Пример #1
0
def membrane_image_segmentation(img, gaussian_sigma=0.75, h_min=None, segmentation_gaussian_sigma=0.5, volume_threshold=None):

    voxelsize = np.array(img.voxelsize)

    if h_min is None:
        h_min = 2 if img.dtype==np.uint8 else 1000

    smooth_image = nd.gaussian_filter(img, sigma=gaussian_sigma / voxelsize).astype(img.dtype)
    smooth_img = SpatialImage(smooth_image, voxelsize=voxelsize)

    ext_img = h_transform(smooth_img, h=h_min, method='min')

    seed_img = region_labeling(ext_img, low_threshold=1, high_threshold=h_min, method='connected_components')

    seg_smooth_image = nd.gaussian_filter(img, sigma=segmentation_gaussian_sigma / voxelsize).astype(img.dtype)
    seg_smooth_img = SpatialImage(seg_smooth_image, voxelsize=voxelsize)

    seg_img = segmentation(seg_smooth_img, seed_img, control='first', method='seeded_watershed')

    if volume_threshold is not None:
        seg_volumes = dict(zip(np.arange(seg_img.max()) + 1,
                               nd.sum(np.prod(voxelsize) * np.ones_like(seg_img),
                                      seg_img,
                                      index=np.arange(seg_img.max()) + 1)))

        labels_to_remove = np.array(list(seg_volumes.keys()))[np.array(list(seg_volumes.values())) > volume_threshold]
        print("--> Removing too large labels :", labels_to_remove)
        for l in labels_to_remove:
            seg_img[seg_img == l] = 1

    return seg_img
Пример #2
0
def test_plugin():
    im = imread(data_path('segmentation_src.inr'))
    im_ref = imread(data_path('segmentation_seeded_watershed.inr'))
    smooth_img = linear_filtering(im, std_dev=2.0, method='gaussian_smoothing')
    regext_img = h_transform(smooth_img, h=5, method='h_transform_min')
    conn_img = region_labeling(regext_img, low_threshold=1, high_threshold=3, method='connected_components')
    wat_img = segmentation(smooth_img, conn_img, control='first', method='seeded_watershed')
    np.testing.assert_array_equal(wat_img, im_ref)
Пример #3
0
def test_plugin():
    im = imread(data_path('segmentation_src.inr'))
    im_ref = imread(data_path('segmentation_seeded_watershed.inr'))
    smooth_img = linear_filtering(im, std_dev=2.0, method='gaussian_smoothing')
    regext_img = h_transform(smooth_img, h=5, method='h_transform_min')
    conn_img = region_labeling(regext_img,
                               low_threshold=1,
                               high_threshold=3,
                               method='connected_components')
    wat_img = segmentation(smooth_img,
                           conn_img,
                           control='first',
                           method='seeded_watershed')
    np.testing.assert_array_equal(wat_img, im_ref)
Пример #4
0
    # ext_img = h_transform(asf_img, h=h_min, method='h_transform_min')
    smooth_img = linear_filtering(img2seg,
                                  std_dev=std_dev,
                                  method='gaussian_smoothing')
    ext_img = h_transform(smooth_img, h=h_min, method='h_transform_min')
    seed_img = region_labeling(ext_img,
                               low_threshold=1,
                               high_threshold=h_min,
                               method='connected_components')
    print "Detected {} seeds!".format(len(np.unique(seed_img)))

    print "\n - Performing seeded watershed segmentation..."
    from timagetk.plugins import segmentation
    std_dev = 1.0
    # smooth_img = linear_filtering(img2seg, std_dev=std_dev, method='gaussian_smoothing')
    seg_im = segmentation(smooth_img, seed_img, method='seeded_watershed')
    seg_im[seg_im == 0] = back_id
    # world.add(seg_im, 'seg', colormap='glasbey', alphamap='constant')

    from timagetk.io import imsave
    imsave(seg_img_fname, seg_im)
else:
    from timagetk.io import imread
    seg_im = imread(seg_img_fname)

###############################################################################
# -- MAYAVI VISU:
###############################################################################
# from mayavi import mlab
# from os.path import splitext
# import numpy as np
Пример #5
0
                       method='h_transform_min')
 print " --> Components labelling..."
 con_img = region_labeling(ext_img,
                           low_threshold=1,
                           high_threshold=h_min,
                           method='connected_components')
 nb_connectec_comp = len(np.unique(con_img.get_array()))
 print nb_connectec_comp, "seeds detected!"
 if nb_connectec_comp <= 3:
     print "Not enough seeds, aborting!"
     continue
 # world.add(con_img, 'labelled_seeds', voxelsize=vxs)
 del ext_img
 print " --> Seeded watershed..."
 seg_im = segmentation(img,
                       con_img,
                       method='seeded_watershed')
 # - Performs topomesh creation from detected seeds:
 print " --> Analysing segmented image...",
 img_graph = graph_from_image(
     seg_im,
     background=1,
     spatio_temporal_properties=['barycenter', 'L1'],
     ignore_cells_at_stack_margins=False)
 print img_graph.nb_vertices(
 ), "seeds extracted by 'graph_from_image'!"
 # -- Create a topomesh from 'seed_positions':
 print " --> Topomesh creation..."
 seed_positions = {
     v: img_graph.vertex_property('barycenter')[v] *
     microscope_orientation
    largest_component = (np.arange(n_components) +
                         1)[np.argmax(components_area)]
    background_img = (
        connected_background_components == largest_component).astype(np.uint16)
    # ---- Finaly add the background and make a SpatialImage:
    seed_img[background_img == 1] = 1
    del smooth_img_bck, background_img
    seed_img = SpatialImage(seed_img, voxelsize=voxelsize)
    # world.add(seed_img,"seed_image", colormap="glasbey", alphamap="constant",voxelsize=microscope_orientation*voxelsize, bg_id=0)

    # -- Performs automatic seeded watershed using previously created seed image:
    print "\n# - Seeded watershed using seed EXPERT seed positions..."
    smooth_img = linear_filtering(img,
                                  std_dev=std_dev,
                                  method='gaussian_smoothing')
    seg_im = segmentation(smooth_img, seed_img)
    # Use largest bounding box to determine background value:
    background = get_background_value(seg_im, microscope_orientation)
    print "Detected background value:", background
    # world.add(seg_im,"seg_image", colormap="glasbey", alphamap="constant",voxelsize=microscope_orientation*voxelsize, bg_id=background)

    # -- Create a vertex_topomesh from detected cell positions:
    print "\n# - Extracting 'barycenter' & 'L1' properties from segmented image..."
    # --- Compute 'L1' and 'barycenter' properties using 'graph_from_image'
    img_graph = graph_from_image(
        seg_im,
        background=background,
        spatio_temporal_properties=['L1', 'barycenter'],
        ignore_cells_at_stack_margins=True)
    print img_graph.nb_vertices(), " cells detected"
    print "\n# - Creating a vertex_topomesh..."
Пример #7
0
components_area = nd.sum(np.ones_like(connected_background_components),
                         connected_background_components,
                         index=np.arange(n_components) + 1)
largest_component = (np.arange(n_components) + 1)[np.argmax(components_area)]
background_img = (connected_background_components == largest_component).astype(
    np.uint16)

con_img[background_img == 1] = 1
del smooth_img_bck, background_img
con_img = SpatialImage(con_img, voxelsize=voxelsize)
# world.add(con_img,"seed_image", colormap="glasbey", alphamap="constant",voxelsize=microscope_orientation*voxelsize, bg_id=0)
# -- Performs automatic seeded watershed using previously created seed image:
smooth_img = linear_filtering(img,
                              std_dev=std_dev,
                              method='gaussian_smoothing')
seg_im = segmentation(smooth_img, con_img)
# world.add(seg_im,"seg_image", colormap="glasbey", alphamap="constant",voxelsize=microscope_orientation*voxelsize)
# -- Create a vertex_topomesh from detected cell positions:
# --- Get cell barycenters positions:
img_graph = graph_from_image(seg_im,
                             background=1,
                             spatio_temporal_properties=['L1', 'barycenter'],
                             ignore_cells_at_stack_margins=True)
print img_graph.nb_vertices(), " cells detected"
vtx = list(img_graph.vertices())
labels = img_graph.vertex_property('labels')

margin_expert_cells = [
    c for c in expert_topomesh.wisps(0) if not c in [labels[v] for v in vtx]
]
for c in margin_expert_cells:
Пример #8
0
    from timagetk.plugins import labels_post_processing
except ImportError:
    raise ImportError('Import Error')

out_path = './results/' # to save results
# we consider an input image
# SpatialImage instance
input_img = imread(data_path('input.tif'))

# optional denoising block
smooth_img = linear_filtering(input_img, std_dev=2.0,
                              method='gaussian_smoothing')
asf_img = morphology(smooth_img, max_radius=3,
                     method='co_alternate_sequential_filter')

ext_img = h_transform(asf_img, h=150,
                      method='h_transform_min')
con_img = region_labeling(ext_img, low_threshold=1,
                          high_threshold=150,
                          method='connected_components')
seg_img = segmentation(smooth_img, con_img, control='first',
                       method='seeded_watershed')

# optional post processig block
pp_img = labels_post_processing(seg_img, radius=1,
                                iterations=1,
                                method='labels_erosion')

res_name = 'example_segmentation.tif'
imsave(out_path+res_name, pp_img)
Пример #9
0
def seg_pipe(img2seg,
             h_min,
             img2sub=None,
             iso=True,
             equalize=True,
             stretch=False,
             std_dev=0.8,
             min_cell_volume=20.,
             back_id=1,
             to_8bits=False):
    """Define the sementation pipeline

    Parameters
    ----------
    img2seg : str
        image to segment.
    h_min : int
        h-minima used with the h-transform function
    img2sub : str, optional
        image to subtract to the image to segment.
    iso : bool, optional
        if True (default), isometric resampling is performed after h-minima
        detection and before watershed segmentation
    equalize : bool, optional
        if True (default), intensity adaptative equalization is performed before
        h-minima detection
    stretch : bool, optional
        if True (default, False), intensity histogram stretching is performed
        before h-minima detection
    std_dev : float, optional
        real unit standard deviation used for Gaussian smoothing of the image to segment
    min_cell_volume : float, optional
        minimal volume accepted in the segmented image
    back_id : int, optional
        the background label
    to_8bits : bool, optional
        transform the image to segment as an unsigned 8 bits image for the h-transform
        and seed-labelleing steps

    Returns
    -------
    seg_im : SpatialImage
        the labelled image obtained by seeded-watershed

    Notes
    -----
      * Both 'equalize' & 'stretch' can not be True at the same time since they work
        on the intensity of the pixels;
      * Signal subtraction is performed after intensity rescaling (if any);
      * Linear filtering (Gaussian smoothing) is performed before h-minima transform
        for local minima detection;
      * Gaussian smoothing should be performed on isometric images, if the provided
        image is not isometric, we resample it before smoothing, then go back to
        original voxelsize;
      * In any case H-Transfrom is performed on the image with its native resolution
        to speed upd seed detection;
      * Same goes for connexe components detection (seed labelling);
      * Segmentation will be performed on the isometric images if iso is True, in
        such case we resample the image of detected seeds and use the isometric
        smoothed intensity image;
    """
    t_start = time.time()
    # - Check we have only one intensity rescaling method called:
    try:
        assert equalize + stretch < 2
    except AssertionError:
        raise ValueError(
            "Both 'equalize' & 'stretch' can not be True at once!")
    # - Check the standard deviation value for Gaussian smoothing is valid:
    try:
        assert std_dev <= 1.
    except AssertionError:
        raise ValueError(
            "Standard deviation for Gaussian smoothing should be superior or equal to 1!"
        )

    ori_vxs = img2seg.voxelsize
    ori_shape = img2seg.shape

    if img2sub is not None:
        print "\n - Performing signal substraction..."
        img2seg = signal_subtraction(img2seg, img2sub)

    if equalize:
        print "\n - Performing z-slices adaptative histogram equalisation on the intensity image to segment..."
        img2seg = z_slice_equalize_adapthist(img2seg)
    if stretch:
        print "\n - Performing z-slices histogram contrast stretching on the intensity image to segment..."
        img2seg = z_slice_contrast_stretch(img2seg)

    print "\n - Automatic seed detection...".format(h_min)
    # morpho_radius = 1.0
    # asf_img = morphology(img2seg, max_radius=morpho_radius, method='co_alternate_sequential_filter')
    # ext_img = h_transform(asf_img, h=h_min, method='h_transform_min')
    min_vxs = min(img2seg.voxelsize)
    if std_dev < min_vxs:
        print " -- Isometric resampling prior to Gaussian smoothing...".format(
            std_dev)
        img2seg = isometric_resampling(img2seg)

    print " -- Gaussian smoothing with std_dev={}...".format(std_dev)
    iso_smooth_img = linear_filtering(img2seg,
                                      std_dev=std_dev,
                                      method='gaussian_smoothing',
                                      real=True)

    if std_dev < min_vxs:
        print " -- Down-sampling a copy back to original voxelsize (to use with `h-transform`)..."
        smooth_img = resample(iso_smooth_img, ori_vxs)
        if not np.allclose(ori_shape, smooth_img.shape):
            print "WARNING: shape missmatch after down-sampling from isometric image:"
            print " -- original image shape: {}".format(ori_shape)
            print " -- down-sampled image shape: {}".format(smooth_img.shape)
    else:
        print " -- Copying original image (to use with `h-transform`)..."
        smooth_img = iso_smooth_img

    if not iso:
        del iso_smooth_img  # no need to keep this image after this step!

    print " -- H-minima transform with h-min={}...".format(h_min)
    if to_8bits:
        ext_img = h_transform(smooth_img.to_8bits(),
                              h=h_min,
                              method='h_transform_min')
    else:
        ext_img = h_transform(smooth_img, h=h_min, method='h_transform_min')
    if iso:
        smooth_img = iso_smooth_img  # no need to keep both images after this step!

    print " -- Region labelling: connexe components detection..."
    seed_img = region_labeling(ext_img,
                               low_threshold=1,
                               high_threshold=h_min,
                               method='connected_components')
    print "Detected {} seeds!".format(len(np.unique(seed_img)) -
                                      1)  # '0' is in the list!
    del ext_img  # no need to keep this image after this step!

    print "\n - Performing seeded watershed segmentation..."
    if iso:
        seed_img = isometric_resampling(seed_img, option='label')
    if to_8bits:
        seg_im = segmentation(smooth_img.to_8bits(),
                              seed_img,
                              method='seeded_watershed')
    else:
        seg_im = segmentation(smooth_img, seed_img, method='seeded_watershed')
    # seg_im[seg_im == 0] = back_id
    print "Detected {} labels!".format(len(np.unique(seg_im)))

    if min_cell_volume > 0.:
        from vplants.tissue_analysis.spatial_image_analysis import SpatialImageAnalysis
        print "\n - Performing cell volume filtering..."
        spia = SpatialImageAnalysis(seg_im, background=None)
        vol = spia.volume()
        too_small_labels = [
            k for k, v in vol.items() if v < min_cell_volume and k != 0
        ]
        if too_small_labels != []:
            print "Detected {} labels with a volume < {}µm2".format(
                len(too_small_labels), min_cell_volume)
            print " -- Removing seeds leading to small cells..."
            spia = SpatialImageAnalysis(seed_img, background=None)
            seed_img = spia.get_image_without_labels(too_small_labels)
            print " -- Performing final seeded watershed segmentation..."
            seg_im = segmentation(smooth_img,
                                  seed_img,
                                  method='seeded_watershed')
            # seg_im[seg_im == 0] = back_id
            print "Detected {} labels!".format(len(np.unique(seg_im)))

    print "\nDone in {}s".format(round(time.time() - t_start, 3))
    return seg_im