Пример #1
0
def saveTrajData(trajectories_data, masked_image_file, skeletons_file):
    #save data into the skeletons file
    with tables.File(skeletons_file, "a") as ske_file_id:
        trajectories_data_f = ske_file_id.create_table(
            '/',
            'trajectories_data',
            obj=trajectories_data.to_records(
                index=False,
                column_dtypes={t[0]: t[1]
                               for t in TRAJECTORIES_DATA_DTYPES}),
            filters=TABLE_FILTERS)

        plate_worms = ske_file_id.get_node('/plate_worms')
        if 'bgnd_param' in plate_worms._v_attrs:
            bgnd_param = plate_worms._v_attrs['bgnd_param']
        else:
            bgnd_param = bytes(json.dumps({}), 'utf-8')  #default empty

        trajectories_data_f._v_attrs['bgnd_param'] = bgnd_param
        #read and the units information information
        fps, microns_per_pixel, is_light_background = \
        copy_unit_conversions(trajectories_data_f, masked_image_file)

        if not '/timestamp' in ske_file_id:
            read_and_save_timestamp(masked_image_file, skeletons_file)

        ske_file_id.flush()
Пример #2
0
    def _iniFileGroups():
        # initialize groups for the timeseries and event features
        header_timeseries = {
            feat: tables.Float32Col(
                pos=ii) for ii, (feat, _) in enumerate(
                wStats.feat_timeseries_dtype)}
                
        table_timeseries = features_fid.create_table(
            '/', 'features_timeseries', header_timeseries, filters=TABLE_FILTERS)

        # save some data used in the calculation as attributes
        fps, microns_per_pixel, _ = copy_unit_conversions(table_timeseries, skeletons_file)
        table_timeseries._v_attrs['worm_index_type'] = worm_index_type

        # node to save features events
        group_events = features_fid.create_group('/', 'features_events')

        # save the skeletons
        with tables.File(skeletons_file, 'r') as ske_file_id:
            skel_shape = ske_file_id.get_node('/skeleton').shape

        

        worm_coords_array = {}
        w_node = features_fid.create_group('/', 'coordinates')
        for  array_name in ['skeletons', 'dorsal_contours', 'ventral_contours']:
            worm_coords_array[array_name] = features_fid.create_earray(
                w_node,
                array_name,
                shape=(
                    0,
                    skel_shape[1],
                    skel_shape[2]),
                atom=tables.Float32Atom(
                    shape=()),
                filters=TABLE_FILTERS)
        
        # initialize rec array with the averaged features of each worm
        stats_features_df = {stat:np.full(tot_worms, np.nan, dtype=wStats.feat_avg_dtype) for stat in FUNC_FOR_DIV}
    
        return header_timeseries, table_timeseries, group_events, worm_coords_array, stats_features_df
Пример #3
0
def smooth_skeletons_table(skeletons_file,
                           features_file,
                           is_WT2=False,
                           skel_smooth_window=5,
                           coords_smooth_window_s=0.25,
                           gap_to_interp_s=0.25):

    #%%

    #%%
    fps = read_fps(skeletons_file)
    coords_smooth_window = int(np.round(fps * coords_smooth_window_s))
    gap_to_interp = int(np.round(fps * gap_to_interp_s))

    if coords_smooth_window <= 3:  #do not interpolate
        coords_smooth_window = None

    trajectories_data = _r_fill_trajectories_data(skeletons_file)
    #%%
    trajectories_data_g = trajectories_data.groupby('worm_index_joined')
    progress_timer = TimeCounter('')
    base_name = get_base_name(skeletons_file)
    tot_worms = len(trajectories_data_g)

    def _display_progress(n):
        # display progress
        dd = " Smoothing skeletons. Worm %i of %i done." % (n, tot_worms)
        print_flush(base_name + dd + ' Total time:' +
                    progress_timer.get_time_str())

    _display_progress(0)
    #%%

    #initialize arrays
    food_cnt = read_food_contour(skeletons_file)
    with tables.File(skeletons_file, 'r') as fid:
        n_segments = fid.get_node('/skeleton').shape[1]

    with tables.File(features_file, 'w') as fid_features:
        if food_cnt is not None:
            fid_features.create_array('/',
                                      'food_cnt_coord',
                                      obj=food_cnt.astype(np.float32))

        worm_coords_array = {}
        w_node = fid_features.create_group('/', 'coordinates')
        for array_name in [
                'skeletons', 'dorsal_contours', 'ventral_contours', 'widths'
        ]:
            if array_name != 'widths':
                a_shape = (0, n_segments, 2)
            else:
                a_shape = (0, n_segments)

            worm_coords_array[array_name] = fid_features.create_earray(
                w_node,
                array_name,
                shape=a_shape,
                atom=tables.Float32Atom(shape=()),
                filters=TABLE_FILTERS)

        tot_skeletons = 0
        for ind_n, (worm_index, worm_data) in enumerate(trajectories_data_g):
            if worm_data['was_skeletonized'].sum() < 2:
                continue

            worm = WormFromTable(skeletons_file,
                                 worm_index,
                                 worm_index_type='worm_index_joined')

            if is_WT2:
                worm.correct_schafer_worm()
            if np.sum(~np.isnan(worm.skeleton[:, 0, 0])) <= 2:
                warnings.warn('Not enough data to smooth. Empty file?')
                wormN = worm

            else:
                wormN = SmoothedWorm(worm.skeleton,
                                     worm.widths,
                                     worm.ventral_contour,
                                     worm.dorsal_contour,
                                     skel_smooth_window=skel_smooth_window,
                                     coords_smooth_window=coords_smooth_window,
                                     gap_to_interp=gap_to_interp)
            dat_index = pd.Series(False,
                                  index=worm_data['timestamp_raw'].values)

            try:
                dat_index[worm.timestamp] = True
            except ValueError:
                import pdb
                pdb.set_trace()

            #%%
            skeleton_id = np.arange(wormN.skeleton.shape[0]) + tot_skeletons
            tot_skeletons = skeleton_id[-1] + 1
            row_ind = worm_data.index[dat_index.values]
            trajectories_data.loc[row_ind, 'skeleton_id'] = skeleton_id
            #%%
            #add data
            worm_coords_array['skeletons'].append(getattr(wormN, 'skeleton'))
            worm_coords_array['dorsal_contours'].append(
                getattr(wormN, 'dorsal_contour'))
            worm_coords_array['ventral_contours'].append(
                getattr(wormN, 'ventral_contour'))
            worm_coords_array['widths'].append(getattr(wormN, 'widths'))

            #display progress
            _display_progress(ind_n + 1)

        #save trajectories data
        newT = fid_features.create_table(
            '/',
            'trajectories_data',
            obj=trajectories_data.to_records(index=False),
            filters=TABLE_FILTERS)
        copy_unit_conversions(newT, skeletons_file)
        newT._v_attrs['is_WT2'] = is_WT2
        newT._v_attrs['ventral_side'] = read_ventral_side(skeletons_file)

        #save blob features interpolating in dropped frames and stage movement (WT2)
        blob_features = _r_fill_blob_features(skeletons_file,
                                              trajectories_data, is_WT2)
        if blob_features is not None:
            fid_features.create_table(
                '/',
                'blob_features',
                obj=blob_features.to_records(index=False),
                filters=TABLE_FILTERS)