # date as datetime ts1 = ts.clone() ts1.truncdate(start=date1, finish=None, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:])) # date as ordinal ts1 = ts.clone() ts1.truncdate(start=date1.toordinal(), finish=None, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:])) # finish date ts1 = ts.clone() ts1.truncdate(start=None, finish=date2, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[:18])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[:18])) # finish date that is not in dseries ts1 = ts.clone() ts1.truncdate(start=None, finish=date3, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[:12])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[:12])) # start and finish date ts1 = ts.clone() ts1.truncdate(start=date1, finish=date2, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:18])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:18])) # start and finish date that is not in dseries ts1 = ts.clone() ts1.truncdate(start=date1, finish=date3, new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:12])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:12])) # start and finish date as a list ts1 = ts.clone() ts1.truncdate([date1, date3], new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:12])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:12])) # start and finish date as a tuple ts1 = ts.clone() ts1.truncdate((date1, date3), new=False) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries[5:12])) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries[5:12])) # start and finish date as a tuple new=True ts1 = ts.clone() ts2 = ts1.truncdate((date1, date3), new=True) self.assertTrue(np.array_equal(ts1.tseries, ts.tseries)) self.assertTrue(np.array_equal(ts1.dseries, ts.dseries)) self.assertTrue(np.array_equal(ts2.tseries, ts.tseries[5:12])) self.assertTrue(np.array_equal(ts2.dseries, ts.dseries[5:12])) def test_timeseries_row_no(self): """ Tests the ability to locate the correct row. """ ts = Timeseries() ts.dseries = [] ts.tseries = [] start_date = datetime(2015, 12, 31) for i in range(40): date = start_date + timedelta(days=i) if date.weekday() not in [5, 6]: ts.dseries.append(date.toordinal()) ts.tseries.append(i) ts.make_arrays() date1 = datetime(2016, 1, 7) # existing date within date series date2 = datetime(2016, 1, 16) # date falling on a weekend date3 = datetime(2015, 6, 16) # date prior to start of date series date4 = datetime(2016, 3, 8) # date after to end of date series # as datetime row_no = ts.row_no(rowdate=date1, closest=0, no_error=False) self.assertEqual(row_no, 5) # as ordinal row_no = ts.row_no(rowdate=date1.toordinal(), closest=0, no_error=False) self.assertEqual(row_no, 5) # as datetime but date not in series self.assertRaises( ValueError, ts.row_no, rowdate=date2, closest=0, no_error=False, ) row_no = ts.row_no(rowdate=date2, closest=0, no_error=True) self.assertEqual(row_no, -1) # as datetime but date not in series, look for earlier date row_no = ts.row_no(rowdate=date2, closest=-1, no_error=False) self.assertEqual(row_no, 11) # as datetime but date not in series, look for later date row_no = ts.row_no(rowdate=date2, closest=1, no_error=False) self.assertEqual(row_no, 12) # as datetime but date not in series, look for earlier date self.assertRaises( ValueError, ts.row_no, rowdate=date3, closest=-1, no_error=False, ) # as datetime but date not in series, look for later date self.assertRaises( ValueError, ts.row_no, rowdate=date4, closest=1, no_error=False, ) # now change series direction ts.reverse() # as datetime row_no = ts.row_no(rowdate=date1, closest=0, no_error=False) self.assertEqual(row_no, 22) # as ordinal row_no = ts.row_no(rowdate=date1.toordinal(), closest=0, no_error=False) self.assertEqual(row_no, 22) # as datetime but date not in series self.assertRaises( ValueError, ts.row_no, rowdate=date2, closest=0, no_error=False, ) row_no = ts.row_no(rowdate=date2, closest=0, no_error=True) self.assertEqual(row_no, -1) # as datetime but date not in series, look for earlier date row_no = ts.row_no(rowdate=date2, closest=-1, no_error=False) self.assertEqual(row_no, 16) # as datetime but date not in series, look for later date row_no = ts.row_no(rowdate=date2, closest=1, no_error=False) self.assertEqual(row_no, 15) # as datetime but date not in series, look for earlier date self.assertRaises( ValueError, ts.row_no, rowdate=date3, closest=-1, no_error=False, ) # as datetime but date not in series, look for later date self.assertRaises( ValueError, ts.row_no, rowdate=date4, closest=1, no_error=False, ) def test_timeseries_datetime_series(self): """ Tests returning a date series converted to date/datetime objects. """ ord_list = datetime(2016, 1, 1).toordinal() + np.arange(20) tstamp_list = datetime(2016, 1, 1).timestamp() + np.arange(20) ts = Timeseries() ts.dseries = ord_list ts.tseries = np.arange(20) # gilding the lily dt_list = [date(2016, 1, 1) + timedelta(days=i) for i in range(20)] self.assertListEqual(ts.datetime_series(), dt_list) ts.frequency = FREQ_SEC ts.dseries = tstamp_list ts.tseries = np.arange(20) dt_list = [ datetime(2016, 1, 1) + timedelta(seconds=i) for i in range(20) ] self.assertListEqual(ts.datetime_series(), dt_list) def test_timeseries_fmt_date(self): """Tests formatting str dates based on date types.""" # ordinal date default format ts = Timeseries() str_date = ts.fmt_date(datetime(2016, 3, 1).toordinal(), dt_type=TS_ORDINAL) self.assertEqual(str_date, "2016-03-01") # ordinal date custom format str_date = ts.fmt_date( datetime(2016, 3, 1).toordinal(), dt_type=TS_ORDINAL, dt_fmt="%g %b %d", ) self.assertEqual(str_date, "16 Mar 01") # timestamp date default format ts = Timeseries(frequency=FREQ_SEC) str_date = ts.fmt_date(datetime(2016, 3, 1).timestamp(), dt_type=TS_TIMESTAMP) self.assertEqual(str_date, "2016-03-01 00:00:00") # timestamp date custom format str_date = ts.fmt_date( datetime(2016, 3, 1, 10, 5, 23, 45).timestamp(), dt_type=TS_TIMESTAMP, dt_fmt="%F at %H:%M and %S seconds", ) self.assertEqual(str_date, "2016-03-01 at 10:05 and 23 seconds") # invalid date type self.assertRaises( ValueError, ts.fmt_date, datetime(2020, 1, 29), dt_type=None, dt_fmt="%F", ) def test_timeseries__repr__(self): """ <Timeseries> key: Test Key columns: [] frequency: d daterange: ('2016-01-09', '2015-12-31') end-of-period: True shape: (10,) """ str_ts = str(self.ts).split("\n") self.assertEqual("<Timeseries>", str_ts[0]) self.assertEqual("key: Test Key", str_ts[1]) self.assertEqual("columns: ['F1']", str_ts[2]) self.assertEqual("frequency: d", str_ts[3]) self.assertEqual("daterange: ('2015-12-31', '2016-01-09')", str_ts[4]) self.assertEqual("end-of-period: True", str_ts[5]) self.assertEqual("shape: (10,)", str_ts[6]) # test blank Timeseries ts = Timeseries() str_ts = str(ts).split("\n") self.assertEqual("<Timeseries>", str_ts[0]) self.assertEqual("key: ", str_ts[1]) self.assertEqual("columns: None", str_ts[2]) self.assertEqual("frequency: d", str_ts[3]) self.assertEqual("daterange: (None, None)", str_ts[4]) self.assertEqual("end-of-period: True", str_ts[5]) self.assertEqual("shape: None", str_ts[6]) def test_timeseries_set_zeros(self): """ This function tests whether the timeseries can be set to zeros. """ ts = self.ts.clone() shape = ts.shape() ts.set_zeros() self.assertTrue(np.array_equal(ts.tseries, np.zeros(shape))) ts1 = self.ts.clone().set_zeros(new=True) self.assertTrue(np.array_equal(ts1.tseries, np.zeros(shape))) def test_timeseries_set_ones(self): """ This function tests whether the timeseries can be set to ones. """ ts = self.ts.clone() shape = ts.shape() ts.set_ones() self.assertTrue(np.array_equal(ts.tseries, np.ones(shape))) ts1 = self.ts.clone().set_ones(new=True) self.assertTrue(np.array_equal(ts1.tseries, np.ones(shape))) def test_timeseries_header(self): """Tests returning the non-timeseries data.""" header_dict = self.ts.header() self.assertDictEqual( header_dict, { "frequency": "d", "key": "Test Key", "columns": ["F1"], "end_of_period": True, }, ) def test_timeseries_daterange(self): """Tests returning the starting and ending dates in various formats.""" # ordinal daterange as ordinals, self.assertTupleEqual( self.ts.daterange(), ( datetime(2015, 12, 31).toordinal(), datetime(2016, 1, 9).toordinal(), ), ) # ordinal daterange as string self.assertTupleEqual(self.ts.daterange("str"), ("2015-12-31", "2016-01-09")) # ordinal daterange as datetimes self.assertTupleEqual( self.ts.daterange("datetime"), (date(2015, 12, 31), date(2016, 1, 9)), ) # timestamp tstamp_list = datetime(2016, 1, 1).timestamp() + np.arange(20) ts = Timeseries() ts.frequency = FREQ_SEC ts.dseries = tstamp_list ts.tseries = np.arange(20) # timestamp daterange as timestamps self.assertTupleEqual( ts.daterange(), ( datetime(2016, 1, 1).timestamp(), datetime(2016, 1, 1, 0, 0, 19).timestamp(), ), ) # timestamp daterange as string self.assertTupleEqual( ts.daterange("str"), ("2016-01-01 00:00:00", "2016-01-01 00:00:19"), ) # timestamp daterange as datetimes self.assertTupleEqual( ts.daterange("datetime"), ( datetime(2016, 1, 1, 0, 0, 0), datetime(2016, 1, 1, 0, 0, 19), ), ) # test blank Timeseries ts = Timeseries() self.assertTupleEqual(ts.daterange(), (None, None)) # test invalid format flag self.assertRaises(ValueError, self.ts.daterange, fmt="wrong") def test_timeseries_years(self): """Tests returning the ending values by years in a dict.""" ts = Timeseries() ts.dseries = datetime(2015, 12, 31).toordinal() + np.arange(1000) ts.tseries = np.arange(1000) self.assertDictEqual( ts.years(), { 2015: 0, 2016: 366, 2017: 731, 2018: 999, }, ) def test_timeseries_months(self): """Tests returning the ending values by months in a dict.""" ts = Timeseries() ts.dseries = datetime(2015, 12, 31).toordinal() + np.arange(1000) ts.tseries = np.arange(1000) self.assertDictEqual( ts.months(), { "2015-12": 0, "2016-01": 31, "2016-02": 60, "2016-03": 91, "2016-04": 121, "2016-05": 152, "2016-06": 182, "2016-07": 213, "2016-08": 244, "2016-09": 274, "2016-10": 305, "2016-11": 335, "2016-12": 366, "2017-01": 397, "2017-02": 425, "2017-03": 456, "2017-04": 486, "2017-05": 517, "2017-06": 547, "2017-07": 578, "2017-08": 609, "2017-09": 639, "2017-10": 670, "2017-11": 700, "2017-12": 731, "2018-01": 762, "2018-02": 790, "2018-03": 821, "2018-04": 851, "2018-05": 882, "2018-06": 912, "2018-07": 943, "2018-08": 974, "2018-09": 999, }, ) def test_timeseries_closest_date(self): """Tests returning the closest date in the series to the input date.""" ts = Timeseries() ts.dseries = [] ts.tseries = [] start_date = datetime(2015, 12, 31) for i in range(40): date = start_date + timedelta(days=i) if date.weekday() not in [5, 6]: ts.dseries.append(date.toordinal()) ts.tseries.append(i) ts.make_arrays() date1 = datetime(2016, 1, 7) # existing date within date series date2 = datetime(2016, 1, 16) # date falling on a weekend date3 = datetime(2015, 6, 16) # date prior to start of date series date4 = datetime(2016, 3, 8) # date after to end of date series # as datetime and in the series test_date = ts.closest_date(rowdate=date1, closest=1) self.assertEqual(test_date, date1.toordinal()) # as ordinal and in the series test_date = ts.closest_date(rowdate=date1, closest=1) self.assertEqual(test_date, date1.toordinal()) # as datetime but date not in series test_date = ts.closest_date(rowdate=date2, closest=1) self.assertEqual(test_date, datetime(2016, 1, 18).toordinal()) test_date = ts.closest_date(rowdate=date2, closest=-1) self.assertEqual(test_date, datetime(2016, 1, 15).toordinal()) # as datetime but date not in series, look for earlier date self.assertRaises(ValueError, ts.closest_date, rowdate=date3, closest=-1) # as datetime but date not in series, look for later date self.assertRaises(ValueError, ts.closest_date, rowdate=date4, closest=1) def test_timeseries_get_duped_dates(self): """Test the dupes works properly.""" ts = self.ts.clone() ts.dseries[3] = ts.dseries[4] ts = Timeseries(frequency="sec") ts.dseries = datetime(2015, 12, 31).timestamp() + np.arange(10) ts.tseries = np.arange(10) ts.make_arrays() ts.dseries[3] = ts.dseries[4] def test_items(self): """This function returns a combined date and values list.""" items = [ (date(2015, 12, 31), 0.0), (date(2016, 1, 1), 1.0), (date(2016, 1, 2), 2.0), (date(2016, 1, 3), 3.0), (date(2016, 1, 4), 4.0), (date(2016, 1, 5), 5.0), (date(2016, 1, 6), 6.0), (date(2016, 1, 7), 7.0), (date(2016, 1, 8), 8.0), (date(2016, 1, 9), 9.0), ] self.assertListEqual(self.ts.items(), items) self.assertListEqual( self.ts.items("str"), [(date, values) for date, values in zip( self.ts.date_string_series(), self.ts.tseries)], ) def test_get_point(self): """ This function tests getting a point object from a timeseries row. """ point = self.ts.get_point(row_no=0) self.assertEqual(point.row_no, 0) self.assertEqual(point.date, self.ts.dseries[0]) self.assertEqual(point.values, self.ts.tseries[0]) self.ts.tseries = self.ts.tseries.reshape((-1, 1)) point = self.ts.get_point(row_no=0) self.assertListEqual(point.values.tolist(), self.ts.tseries[0].tolist()) # by rowdate point = self.ts.get_point(rowdate=self.ts.start_date()) self.assertEqual(point.row_no, 0) self.assertEqual(point.date, self.ts.dseries[0]) self.assertEqual(point.values, self.ts.tseries[0]) # no params self.assertRaises(ValueError, self.ts.get_point)