def test_simu_hawkes_multi_time_func(self):
        """...Test that hawkes multi works correctly with HawkesKernelTimeFunc
        """
        run_time = 100

        t_values1 = np.array([0, 1, 1.5], dtype=float)
        y_values1 = np.array([0, .2, 0], dtype=float)
        tf1 = TimeFunction([t_values1, y_values1],
                           inter_mode=TimeFunction.InterConstRight,
                           dt=0.1)
        kernel1 = HawkesKernelTimeFunc(tf1)

        t_values2 = np.array([0, 2, 2.5], dtype=float)
        y_values2 = np.array([0, .6, 0], dtype=float)
        tf2 = TimeFunction([t_values2, y_values2],
                           inter_mode=TimeFunction.InterConstRight,
                           dt=0.1)
        kernel2 = HawkesKernelTimeFunc(tf2)

        baseline = np.array([0.1, 0.3])

        hawkes = SimuHawkes(baseline=baseline,
                            end_time=run_time,
                            verbose=False,
                            seed=2334)

        hawkes.set_kernel(0, 0, kernel1)
        hawkes.set_kernel(0, 1, kernel1)
        hawkes.set_kernel(1, 0, kernel2)
        hawkes.set_kernel(1, 1, kernel2)

        hawkes_multi = SimuHawkesMulti(hawkes, n_simulations=5, n_threads=4)
        hawkes_multi.simulate()
Пример #2
0
def SimEM(smodel, time=600):
    sim_em = SimuHawkes(kernels=smodel.time_kernel,
                        baseline=smodel.baseline,
                        verbose=False,
                        end_time=time)
    sim_em.simulate()
    return sim_em.timestamps
    def test_simu_hawkes_multi_attrs(self):
        """...Test multiple simulations via SimuHawkesMulti vs. single Hawkes

        See that multiple simulations has same attributes as a single Hawkes
        simulation, but different results
        """

        hawkes = SimuHawkes(kernels=self.kernels,
                            baseline=self.baseline,
                            end_time=10,
                            verbose=False,
                            seed=504)

        multi = SimuHawkesMulti(hawkes, n_threads=4, n_simulations=10)
        multi.simulate()

        hawkes.simulate()

        np.testing.assert_array_equal(hawkes.simulation_time,
                                      multi.simulation_time)
        np.testing.assert_array_equal(hawkes.n_nodes, multi.n_nodes)
        np.testing.assert_array_equal(hawkes.end_time, multi.end_time)
        np.testing.assert_array_equal(hawkes.max_jumps, multi.max_jumps)
        np.testing.assert_array_equal(hawkes.spectral_radius(),
                                      multi.spectral_radius)

        self.assertTrue(
            all(
                np.array_equal(hawkes.mean_intensity(), np.array(x))
                for x in multi.mean_intensity))

        self.assertFalse(
            np.array_equal(hawkes.n_total_jumps, multi.n_total_jumps))
    def test_simu_hawkes_multi_seed(self):
        """...Test seeded Hawkes simu is re-seeded under multiple simulations
        """
        seed = 504
        hawkes = SimuHawkes(kernels=self.kernels,
                            baseline=self.baseline,
                            end_time=10,
                            verbose=False)

        seeded_hawkes = SimuHawkes(kernels=self.kernels,
                                   baseline=self.baseline,
                                   end_time=10,
                                   verbose=False,
                                   seed=seed)

        multi_1 = SimuHawkesMulti(seeded_hawkes, n_threads=4, n_simulations=1)
        multi_2 = SimuHawkesMulti(hawkes, n_threads=4, n_simulations=1)
        multi_2.seed = seed

        hawkes.seed = seed
        multi_3 = SimuHawkesMulti(hawkes, n_threads=4, n_simulations=1)

        multi_1.simulate()
        multi_2.simulate()
        multi_3.simulate()

        np.testing.assert_array_equal(multi_1.n_total_jumps,
                                      multi_2.n_total_jumps)
        np.testing.assert_array_equal(multi_1.n_total_jumps,
                                      multi_3.n_total_jumps)

        timestamps_1 = multi_1.timestamps
        timestamps_2 = multi_2.timestamps
        timestamps_3 = multi_3.timestamps

        self.assertEqual(len(timestamps_1), len(timestamps_2))
        self.assertEqual(len(timestamps_1), len(timestamps_3))

        for (t1, t2, t3) in zip(timestamps_1, timestamps_2, timestamps_3):
            np.testing.assert_array_equal(t1[0], t2[0])
            np.testing.assert_array_equal(t1[1], t2[1])
            np.testing.assert_array_equal(t1[0], t3[0])
            np.testing.assert_array_equal(t1[1], t3[1])
Пример #5
0
    def test_hawkes_set_baseline_piecewiseconstant(self):
        """...Test Hawkes process baseline set with time and value arrays
        """
        baselines = [[1., 2., 1.5, 4.],
                     [2., 1.5, 4., 1.]]
        hawkes = SimuHawkes(baseline=baselines, period_length=3.5,
                            kernels=self.kernels, verbose=False)

        hawkes.end_time = 10
        hawkes.simulate()
        self.assertGreater(hawkes.n_total_jumps, 1)
Пример #6
0
    def simulate_hawkes(self, model_name):
        self.model_name = model_name

        def y_func_pos(t_values):
            y_values = 0.02 * np.exp(-t_values)
            return y_values

        def y_func_neg(t_values):
            y_values = -0.1 * np.exp(-t_values)
            return y_values

        if model_name == 'hawkes_neg':
            y_func = y_func_neg
        elif model_name == 'hawkes_pos':
            y_func = y_func_pos

        t_values = np.linspace(0, 101, 100)
        y_values = y_func(t_values)
        tf = TimeFunction([t_values, y_values],
                          inter_mode=TimeFunction.InterLinear,
                          dt=0.1)

        tf_kernel = HawkesKernelTimeFunc(tf)

        N_enodes = self.G_e2n.number_of_nodes()  # regarded as 'N_enodes' types

        base_int = 0.2
        baselines = [base_int for i in range(N_enodes)]
        kernels = [[] for i in range(N_enodes)]
        for i in range(N_enodes):
            for j in range(N_enodes):
                if i == j:
                    # kernels[i].append(HawkesKernel0())
                    kernels[i].append(HawkesKernelExp(.1, 4))  # self influence
                else:
                    if self.G_e2n.has_edge(self.idx_elabel_map[i],
                                           self.idx_elabel_map[j]):
                        kernels[i].append(tf_kernel)
                    else:
                        kernels[i].append(HawkesKernel0())

        hawkes = SimuHawkes(kernels=kernels,
                            baseline=baselines,
                            verbose=False,
                            seed=self.seed)
        hawkes.threshold_negative_intensity(allow=True)

        run_time = 100
        hawkes.end_time = run_time
        hawkes.simulate()
        timestamps = hawkes.timestamps

        self.save(timestamps, self.model_name)
Пример #7
0
    def test_simu_hawkes_constructor_errors(self):
        """...Test error messages raised by SimuHawkes constructor
        """
        bad_baseline = np.random.rand(4)
        bad_kernels = self.kernels[:, 0:1]

        msg = '^kernels and baseline have different length. kernels has ' \
              'length 2, whereas baseline has length 4\.$'
        with self.assertRaisesRegex(ValueError, msg):
            SimuHawkes(kernels=self.kernels, baseline=bad_baseline)

        msg = "^n_nodes will be automatically calculated if baseline or " \
              "kernels is set$"
        with self.assertRaisesRegex(ValueError, msg):
            SimuHawkes(kernels=self.kernels, n_nodes=2)

        with self.assertRaisesRegex(ValueError, msg):
            SimuHawkes(baseline=self.baseline, n_nodes=2)

        msg = "^n_nodes must be given if neither kernels, nor baseline are " \
              "given$"
        with self.assertRaisesRegex(ValueError, msg):
            SimuHawkes()

        msg = '^kernels shape should be \(2, 2\) instead of \(2, 1\)$'
        with self.assertRaisesRegex(ValueError, msg):
            SimuHawkes(kernels=bad_kernels)

        msg = '^n_nodes must be positive but equals -1$'
        with self.assertRaisesRegex(ValueError, msg):
            SimuHawkes(n_nodes=-1)
Пример #8
0
 def test_hawkes_set_baseline_timefunction(self):
     """...Test Hawkes process baseline set with TimeFunction
     """
     t_values = [0.5, 1., 2., 3.5]
     y_values_1 = [1., 2., 1.5, 4.]
     y_values_2 = [2., 1.5, 4., 1.]
     timefunction1 = TimeFunction((t_values, y_values_1))
     timefunction2 = TimeFunction((t_values, y_values_2))
     hawkes = SimuHawkes(baseline=[timefunction1, timefunction2],
                         kernels=self.kernels, verbose=False)
     hawkes.end_time = 10
     hawkes.simulate()
     self.assertGreater(hawkes.n_total_jumps, 1)
Пример #9
0
    def test_hawkes_set_kernel(self):
        """...Test Hawkes process kernels can be set after initialization
        """
        hawkes = SimuHawkes(n_nodes=2)

        for i, j in product(range(2), range(2)):
            hawkes.set_kernel(i, j, self.kernels[i, j])

        for i, j in product(range(2), range(2)):
            self.assertEqual(hawkes.kernels[i, j], self.kernels[i, j])

        hawkes.set_kernel(1, 1, self.time_func_kernel)
        self.assertEqual(hawkes.kernels[1, 1], self.time_func_kernel)
Пример #10
0
    def test_simu_hawkes_constructor(self):
        """...Test SimuHawkes constructor
        """
        hawkes = SimuHawkes(kernels=self.kernels)
        self.assertEqual(hawkes.n_nodes, 2)
        np.testing.assert_array_equal(hawkes.baseline, np.zeros(2))
        for i, j in product(range(2), range(2)):
            self.assertEqual(hawkes.kernels[i, j], self.kernels[i, j])

        hawkes = SimuHawkes(baseline=self.baseline)
        self.assertEqual(hawkes.n_nodes, 2)
        np.testing.assert_array_equal(hawkes.baseline, self.baseline)
        for i, j in product(range(2), range(2)):
            self.assertEqual(hawkes.kernels[i, j].__class__, HawkesKernel0)
            self.assertEqual(hawkes.kernels[i, j], hawkes._kernel_0)

        hawkes = SimuHawkes(n_nodes=2)
        self.assertEqual(hawkes.n_nodes, 2)
        np.testing.assert_array_equal(hawkes.baseline, np.zeros(2))
        for i, j in product(range(2), range(2)):
            self.assertEqual(hawkes.kernels[i, j].__class__, HawkesKernel0)
            self.assertEqual(hawkes.kernels[i, j], hawkes._kernel_0)
Пример #11
0
    def test_hawkes_negative_intensity_fail(self):
        """...Test simulation with negative kernel without threshold_negative_intensity
        """
        run_time = 40

        hawkes = SimuHawkes(n_nodes=1, end_time=run_time, verbose=False,
                            seed=1398)
        kernel = HawkesKernelExp(-1.3, .8)
        hawkes.set_kernel(0, 0, kernel)
        hawkes.set_baseline(0, 0.3)

        msg = 'Simulation stopped because intensity went negative ' \
              '\(you could call ``threshold_negative_intensity`` to allow it\)'
        with self.assertRaisesRegex(RuntimeError, msg):
            hawkes.simulate()
Пример #12
0
    def test_hawkes_mean_intensity(self):
        """...Test that Hawkes obtained mean intensity is consistent
        """

        hawkes = SimuHawkes(kernels=self.kernels, baseline=self.baseline,
                            seed=308, end_time=300, verbose=False)
        self.assertLess(hawkes.spectral_radius(), 1)

        hawkes.track_intensity(0.01)
        hawkes.simulate()

        mean_intensity = hawkes.mean_intensity()
        for i in range(hawkes.n_nodes):
            self.assertAlmostEqual(np.mean(hawkes.tracked_intensity[i]),
                                   mean_intensity[i], delta=0.3)
Пример #13
0
def SimulateBasis(kernel, baseline, time=600):
    sim_em = SimuHawkes(kernels=kernel,
                        baseline=baseline,
                        verbose=False,
                        end_time=time)

    dt = 0.001  #millisecond granularity
    sim_em.track_intensity(dt)
    sim_em.simulate()

    timestamps = sim_em.timestamps
    l = 0
    for series in timestamps:
        l += len(series)
    print(f"Simulated {l} points")
    return sim_em.timestamps
Пример #14
0
    def test_simu_hawkes_force_simulation(self):
        """...Test force_simulation parameter of SimuHawkes
        """
        diverging_kernel = [[HawkesKernelExp(2, 3)]]
        hawkes = SimuHawkes(kernels=diverging_kernel, baseline=[1],
                            verbose=False)
        hawkes.end_time = 10

        msg = '^Simulation not launched as this Hawkes process is not ' \
              'stable \(spectral radius of 2\). You can use ' \
              'force_simulation parameter if you really want to simulate it$'
        with self.assertRaisesRegex(ValueError, msg):
            hawkes.simulate()

        msg = "^This process has already be simulated until time 0.000000$"
        with self.assertWarnsRegex(UserWarning, msg):
            hawkes.end_time = 0
            hawkes.force_simulation = True
            hawkes.simulate()
def goodness_of_fit_nonpar(nplearner, arrivals, timestep, method):
    # setup simulation object
    hp = SimuHawkes(baseline=nplearner.baseline)
    # set kernels
    support = np.arange(0, np.max(nplearner.get_kernel_supports()), timestep)

    for i, j in itertools.product(range(nplearner.n_nodes), repeat=2):
        print('Kernel {} set.'.format([i, j]))
        y = nplearner.get_kernel_values(i, j, support)
        kernel = HawkesKernelTimeFunc(t_values=support, y_values=y)
        hp.set_kernel(i, j, kernel)

    hp.track_intensity(timestep)
    hp.set_timestamps(timestamps=arrivals)
    dimension = hp.n_nodes
    intensities = hp.tracked_intensity
    x = hp.intensity_tracked_times
    residuals = [resid(x, intensities, arrivals, dim, method) for dim in range(dimension)]
    return residuals
    def test_simu_hawkes_no_seed(self):
        """...Test hawkes multi can be simulated even if no seed is given
        """
        T1 = np.array([0, 2, 2.5], dtype=float)
        Y1 = np.array([0, .6, 0], dtype=float)
        tf = TimeFunction([T1, Y1],
                          inter_mode=TimeFunction.InterConstRight,
                          dt=0.1)
        kernel = HawkesKernelTimeFunc(tf)
        hawkes = SimuHawkes(baseline=[.1], end_time=100, verbose=False)
        hawkes.set_kernel(0, 0, kernel)
        multi_hawkes_1 = SimuHawkesMulti(hawkes, n_simulations=5)
        multi_hawkes_1.simulate()

        multi_hawkes_2 = SimuHawkesMulti(hawkes, n_simulations=5)
        multi_hawkes_2.simulate()

        # If no seed are given, realizations must be different
        self.assertNotEqual(multi_hawkes_1.timestamps[0][0][0],
                            multi_hawkes_2.timestamps[0][0][0])
Пример #17
0
    def test_hawkes_negative_intensity(self):
        """...Test simulation with negative kernel
        """
        run_time = 40

        hawkes = SimuHawkes(n_nodes=1, end_time=run_time, verbose=False,
                            seed=1398)
        kernel = HawkesKernelExp(-1.3, .8)
        hawkes.set_kernel(0, 0, kernel)
        hawkes.set_baseline(0, 0.3)
        hawkes.threshold_negative_intensity()

        dt = 0.1
        hawkes.track_intensity(dt)
        hawkes.simulate()

        self.assertAlmostEqual(hawkes.tracked_intensity[0].min(), 0)
        self.assertAlmostEqual(hawkes.tracked_intensity[0].max(),
                               hawkes.baseline[0])
        self.assertGreater(hawkes.n_total_jumps, 1)
Пример #18
0
def generate_points(n_processes, mu, alpha, decay, window, seed, dt=0.01):
    """
    Generates points of an marked Hawkes processes using the tick library
    """
    hawkes = SimuHawkes(n_nodes=n_processes,
                        end_time=window,
                        verbose=False,
                        seed=seed)
    for i in range(n_processes):
        for j in range(n_processes):
            hawkes.set_kernel(i=i,
                              j=j,
                              kernel=HawkesKernelExp(intensity=alpha[i][j] /
                                                     decay[i][j],
                                                     decay=decay[i][j]))
        hawkes.set_baseline(i, mu[i])

    hawkes.track_intensity(dt)
    hawkes.simulate()
    return hawkes.timestamps
Пример #19
0
 def _corresponding_simu(self):
     """Create simulation object corresponding to the obtained coefficients
     """
     return SimuHawkes()
Пример #20
0
def test_HawkesEM():

    print('\n##############################')
    print('\nstarting: test_HawkesEM()\n')

    run_time = 30000

    t_values1 = np.array([0, 1, 1.5, 2., 3.5], dtype=float)
    y_values1 = np.array([0, 0.2, 0, 0.1, 0.], dtype=float)
    tf1 = TimeFunction([t_values1, y_values1],
                       inter_mode=TimeFunction.InterConstRight,
                       dt=0.1)
    kernel1 = HawkesKernelTimeFunc(tf1)

    t_values2 = np.linspace(0, 4, 20)
    y_values2 = np.maximum(0., np.sin(t_values2) / 4)
    tf2 = TimeFunction([t_values2, y_values2])
    kernel2 = HawkesKernelTimeFunc(tf2)

    baseline = np.array([0.1, 0.3])

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    realizations = list()
    for i in range(0, 1000):

        print('')

        temp_seed = int(1000 + 1000 * random.random())
        print('i = ' + str(i) + ', temp_seed = ' + str(temp_seed))

        hawkes = SimuHawkes(baseline=baseline,
                            end_time=run_time,
                            verbose=False,
                            seed=temp_seed)
        hawkes.set_kernel(0, 0, kernel1)
        hawkes.set_kernel(0, 1, HawkesKernelExp(.5, .7))
        hawkes.set_kernel(1, 1, kernel2)
        hawkes.simulate()

        temp_realization = hawkes.timestamps
        print('i = ' + str(i) + ', ' + 'event counts = (' +
              str(len(temp_realization[0])) + ',' +
              str(len(temp_realization[1])) + ')')
        print(temp_realization)

        realizations.append(temp_realization)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    em = HawkesEM(4, kernel_size=16, n_threads=8, verbose=False, tol=1e-3)
    em.fit(events=realizations)

    fig = plot_hawkes_kernels(em, hawkes=hawkes, show=False)

    outputFILE = 'test-HawkesEM.png'
    for ax in fig.axes:
        ax.set_ylim([0, 1])
    plt.savefig(fname=outputFILE, bbox_inches='tight', pad_inches=0.2)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    print('\nexitng: test_HawkesEM()')
    print('\n##############################')

    return (None)
Пример #21
0
"""
1 dimensional Hawkes process simulation
=======================================
"""

from tick.plot import plot_point_process
from tick.hawkes import SimuHawkes, HawkesKernelSumExp
import matplotlib.pyplot as plt

run_time = 40

hawkes = SimuHawkes(n_nodes=1, end_time=run_time, verbose=False, seed=1398)
kernel = HawkesKernelSumExp([.1, .4, .1, .3], [3., 3., 7., 31])
hawkes.set_kernel(0, 0, kernel)
hawkes.set_baseline(0, 1.)

dt = 0.01
hawkes.track_intensity(dt)
hawkes.simulate()
timestamps = hawkes.timestamps
intensity = hawkes.tracked_intensity
intensity_times = hawkes.intensity_tracked_times

_, ax = plt.subplots(1, figsize=(8, 4))
plot_point_process(hawkes, n_points=50000, t_min=2, max_jumps=10, ax=ax)
plt.show()

# We first simulate a similar Hawkes process
def g1(t):
    return np.cos(np.pi * t / 10) + 1.1


def g2(t):
    return np.cos(np.pi * (t / 10 + 1)) + 1.1


t_values = np.linspace(0, 20, 1000)
u_values = [(0.007061, 0.001711), (0.005445, 0.003645), (0.003645, 0.005445),
            (0.001790, 0.007390)]

hawkes = SimuHawkes(baseline=[1e-5, 1e-5], seed=1093, verbose=False)
for i, j in itertools.product(range(2), repeat=2):
    u1, u2 = u_values[2 * i + j]
    y_values = g1(t_values) * u1 + g2(t_values) * u2
    kernel = HawkesKernelTimeFunc(t_values=t_values, y_values=y_values)
    hawkes.set_kernel(i, j, kernel)

hawkes.end_time = end_time
hawkes.simulate()
ticks = hawkes.timestamps

# And then perform estimation with two basis kernels
kernel_support = 20
n_basis = 2

em = HawkesBasisKernels(kernel_support,
Пример #23
0
                         HawkesKernel0, HawkesSumGaussians)

end_time = 1000
n_nodes = 2
n_realizations = 10
n_gaussians = 5

timestamps_list = []

kernel_timefunction = HawkesKernelTimeFunc(
    t_values=np.array([0., .7, 2.5, 3., 4.]),
    y_values=np.array([.3, .03, .03, .2, 0.]))
kernels = [[HawkesKernelExp(.2, 2.),
            HawkesKernelPowerLaw(.2, .5, 1.3)],
           [HawkesKernel0(), kernel_timefunction]]

hawkes = SimuHawkes(baseline=[.5, .2],
                    kernels=kernels,
                    end_time=end_time,
                    verbose=False,
                    seed=1039)

multi = SimuHawkesMulti(hawkes, n_simulations=n_realizations)

multi.simulate()

learner = HawkesSumGaussians(n_gaussians, max_iter=10)
learner.fit(multi.timestamps)

plot_hawkes_kernels(learner, hawkes=hawkes, support=4)
from tick.hawkes import SimuHawkes, HawkesKernelPowerLaw, HawkesConditionalLaw
from tick.plot import plot_hawkes_kernels

multiplier = np.array([0.012, 0.008, 0.004, 0.005])
cutoff = 0.0005
exponent = 1.3

support = 2000

hawkes = SimuHawkes(kernels=[[
    HawkesKernelPowerLaw(multiplier[0], cutoff, exponent, support),
    HawkesKernelPowerLaw(multiplier[1], cutoff, exponent, support)
],
                             [
                                 HawkesKernelPowerLaw(multiplier[2], cutoff,
                                                      exponent, support),
                                 HawkesKernelPowerLaw(multiplier[3], cutoff,
                                                      exponent, support)
                             ]],
                    baseline=[0.05, 0.05],
                    seed=382,
                    verbose=False)
hawkes.end_time = 50000
hawkes.simulate()

e = HawkesConditionalLaw(claw_method="log",
                         delta_lag=0.1,
                         min_lag=0.002,
                         max_lag=100,
                         quad_method="log",
                         n_quad=50,
t_values = np.array([0, 1, 1.5], dtype=float)
y_values = np.array([0, .2, 0], dtype=float)
tf1 = TimeFunction([t_values, y_values],
                   inter_mode=TimeFunction.InterConstRight,
                   dt=0.1)
kernel_1 = HawkesKernelTimeFunc(tf1)

t_values = np.array([0, .1, 2], dtype=float)
y_values = np.array([0, .4, -0.2], dtype=float)
tf2 = TimeFunction([t_values, y_values],
                   inter_mode=TimeFunction.InterLinear,
                   dt=0.1)
kernel_2 = HawkesKernelTimeFunc(tf2)

hawkes = SimuHawkes(kernels=[[kernel_1, kernel_1],
                             [HawkesKernelExp(.07, 4), kernel_2]],
                    baseline=[1.5, 1.5],
                    verbose=False,
                    seed=23983)

run_time = 40
dt = 0.01
hawkes.track_intensity(dt)
hawkes.end_time = run_time
hawkes.simulate()

fig, ax = plt.subplots(hawkes.n_nodes, 1, figsize=(14, 8))
plot_point_process(hawkes, t_max=20, ax=ax)

plt.show()
Пример #26
0
# intensity = hawkes.tracked_intensity
# intensity_times = hawkes.intensity_tracked_times
# mean_intensity = hawkes.mean_intensity()

# %% Plot jumps
# pd.Series(np.arange(1, len(timestamps[0])+1),
#           index=timestamps[0]).plot(drawstyle='steps-post')

# %% Plot point express
# plot_point_process(hawkes)

# %% [markdown]
# ### SimuHawkesMulti

# %% Simulate with Multi
hawkes_m1 = SimuHawkes(n_nodes=1, end_time=10000)
hawkes_m1.set_baseline(0, 1.)

hawkes_m2 = SimuHawkes(n_nodes=1, end_time=10000)
hawkes_m2.set_baseline(0, 1.)

hawkes_m1.set_kernel(0, 0, kernel_1)
hawkes_m2.set_kernel(0, 0, kernel_2)

# %% Run Multi
multi_1 = SimuHawkesMulti(hawkes_m1, n_simulations=100)
multi_1.simulate()

multi_2 = SimuHawkesMulti(hawkes_m2, n_simulations=100)
multi_2.simulate()
Пример #27
0
t_values1 = np.array([0, 1, 1.5, 2., 3.5], dtype=float)
y_values1 = np.array([0, 0.2, 0, 0.1, 0.], dtype=float)
tf1 = TimeFunction([t_values1, y_values1],
                   inter_mode=TimeFunction.InterConstRight,
                   dt=0.1)
kernel1 = HawkesKernelTimeFunc(tf1)

t_values2 = np.linspace(0, 4, 20)
y_values2 = np.maximum(0., np.sin(t_values2) / 4)
tf2 = TimeFunction([t_values2, y_values2])
kernel2 = HawkesKernelTimeFunc(tf2)

baseline = np.array([0.1, 0.3])

hawkes = SimuHawkes(baseline=baseline,
                    end_time=run_time,
                    verbose=False,
                    seed=2334)

hawkes.set_kernel(0, 0, kernel1)
hawkes.set_kernel(0, 1, HawkesKernelExp(.5, .7))
hawkes.set_kernel(1, 1, kernel2)

hawkes.simulate()

em = HawkesEM(4, kernel_size=16, n_threads=8, verbose=False, tol=1e-3)
em.fit(hawkes.timestamps)

fig = plot_hawkes_kernels(em, hawkes=hawkes, show=False)

for ax in fig.axes:
    ax.set_ylim([0, 1])