Пример #1
0
def spectrum(peptide):#peptide being a list of integers
#     if peptide == "":
#         return [0]
#     subs = subpeptides(peptide)
#     spct = [0]+ [sum([im_table[a] for a in ppd]) for ppd in subs]+[sum([im_table[a] for a in peptide])]
#     return sorted(spct);
    spec=set()
    for i in range(0,len(peptide)):
        combis = itertools.combinations(peptide,i)
        spec = spec.union({sum(c) for c in combis})
    return sorted(spec)
Пример #2
0
def create_super_key(FD, Attribute_list, size, Super_key_list):
    combination = itertools.combinations(Attribute_list, size)
    Super_keys = Super_key_list

    for comb in combination:
        result = helper.computeClosure(list(comb), FD)
        if (sorted(result) == Attribute_list):
            if (list(comb) not in Super_keys):
                Super_keys.append(list(comb))
                return Super_keys
    return create_super_key(FD, Attribute_list, size + 1, Super_keys)
def exaustive_search(exons):
    full_array          = []
    highest_score       = 0.0
    best_combination    = []
    for exon in exons:
        full_array.append(exon.id)
    for i in range(len(full_array)):  
        all_combinations                = itertools.combinations(full_array, len(full_array) - i)
        for comb in all_combinations:
            if isSorted(comb): 
                score                   = calculate_total_score(comb, exons)
                if score > highest_score: 
                    highest_score       = score
                    best_combination    = comb
        if highest_score > 0.0: return best_combination
Пример #4
0
def Extraneous_attributes(FD_element, FD):
    FD_Left_side = FD_element[0]
    FD_Right_side = FD_element[1]
    Right_side_str = ''.join(FD_element[1])
    Left_side_combination = itertools.combinations(FD_Left_side,
                                                   len(FD_Left_side) - 1)
    #If our FD is just a single one EX: A --> D then its not redundant
    if (len(FD_Left_side) == 1):
        return FD
    #However if our FD is more than one on the LHS EX: ABC --> D then we check every possible combination to see which is redundant
    else:
        for single_element_combination in Left_side_combination:
            single_element_combination = list(single_element_combination)
            closure_of_single_element_combination = helper.computeClosure(
                single_element_combination, FD)

            #Now to see if redundant we check if our Right hand side is in our new closure of the new posibility
            if (Right_side_str in closure_of_single_element_combination):
                FD.remove(FD_element)
                FD.append([single_element_combination, FD_Right_side])
                Extraneous_attributes(
                    [single_element_combination, FD_element[1]], FD)
                return FD
        return FD
def _find_best_orderred_subset(alignment_exons, reference_exons):
    '''
    Finds the best alignment exons subset with
    respect to the score (which corresponds to the sum of fitness'
    of the exons in the set
    '''
    
    full_array          = []
    highest_score       = 0.
    best_combination    = []
    
    ordered_alignment_exons = alignment_exons.get_ordered_exons()
    
    # add all the exon ordinals to a list of all ordinals
    for exon in ordered_alignment_exons:
        # if exon is already marked as not viable, just discard it
        if hasattr(exon, "viability"):
            if not exon.viability:
                continue
        full_array.append ((exon.ordinal, exon.alignment_ordinal))
        
    
    for i in range (len(full_array)):
        
        # find all combinations of ordinals of all possible lengths
        # ranging from 1 to number of exons
        all_combinations = itertools.combinations(full_array, len(full_array)-i)
        
        for comb in all_combinations:
            if _is_sorted (comb, alignment_exons):
                score = _calculate_total_score(comb, ordered_alignment_exons)
                if score > highest_score:
                    highest_score = score
                    best_combination = comb
    if highest_score > 0.:
        return best_combination
Пример #6
0
    def show_structure(self, xyz, super_cell_size=[1, 1, 1]):
        # self.setCameraPosition(distance=55, azimuth=-90)
        # self.setCameraPosition(azimuth=0)
        # self.setProjection()
        ii = 0
        xyz_values = []
        el_list = []
        if len(self.items) != 0:
            self.clear()
        self.get_super_cell_grids_new(super_cell_size, color=[1, 0, 0, 0.8])

        for each_line in self.grids:
            v1, v2, color = each_line
            self.addItem(
                self.draw_line_between_two_points(v1, v2, color, width=1))
        for each in xyz:
            e, x, y, z = each
            #apply translation symmetry to consider super cell
            x, y, z = self.RealRM.dot([x, y, z])
            xyz_trans = np.array(
                list(
                    itertools.product(np.arange(0, super_cell_size[0]),
                                      np.arange(0, super_cell_size[1]),
                                      np.arange(0, super_cell_size[-1]))))
            xyz_trans = np.dot(
                self.RealRM,
                np.array(xyz_trans).transpose()).transpose().tolist()
            for each_xyz_trans in xyz_trans:
                md = gl.MeshData.sphere(rows=10, cols=20)
                m1 = gl.GLMeshItem(meshdata=md,
                                   smooth=True,
                                   color=color_to_rgb(color_lib[e.upper()]),
                                   shader='shaded',
                                   glOptions='opaque')
                # print(dir(m1.metaObject()))
                dx, dy, dz = each_xyz_trans
                m1.translate(x + dx, y + dy, z + dz)
                m1.scale(0.6, 0.6, 0.6)
                self.addItem(m1)
                xyz_values.append([x + dx, y + dy, z + dz])
                el_list.append(e)
        dist_container = pdist(np.array(xyz_values), 'euclidean')
        index_all = list(itertools.combinations(range(len(xyz_values)), 2))
        index_dist_all = np.where(dist_container < 3)[0]
        bond_index_all = [
            index_all[each] for each in np.where(dist_container < 3)[0]
        ]
        bond_index = []
        for i in range(len(bond_index_all)):
            each = bond_index_all[i]
            if el_list[each[0]] != el_list[each[1]]:
                try:
                    bond_length = covalent_bond_length[(el_list[each[0]],
                                                        el_list[each[1]])]
                    if dist_container[index_dist_all[i]] < bond_length:
                        bond_index.append(each)
                except:
                    pass
        self.bond_index = bond_index

        if self.bond_index != None:
            for each_bond_index in self.bond_index:
                v1 = np.array(xyz_values[each_bond_index[0]])
                v2 = np.array(xyz_values[each_bond_index[1]])
                color1 = color_to_rgb(
                    color_lib[el_list[each_bond_index[0]].upper()])
                color2 = color_to_rgb(
                    color_lib[el_list[each_bond_index[1]].upper()])
                items = self.draw_two_chemical_bonds(v1, v2, [color1, color2])
                [self.addItem(item) for item in items]
        self.setProjection()
Пример #7
0
def _saveResults(timestamp, balancesFName, n_trader_types, n_trials_per_ratio, iterativelyShow=False):

    traders_offset = 2
    traders_fields = 4
    traders_numberOfRobots = 2
    trader_balancePerTrader_offset = 3


    traderTypesCols = []
    averageProfitCols = []
    numberOfTradersCols = []
    for i in xrange(n_trader_types):
        averageProfitCols.append(traders_offset + traders_fields*i + trader_balancePerTrader_offset)
        traderTypesCols.append(traders_offset + traders_fields*i)
        numberOfTradersCols.append(traders_offset + traders_fields*i + traders_numberOfRobots)

    allAvgProfits = np.loadtxt(balancesFName, delimiter=',', usecols=averageProfitCols, unpack = True)
    allTraderTypes =  np.loadtxt(balancesFName, delimiter=',', usecols=traderTypesCols, unpack = True, dtype = np.str)
    allNumOfTraders=  np.loadtxt(balancesFName, delimiter=',', usecols=numberOfTradersCols, unpack = True, dtype = np.str)
    if n_trader_types == 1: # If we have only one type of traders np.loadtxt will give us a simple
                            # array instead of an array of arrays
        allAvgProfits = [allAvgProfits]
        allTraderTypes = [allTraderTypes]
        allNumOfTraders = [allNumOfTraders]

    # compute the list of traders types
    traders_types = []
    for i in xrange(len(allTraderTypes)):
        traders_types.append(allTraderTypes[i][0]) # we only need the first one


    resultsFileName = '{}_results.txt'.format(timestamp)
    resultsFile=open(resultsFileName,'w')

    # compute means, of each ratio and total
    groupAvgProfitMeans = []
    totalAvgProfitMeans = []
    for i in xrange(len(allAvgProfits)): # For each trader type
        balancePerTraders = allAvgProfits[i]
        nTraders = allNumOfTraders[i]
        totalAvgProfitMeans.append(np.mean(balancePerTraders))
        resultsFile.write("{0}:\nTotal mean: {1}\n".format(traders_types[i], totalAvgProfitMeans[i]))
        groupAvgProfitMeans.append([])
        for j in xrange(0, len(balancePerTraders), n_trials_per_ratio): # For each experiment group
            groupAvgProfits = balancePerTraders[j:j+n_trials_per_ratio]
            numberOfRobots= nTraders[j:j+n_trials_per_ratio][0]
            mean = np.mean(groupAvgProfits)
            sd = np.std(groupAvgProfits)
            resultsFile.write("{0} robots: mean = {1}, stdev = {2} \n".format(numberOfRobots, mean, sd))
            groupAvgProfitMeans[i].append(mean)


    # We configure the plot
    plt.clf() # We clear the plot
    plt.cla()
    ax = plt.subplot(111)

    xMin = 1
    xMax = len(groupAvgProfitMeans[0]) + 1

    xAxis = xrange(xMin,xMax)
    xTicks = []
    step = round(len(xAxis) / 7) # 7 ticks
    for i in xAxis:
        if (i % step == 0):
            xTicks.append('G{}'.format(i))
        else:
            xTicks.append('')
    plt.xticks(xAxis, xTicks)


    for i in xrange(len(groupAvgProfitMeans)):
        array = groupAvgProfitMeans[i]
        plot, = plt.plot(xAxis, array, label=traders_types[i])
        plt.plot(xAxis, np.repeat(totalAvgProfitMeans[i], len(array)), color=plot.get_color(), label='Mean: {0:.2f}'.format(totalAvgProfitMeans[i]), linestyle='dashed')
    plt.title('Average profit per experiment group')
    plt.xlabel("Experiment Groups")
    plt.ylabel("Average Profit")

    # resize and set the legnd
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.75, box.height])
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    plt.savefig("{}_plot_a.pdf".format(timestamp))

    #resultsFile.write("All data Mann-Whitney U-test:\n");
    #for subset in itertools.combinations(xrange(0, len(allAvgProfits)), 2):
    #    i, j = subset
    #    u, p_value = mannwhitneyu(allAvgProfits[i], allAvgProfits[j])
    #    resultsFile.write("{0} - {1} : u = {2}, p-value={3}\n".format(traders_types[i], traders_types[j], u, p_value))

    resultsFile.write("Experiment group means Mann-Whitney U-test:\n");
    for subset in itertools.combinations(xrange(0, len(groupAvgProfitMeans)), 2):
        i, j = subset
        u, p_value = mannwhitneyu(groupAvgProfitMeans[i], groupAvgProfitMeans[j])
        resultsFile.write("{0} - {1} : u = {2}, p-value={3}\n".format(traders_types[i], traders_types[j], u, p_value))

    #resultsFile.write("Wilcoxon test:\n");
    #for subset in itertools.combinations(xrange(0, len(allAvgProfits)), 2):
    #    i, j = subset
    #    t, p_value = wilcoxon(allAvgProfits[i], list(reversed(allAvgProfits[j])))
    #    resultsFile.write("{0} - {1} : t = {2}, p-value={3}\n".format(traders_types[i], traders_types[j], t, p_value))

    resultsFile.close()
    if iterativelyShow :
        plt.show()
Пример #8
0
def get_attributes_combinations():
    list = [i for i in range(8)]
    i = itertools.combinations(list, 3)
    combinations = [item for item in i]
    return combinations