Пример #1
0
    def __init__(
        self,
        ubps,
        lamb,
        masses,
        temperature,
        pressure,
        n_steps,
        seed,
        dt=1.5e-3,
        friction=1.0,
        barostat_interval=5,
    ):

        intg = lib.LangevinIntegrator(temperature, dt, friction, masses, seed)
        self.integrator_impl = intg.impl()
        all_impls = [bp.bound_impl(np.float32) for bp in ubps]

        bond_list = get_bond_list(ubps[0])
        group_idxs = get_group_indices(bond_list)

        barostat = lib.MonteCarloBarostat(len(masses), pressure, temperature,
                                          group_idxs, barostat_interval,
                                          seed + 1)
        barostat_impl = barostat.impl(all_impls)

        self.bound_impls = all_impls
        self.barostat_impl = barostat_impl
        self.lamb = lamb
        self.n_steps = n_steps
Пример #2
0
    def vacuum_model(ff_params):

        unbound_potentials, sys_params, masses, coords = rfe.prepare_vacuum_edge(
            ff_params)

        x0 = coords
        v0 = np.zeros_like(coords)
        client = CUDAPoolClient(1)
        box = np.eye(3, dtype=np.float64) * 100

        harmonic_bond_potential = unbound_potentials[0]
        group_idxs = get_group_indices(get_bond_list(harmonic_bond_potential))

        x0 = coords
        v0 = np.zeros_like(coords)
        client = CUDAPoolClient(1)
        temperature = 300.0
        pressure = 1.0

        integrator = LangevinIntegrator(temperature, 1.5e-3, 1.0, masses, seed)

        barostat = MonteCarloBarostat(x0.shape[0], pressure, temperature,
                                      group_idxs, 25, seed)
        model = estimator.FreeEnergyModel(unbound_potentials, client, box, x0,
                                          v0, integrator, lambda_schedule,
                                          equil_steps, prod_steps, barostat)

        return estimator.deltaG(model, sys_params)[0]
Пример #3
0
def test_free_energy_estimator():

    n_atoms = 5
    x0 = np.random.rand(n_atoms, 3)
    v0 = np.zeros_like(x0)

    n_bonds = 3
    n_angles = 4

    hb_pot, hb_params = get_harmonic_bond(n_atoms, n_bonds)
    ha_pot, ha_params = get_harmonic_angle(n_atoms, n_angles)

    sys_params = [hb_params, ha_params]
    unbound_potentials = [hb_pot, ha_pot]

    masses = np.random.rand(n_atoms)

    box = np.eye(3, dtype=np.float64)

    seed = 2021

    group_idxs = get_group_indices(get_bond_list(hb_pot))

    temperature = 300.0
    pressure = 1.0

    integrator = LangevinIntegrator(temperature, 1.5e-3, 1.0, masses, seed)

    barostat = MonteCarloBarostat(x0.shape[0], pressure, temperature,
                                  group_idxs, 25, seed)

    beta = 0.125

    lambda_schedule = np.linspace(0, 1.0, 4)

    def loss_fn(sys_params):

        endpoint_correct = False
        mdl = estimator_abfe.FreeEnergyModel(
            unbound_potentials,
            endpoint_correct,
            client,
            box,
            x0,
            v0,
            integrator,
            barostat,
            lambda_schedule,
            100,
            100,
            beta,
            "test",
        )

        dG, bar_dG_err, results = estimator_abfe.deltaG(mdl, sys_params)

        return dG**2

    for client in [None, CUDAPoolClient(1)]:
        loss_fn(sys_params)
Пример #4
0
def test_barostat_zero_interval():
    pressure = 1.0 * unit.atmosphere
    temperature = 300.0 * unit.kelvin
    initial_waterbox_width = 2.5 * unit.nanometer
    seed = 2021
    np.random.seed(seed)

    mol_a = hif2a_ligand_pair.mol_a
    ff = hif2a_ligand_pair.ff
    complex_system, complex_coords, complex_box, complex_top = build_water_system(
        initial_waterbox_width.value_in_unit(unit.nanometer))

    afe = AbsoluteFreeEnergy(mol_a, ff)

    unbound_potentials, sys_params, masses, coords = afe.prepare_host_edge(
        ff.get_ordered_params(), complex_system, complex_coords)

    # get list of molecules for barostat by looking at bond table
    harmonic_bond_potential = unbound_potentials[0]
    bond_list = get_bond_list(harmonic_bond_potential)
    group_indices = get_group_indices(bond_list)

    bound_potentials = []
    for params, unbound_pot in zip(sys_params, unbound_potentials):
        bp = unbound_pot.bind(np.asarray(params))
        bound_potentials.append(bp)

    u_impls = []
    for bp in bound_potentials:
        bp_impl = bp.bound_impl(precision=np.float32)
        u_impls.append(bp_impl)

    with pytest.raises(RuntimeError):
        custom_ops.MonteCarloBarostat(
            coords.shape[0],
            pressure.value_in_unit(unit.bar),
            temperature.value_in_unit(unit.kelvin),
            group_indices,
            0,
            u_impls,
            seed,
        )
    # Setting it to 1 should be valid.
    baro = custom_ops.MonteCarloBarostat(
        coords.shape[0],
        pressure.value_in_unit(unit.bar),
        temperature.value_in_unit(unit.kelvin),
        group_indices,
        1,
        u_impls,
        seed,
    )
    # Setting back to 0 should raise another error
    with pytest.raises(RuntimeError):
        baro.set_interval(0)
Пример #5
0
    def binding_model(ff_params):

        dGs = []

        for host_system, host_coords, host_box in [
            (complex_system, complex_coords, complex_box),
            (solvent_system, solvent_coords, solvent_box),
        ]:

            # minimize the host to avoid clashes
            host_coords = minimizer.minimize_host_4d([mol_a], host_system,
                                                     host_coords, ff, host_box)

            unbound_potentials, sys_params, masses, coords = rfe.prepare_host_edge(
                ff_params, host_system, host_coords)

            x0 = coords
            v0 = np.zeros_like(coords)
            client = CUDAPoolClient(1)

            harmonic_bond_potential = unbound_potentials[0]
            group_idxs = get_group_indices(
                get_bond_list(harmonic_bond_potential))

            temperature = 300.0
            pressure = 1.0

            integrator = LangevinIntegrator(temperature, 1.5e-3, 1.0, masses,
                                            seed)

            barostat = MonteCarloBarostat(x0.shape[0], pressure, temperature,
                                          group_idxs, 25, seed)

            model = estimator.FreeEnergyModel(
                unbound_potentials,
                client,
                host_box,
                x0,
                v0,
                integrator,
                lambda_schedule,
                equil_steps,
                prod_steps,
                barostat,
            )

            dG, _ = estimator.deltaG(model, sys_params)
            dGs.append(dG)

        return dGs[0] - dGs[1]
Пример #6
0
def equilibrate_solvent_phase(
    ubps,
    params,
    masses,
    coords,  # minimized_coords
    box,
    temperature,
    pressure,
    num_steps,
    seed=None,
):
    """
    Generate samples in the solvent phase.
    """

    dt = 1e-4
    friction = 1.0

    bps = []
    for p, bp in zip(params, ubps):
        bps.append(bp.bind(p))

    all_impls = [bp.bound_impl(np.float32) for bp in bps]

    intg_equil = lib.LangevinIntegrator(temperature, dt, friction, masses, seed)
    intg_equil_impl = intg_equil.impl()

    bond_list = get_bond_list(ubps[0])
    group_idxs = get_group_indices(bond_list)
    barostat_interval = 5

    barostat = lib.MonteCarloBarostat(len(masses), pressure, temperature, group_idxs, barostat_interval, seed + 1)
    barostat_impl = barostat.impl(all_impls)

    # equilibration/minimization doesn't need a barostat
    equil_ctxt = custom_ops.Context(coords, np.zeros_like(coords), box, intg_equil_impl, all_impls, barostat_impl)

    lamb = 0.0

    # TODO: revert to 50k
    equil_schedule = np.ones(num_steps) * lamb
    equil_ctxt.multiple_steps(equil_schedule)

    x0 = equil_ctxt.get_x_t()

    # (ytz): This has to be zeros_like for now since if we freeze ligand
    # coordinates it would start to move during rejected moves.
    v0 = np.zeros_like(x0)

    return CoordsVelBox(x0, v0, equil_ctxt.get_box())
        temperature.value_in_unit(unit.kelvin),
        timestep.value_in_unit(unit.picosecond),
        collision_rate.value_in_unit(unit.picosecond**-1),
        masses,
        seed,
    )
    integrator_impl = integrator.impl()

    def reduced_potential_fxn(x, box, lam):
        u, du_dx = ensemble.reduced_potential_and_gradient(x, box, lam)
        return u

    # get list of molecules for barostat by looking at bond table
    harmonic_bond_potential = unbound_potentials[0]
    bond_list = get_bond_list(harmonic_bond_potential)
    group_indices = get_group_indices(bond_list)

    trajs = []
    volume_trajs = []

    # run at lambda=1.0, n_replicates times
    lambdas = np.ones(n_replicates)

    for lam in lambdas:
        thermostat = UnadjustedLangevinMove(integrator_impl,
                                            potential_energy_model.all_impls,
                                            lam,
                                            n_steps=barostat_interval)
        barostat = MonteCarloBarostat(partial(reduced_potential_fxn, lam=lam),
                                      group_indices,
                                      max_delta_volume=3.0)
Пример #8
0
    def simulate_futures(
            self,
            ff_params,
            mol,
            x0,
            box0,
            prefix,
            core_idxs=None,
            seed=0
    ) -> Tuple[List[Any], estimator_abfe.FreeEnergyModel, List[Any]]:
        top = self.setup_topology(mol)

        afe = free_energy_rabfe.AbsoluteFreeEnergy(mol, top)

        unbound_potentials, sys_params, masses = afe.prepare_host_edge(
            ff_params, self.host_system)

        if seed == 0:
            seed = np.random.randint(np.iinfo(np.int32).max)

        beta = 1 / (constants.BOLTZ * self.temperature)

        bond_list = get_bond_list(unbound_potentials[0])
        masses = model_utils.apply_hmr(masses, bond_list)
        friction = 1.0
        integrator = LangevinIntegrator(self.temperature, self.dt, friction,
                                        masses, seed)

        group_indices = get_group_indices(bond_list)
        barostat_interval = 5
        barostat = MonteCarloBarostat(x0.shape[0], self.pressure,
                                      self.temperature, group_indices,
                                      barostat_interval, seed)

        v0 = np.zeros_like(x0)

        endpoint_correct = False
        model = estimator_abfe.FreeEnergyModel(
            unbound_potentials,
            endpoint_correct,
            self.client,
            box0,
            x0,
            v0,
            integrator,
            barostat,
            self.host_schedule,
            self.equil_steps,
            self.prod_steps,
            beta,
            prefix,
        )
        bound_potentials = []
        for params, unbound_pot in zip(sys_params, model.unbound_potentials):
            bp = unbound_pot.bind(np.asarray(params))
            bound_potentials.append(bp)

        all_args = []
        for lamb_idx, lamb in enumerate(model.lambda_schedule):

            subsample_interval = 1000

            all_args.append((
                lamb,
                model.box,
                model.x0,
                model.v0,
                bound_potentials,
                model.integrator,
                model.barostat,
                model.equil_steps,
                model.prod_steps,
                subsample_interval,
                subsample_interval,
                model.lambda_schedule,
            ))

        if endpoint_correct:

            assert isinstance(bound_potentials[-1], potentials.HarmonicBond)

            all_args.append((
                1.0,
                model.box,
                model.x0,
                model.v0,
                bound_potentials[:-1],  # strip out the restraints
                model.integrator,
                model.barostat,
                model.equil_steps,
                model.prod_steps,
                subsample_interval,
                subsample_interval,
                [],  # no need to evaluate Us for the endpoint correction
            ))

        futures = []
        if self.client is None:
            for args in all_args:
                futures.append(_MockFuture(estimator_abfe.simulate(*args)))
        else:
            for args in all_args:
                futures.append(
                    self.client.submit(estimator_abfe.simulate, *args))
        return sys_params, model, futures
Пример #9
0
def equilibrate_host(
    mol: Chem.Mol,
    host_system: openmm.System,
    host_coords: NDArray,
    temperature: float,
    pressure: float,
    ff: Forcefield,
    box: NDArray,
    n_steps: int,
    seed: Optional[int] = None,
) -> Tuple[NDArray, NDArray]:
    """
    Equilibrate a host system given a reference molecule using the MonteCarloBarostat.

    Useful for preparing a host that will be used for multiple FEP calculations using the same reference, IE a starmap.

    Performs the following:
    - Minimize host with rigid mol
    - Minimize host and mol
    - Run n_steps with HMR enabled and MonteCarloBarostat every 5 steps

    Parameters
    ----------
    mol: Chem.Mol
        Ligand for the host to equilibrate with.

    host_system: openmm.System
        OpenMM System representing the host.

    host_coords: np.ndarray
        N x 3 coordinates of the host. units of nanometers.

    temperature: float
        Temperature at which to run the simulation. Units of kelvins.

    pressure: float
        Pressure at which to run the simulation. Units of bars.

    ff: ff.Forcefield
        Wrapper class around a list of handlers.

    box: np.ndarray [3,3]
        Box matrix for periodic boundary conditions. units of nanometers.

    n_steps: int
        Number of steps to run the simulation for.

    seed: int or None
        Value to seed simulation with

    Returns
    -------
    tuple (coords, box)
        Returns equilibrated system coords as well as the box.

    """
    # insert mol into the binding pocket.
    host_bps, host_masses = openmm_deserializer.deserialize_system(host_system, cutoff=1.2)

    min_host_coords = minimize_host_4d([mol], host_system, host_coords, ff, box)

    ligand_masses = [a.GetMass() for a in mol.GetAtoms()]
    ligand_coords = get_romol_conf(mol)

    combined_masses = np.concatenate([host_masses, ligand_masses])
    combined_coords = np.concatenate([min_host_coords, ligand_coords])

    top = topology.BaseTopology(mol, ff)
    hgt = topology.HostGuestTopology(host_bps, top)

    # setup the parameter handlers for the ligand
    tuples = [
        [hgt.parameterize_harmonic_bond, [ff.hb_handle]],
        [hgt.parameterize_harmonic_angle, [ff.ha_handle]],
        [hgt.parameterize_periodic_torsion, [ff.pt_handle, ff.it_handle]],
        [hgt.parameterize_nonbonded, [ff.q_handle, ff.lj_handle]],
    ]

    u_impls = []
    bound_potentials = []

    for fn, handles in tuples:
        params, potential = fn(*[h.params for h in handles])
        bp = potential.bind(params)
        bound_potentials.append(bp)
        u_impls.append(bp.bound_impl(precision=np.float32))

    bond_list = get_bond_list(bound_potentials[0])
    combined_masses = model_utils.apply_hmr(combined_masses, bond_list)

    dt = 2.5e-3
    friction = 1.0

    if seed is None:
        seed = np.random.randint(np.iinfo(np.int32).max)

    integrator = LangevinIntegrator(temperature, dt, friction, combined_masses, seed).impl()

    x0 = combined_coords
    v0 = np.zeros_like(x0)

    group_indices = get_group_indices(bond_list)
    barostat_interval = 5
    barostat = MonteCarloBarostat(x0.shape[0], pressure, temperature, group_indices, barostat_interval, seed).impl(
        u_impls
    )

    # Re-minimize with the mol being flexible
    x0 = fire_minimize(x0, u_impls, box, np.ones(50))
    # context components: positions, velocities, box, integrator, energy fxns
    ctxt = custom_ops.Context(x0, v0, box, integrator, u_impls, barostat)

    ctxt.multiple_steps(np.linspace(0.0, 0.0, n_steps))

    return ctxt.get_x_t(), ctxt.get_box()
Пример #10
0
    def equilibrate_edges(
        self,
        edges: List[Tuple[Chem.Mol, Chem.Mol, np.ndarray]],
        lamb: float = 0.0,
        barostat_interval: int = 10,
        equilibration_steps: int = 100000,
        cache_path: str = "equilibration_cache.pkl",
    ):
        """
        edges: List of tuples with mol_a, mol_b, core
            Edges to equilibrate

        lamb: float
            Lambda value to equilibrate at. Uses Dual Topology to equilibrate

        barostat_interval: int
            Interval on which to run barostat during equilibration

        equilibration_steps: int
            Number of steps to equilibrate the edge for

        cache_path: string
            Path to look for existing cache or path to where to save cache. By default
            it will write out a pickle file in the local directory.

        Pre equilibrate edges and cache them for later use in predictions.

        Parallelized via the model client if possible
        """
        if not self.pre_equilibrate:
            return
        if os.path.isfile(cache_path):
            with open(cache_path, "rb") as ifs:
                self._equil_cache = load(ifs)
            print("Loaded Pre-equilibrated structures from cache")
            return
        futures = []
        ordered_params = self.ff.get_ordered_params()

        temperature = 300.0
        pressure = 1.0

        for stage, host_system, host_coords, host_box in [
            ("complex", self.complex_system, self.complex_coords,
             self.complex_box),
            ("solvent", self.solvent_system, self.solvent_coords,
             self.solvent_box),
        ]:
            # Run all complex legs first then solvent, as they will likely take longer than then solvent leg
            for mol_a, mol_b, core in edges:
                # Use DualTopology to ensure mols exist in the same space.
                topo = topology.DualTopologyMinimization(mol_a, mol_b, self.ff)
                rfe = free_energy.RelativeFreeEnergy(topo)
                min_coords = minimizer.minimize_host_4d([mol_a, mol_b],
                                                        host_system,
                                                        host_coords, self.ff,
                                                        host_box)
                unbound_potentials, sys_params, masses, coords = rfe.prepare_host_edge(
                    ordered_params, host_system, min_coords)
                # num_host_coords = len(host_coords)
                # masses[num_host_coords:] *= 1000000 # Lets see if masses are the difference
                harmonic_bond_potential = unbound_potentials[0]
                bond_list = get_bond_list(harmonic_bond_potential)
                group_idxs = get_group_indices(bond_list)
                time_step = 1.5e-3
                if self.hmr:
                    masses = apply_hmr(masses, bond_list)
                    time_step = 2.5e-3
                integrator = LangevinIntegrator(temperature, time_step, 1.0,
                                                masses, 0)
                barostat = MonteCarloBarostat(coords.shape[0], pressure,
                                              temperature, group_idxs,
                                              barostat_interval, 0)
                pots = []
                for bp, params in zip(unbound_potentials, sys_params):
                    pots.append(bp.bind(np.asarray(params)))
                future = self.client.submit(
                    estimator.equilibrate, *[
                        integrator, barostat, pots, coords, host_box, lamb,
                        equilibration_steps
                    ])
                futures.append((stage, (mol_a, mol_b, core), future))
        num_equil = len(futures)
        for i, (stage, edge, future) in enumerate(futures):
            edge_hash = self._edge_hash(stage, *edge)
            self._equil_cache[edge_hash] = future.result()
            if (i + 1) % 5 == 0:
                print(f"Pre-equilibrated {i+1} of {num_equil} edges")
        print(f"Pre-equilibrated {num_equil} edges")
        if cache_path:
            with open(cache_path, "wb") as ofs:
                dump(self._equil_cache, ofs)
            print(f"Saved equilibration_cache to {cache_path}")
Пример #11
0
    def predict(self, ff_params: list, mol_a: Chem.Mol, mol_b: Chem.Mol,
                core: np.ndarray):
        """
        Predict the ddG of morphing mol_a into mol_b. This function is differentiable w.r.t. ff_params.

        Parameters
        ----------

        ff_params: list of np.ndarray
            This should match the ordered params returned by the forcefield

        mol_a: Chem.Mol
            Starting molecule corresponding to lambda = 0

        mol_b: Chem.Mol
            Starting molecule corresponding to lambda = 1

        core: np.ndarray
            N x 2 list of ints corresponding to the atom mapping of the core.

        Returns
        -------
        float
            delta delta G in kJ/mol
        aux
            list of TI results
        """

        stage_dGs = []
        stage_results = []

        for stage, host_system, host_coords, host_box, lambda_schedule in [
            ("complex", self.complex_system, self.complex_coords,
             self.complex_box, self.complex_schedule),
            ("solvent", self.solvent_system, self.solvent_coords,
             self.solvent_box, self.solvent_schedule),
        ]:
            single_topology = topology.SingleTopology(mol_a, mol_b, core,
                                                      self.ff)
            rfe = free_energy.RelativeFreeEnergy(single_topology)
            edge_hash = self._edge_hash(stage, mol_a, mol_b, core)
            if self.pre_equilibrate and edge_hash in self._equil_cache:
                cached_state = self._equil_cache[edge_hash]
                x0 = cached_state.coords
                host_box = cached_state.box
                num_host_coords = len(host_coords)
                unbound_potentials, sys_params, masses, _ = rfe.prepare_host_edge(
                    ff_params, host_system, host_coords)
                mol_a_size = mol_a.GetNumAtoms()
                # Use Dual Topology to pre equilibrate, so have to get the mean of the two sets of mol,
                # normally done within prepare_host_edge, but the whole system has moved by this stage
                x0 = np.concatenate([
                    x0[:num_host_coords],
                    np.mean(
                        single_topology.interpolate_params(
                            x0[num_host_coords:num_host_coords + mol_a_size],
                            x0[num_host_coords + mol_a_size:]),
                        axis=0,
                    ),
                ])
            else:
                if self.pre_equilibrate:
                    print(
                        "Edge not correctly pre-equilibrated, ensure equilibrate_edges was called"
                    )
                print(
                    f"Minimizing the {stage} host structure to remove clashes."
                )
                # (ytz): this isn't strictly symmetric, and we should modify minimize later on remove
                # the hysteresis by jointly minimizing against a and b at the same time. We may also want
                # to remove the randomness completely from the minimization.
                min_host_coords = minimizer.minimize_host_4d([mol_a, mol_b],
                                                             host_system,
                                                             host_coords,
                                                             self.ff, host_box)

                unbound_potentials, sys_params, masses, coords = rfe.prepare_host_edge(
                    ff_params, host_system, min_host_coords)

                x0 = coords
            v0 = np.zeros_like(x0)

            time_step = 1.5e-3

            harmonic_bond_potential = unbound_potentials[0]
            bond_list = get_bond_list(harmonic_bond_potential)
            if self.hmr:
                masses = apply_hmr(masses, bond_list)
                time_step = 2.5e-3
            group_idxs = get_group_indices(bond_list)

            seed = 0

            temperature = 300.0
            pressure = 1.0

            integrator = LangevinIntegrator(temperature, time_step, 1.0,
                                            masses, seed)

            barostat = MonteCarloBarostat(x0.shape[0], pressure, temperature,
                                          group_idxs, self.barostat_interval,
                                          seed)

            model = estimator.FreeEnergyModel(
                unbound_potentials,
                self.client,
                host_box,
                x0,
                v0,
                integrator,
                lambda_schedule,
                self.equil_steps,
                self.prod_steps,
                barostat,
            )

            dG, results = estimator.deltaG(model, sys_params)

            stage_dGs.append(dG)
            stage_results.append((stage, results))

        pred = stage_dGs[0] - stage_dGs[1]

        return pred, stage_results
Пример #12
0
def benchmark(
    label,
    masses,
    lamb,
    x0,
    v0,
    box,
    bound_potentials,
    hmr=False,
    verbose=True,
    num_batches=100,
    steps_per_batch=1000,
    compute_du_dl_interval=0,
    barostat_interval=0,
):
    """
    TODO: configuration blob containing num_batches, steps_per_batch, and any other options
    """

    seed = 1234
    dt = 1.5e-3
    temperature = 300
    pressure = 1.0
    seconds_per_day = 86400

    harmonic_bond_potential = bound_potentials[0]
    bond_list = get_bond_list(harmonic_bond_potential)
    if hmr:
        dt = 2.5e-3
        masses = apply_hmr(masses, bond_list)
    intg = LangevinIntegrator(temperature, dt, 1.0, np.array(masses), seed).impl()

    bps = []

    for potential in bound_potentials:
        bps.append(potential.bound_impl(precision=np.float32))  # get the bound implementation

    baro_impl = None
    if barostat_interval > 0:
        group_idxs = get_group_indices(bond_list)
        baro = MonteCarloBarostat(
            x0.shape[0],
            pressure,
            temperature,
            group_idxs,
            barostat_interval,
            seed,
        )
        baro_impl = baro.impl(bps)

    ctxt = custom_ops.Context(
        x0,
        v0,
        box,
        intg,
        bps,
        barostat=baro_impl,
    )

    batch_times = []

    lambda_schedule = np.ones(steps_per_batch) * lamb

    # run once before timer starts
    ctxt.multiple_steps(lambda_schedule, compute_du_dl_interval)

    start = time.time()

    for batch in range(num_batches):

        # time the current batch
        batch_start = time.time()
        du_dls, _, _ = ctxt.multiple_steps(lambda_schedule, compute_du_dl_interval)
        batch_end = time.time()

        delta = batch_end - batch_start

        batch_times.append(delta)

        steps_per_second = steps_per_batch / np.mean(batch_times)
        steps_per_day = steps_per_second * seconds_per_day

        ps_per_day = dt * steps_per_day
        ns_per_day = ps_per_day * 1e-3

        if verbose:
            print(f"steps per second: {steps_per_second:.3f}")
            print(f"ns per day: {ns_per_day:.3f}")

    assert np.all(np.abs(ctxt.get_x_t()) < 1000)

    print(
        f"{label}: N={x0.shape[0]} speed: {ns_per_day:.2f}ns/day dt: {dt*1e3}fs (ran {steps_per_batch * num_batches} steps in {(time.time() - start):.2f}s)"
    )
Пример #13
0
def test_barostat_partial_group_idxs():
    """Verify that the barostat can handle a subset of the molecules
    rather than all of them. This test only verify that it runs, not the behavior"""
    temperature = 300.0 * unit.kelvin
    initial_waterbox_width = 3.0 * unit.nanometer
    timestep = 1.5 * unit.femtosecond
    barostat_interval = 3
    collision_rate = 1.0 / unit.picosecond
    seed = 2021
    np.random.seed(seed)

    pressure = 1.0 * unit.atmosphere
    mol_a = hif2a_ligand_pair.mol_a
    ff = hif2a_ligand_pair.ff
    complex_system, complex_coords, complex_box, complex_top = build_water_system(
        initial_waterbox_width.value_in_unit(unit.nanometer))

    min_complex_coords = minimize_host_4d([mol_a], complex_system,
                                          complex_coords, ff, complex_box)
    afe = AbsoluteFreeEnergy(mol_a, ff)

    unbound_potentials, sys_params, masses, coords = afe.prepare_host_edge(
        ff.get_ordered_params(), complex_system, min_complex_coords)

    # get list of molecules for barostat by looking at bond table
    harmonic_bond_potential = unbound_potentials[0]
    bond_list = get_bond_list(harmonic_bond_potential)
    group_indices = get_group_indices(bond_list)

    # Cut the number of groups in half
    group_indices = group_indices[len(group_indices) // 2:]
    lam = 1.0

    bound_potentials = []
    for params, unbound_pot in zip(sys_params, unbound_potentials):
        bp = unbound_pot.bind(np.asarray(params))
        bound_potentials.append(bp)

    u_impls = []
    for bp in bound_potentials:
        bp_impl = bp.bound_impl(precision=np.float32)
        u_impls.append(bp_impl)

    integrator = LangevinIntegrator(
        temperature.value_in_unit(unit.kelvin),
        timestep.value_in_unit(unit.picosecond),
        collision_rate.value_in_unit(unit.picosecond**-1),
        masses,
        seed,
    )
    integrator_impl = integrator.impl()

    v_0 = sample_velocities(masses * unit.amu, temperature)

    baro = custom_ops.MonteCarloBarostat(
        coords.shape[0],
        pressure.value_in_unit(unit.bar),
        temperature.value_in_unit(unit.kelvin),
        group_indices,
        barostat_interval,
        u_impls,
        seed,
    )

    ctxt = custom_ops.Context(coords,
                              v_0,
                              complex_box,
                              integrator_impl,
                              u_impls,
                              barostat=baro)
    ctxt.multiple_steps(np.ones(1000) * lam)
Пример #14
0
def test_molecular_ideal_gas():
    """


    References
    ----------
    OpenMM testIdealGas
    https://github.com/openmm/openmm/blob/d8ef57fed6554ec95684e53768188e1f666405c9/tests/TestMonteCarloBarostat.h#L86-L140
    """

    # simulation parameters
    initial_waterbox_width = 3.0 * unit.nanometer
    timestep = 1.5 * unit.femtosecond
    collision_rate = 1.0 / unit.picosecond
    n_moves = 10000
    barostat_interval = 5
    seed = 2021

    # thermodynamic parameters
    temperatures = np.array([300, 600, 1000]) * unit.kelvin
    pressure = 100.0 * unit.bar  # very high pressure, to keep the expected volume small

    # generate an alchemical system of a waterbox + alchemical ligand:
    # effectively discard ligands by running in AbsoluteFreeEnergy mode at lambda = 1.0
    mol_a = hif2a_ligand_pair.mol_a
    ff = hif2a_ligand_pair.ff
    complex_system, complex_coords, complex_box, complex_top = build_water_system(
        initial_waterbox_width.value_in_unit(unit.nanometer))

    min_complex_coords = minimize_host_4d([mol_a], complex_system,
                                          complex_coords, ff, complex_box)
    afe = AbsoluteFreeEnergy(mol_a, ff)

    _unbound_potentials, _sys_params, masses, coords = afe.prepare_host_edge(
        ff.get_ordered_params(), complex_system, min_complex_coords)

    # drop the nonbonded potential
    unbound_potentials = _unbound_potentials[:-1]
    sys_params = _sys_params[:-1]

    # get list of molecules for barostat by looking at bond table
    harmonic_bond_potential = unbound_potentials[0]
    bond_list = get_bond_list(harmonic_bond_potential)
    group_indices = get_group_indices(bond_list)

    volume_trajs = []

    relative_tolerance = 1e-2
    initial_relative_box_perturbation = 2 * relative_tolerance

    n_molecules = complex_top.getNumResidues()

    bound_potentials = []
    for params, unbound_pot in zip(sys_params, unbound_potentials):
        bp = unbound_pot.bind(np.asarray(params))
        bound_potentials.append(bp)

    u_impls = []
    for bp in bound_potentials:
        bp_impl = bp.bound_impl(precision=np.float32)
        u_impls.append(bp_impl)

    # expected volume
    md_pressure_unit = ENERGY_UNIT / DISTANCE_UNIT**3
    pressure_in_md = (
        pressure * unit.AVOGADRO_CONSTANT_NA).value_in_unit(md_pressure_unit)
    expected_volume_in_md = (n_molecules +
                             1) * BOLTZ * temperatures.value_in_unit(
                                 unit.kelvin) / pressure_in_md

    for i, temperature in enumerate(temperatures):

        # define a thermostat
        integrator = LangevinIntegrator(
            temperature.value_in_unit(unit.kelvin),
            timestep.value_in_unit(unit.picosecond),
            collision_rate.value_in_unit(unit.picosecond**-1),
            masses,
            seed,
        )
        integrator_impl = integrator.impl()

        v_0 = sample_velocities(masses * unit.amu, temperature)

        # rescale the box to be approximately the desired box volume already
        rescaler = CentroidRescaler(group_indices)
        initial_volume = compute_box_volume(complex_box)
        initial_center = compute_box_center(complex_box)
        length_scale = ((1 + initial_relative_box_perturbation) *
                        expected_volume_in_md[i] / initial_volume)**(1.0 / 3)
        new_coords = rescaler.scale_centroids(coords, initial_center,
                                              length_scale)
        new_box = complex_box * length_scale

        baro = custom_ops.MonteCarloBarostat(
            new_coords.shape[0],
            pressure.value_in_unit(unit.bar),
            temperature.value_in_unit(unit.kelvin),
            group_indices,
            barostat_interval,
            u_impls,
            seed,
        )

        ctxt = custom_ops.Context(new_coords,
                                  v_0,
                                  new_box,
                                  integrator_impl,
                                  u_impls,
                                  barostat=baro)
        vols = []
        for move in range(n_moves // barostat_interval):
            ctxt.multiple_steps(np.ones(barostat_interval))
            new_box = ctxt.get_box()
            volume = np.linalg.det(new_box)
            vols.append(volume)
        volume_trajs.append(vols)

    equil_time = len(volume_trajs[0]) // 2  # TODO: don't hard-code this?
    actual_volume_in_md = np.array(
        [np.mean(volume_traj[equil_time:]) for volume_traj in volume_trajs])

    np.testing.assert_allclose(actual=actual_volume_in_md,
                               desired=expected_volume_in_md,
                               rtol=relative_tolerance)
Пример #15
0
def test_barostat_varying_pressure():
    temperature = 300.0 * unit.kelvin
    initial_waterbox_width = 3.0 * unit.nanometer
    timestep = 1.5 * unit.femtosecond
    barostat_interval = 3
    collision_rate = 1.0 / unit.picosecond
    seed = 2021
    np.random.seed(seed)

    # Start out with a very large pressure
    pressure = 1000.0 * unit.atmosphere
    mol_a = hif2a_ligand_pair.mol_a
    ff = hif2a_ligand_pair.ff
    complex_system, complex_coords, complex_box, complex_top = build_water_system(
        initial_waterbox_width.value_in_unit(unit.nanometer))

    min_complex_coords = minimize_host_4d([mol_a], complex_system,
                                          complex_coords, ff, complex_box)
    afe = AbsoluteFreeEnergy(mol_a, ff)

    unbound_potentials, sys_params, masses, coords = afe.prepare_host_edge(
        ff.get_ordered_params(), complex_system, min_complex_coords)

    # get list of molecules for barostat by looking at bond table
    harmonic_bond_potential = unbound_potentials[0]
    bond_list = get_bond_list(harmonic_bond_potential)
    group_indices = get_group_indices(bond_list)

    lam = 1.0

    u_impls = []
    for params, unbound_pot in zip(sys_params, unbound_potentials):
        bp = unbound_pot.bind(np.asarray(params))
        bp_impl = bp.bound_impl(precision=np.float32)
        u_impls.append(bp_impl)

    integrator = LangevinIntegrator(
        temperature.value_in_unit(unit.kelvin),
        timestep.value_in_unit(unit.picosecond),
        collision_rate.value_in_unit(unit.picosecond**-1),
        masses,
        seed,
    )
    integrator_impl = integrator.impl()

    v_0 = sample_velocities(masses * unit.amu, temperature)

    baro = custom_ops.MonteCarloBarostat(
        coords.shape[0],
        pressure.value_in_unit(unit.bar),
        temperature.value_in_unit(unit.kelvin),
        group_indices,
        barostat_interval,
        u_impls,
        seed,
    )

    ctxt = custom_ops.Context(coords,
                              v_0,
                              complex_box,
                              integrator_impl,
                              u_impls,
                              barostat=baro)
    ctxt.multiple_steps(np.ones(1000) * lam)
    ten_atm_box = ctxt.get_box()
    ten_atm_box_vol = compute_box_volume(ten_atm_box)
    # Expect the box to shrink thanks to the barostat
    assert compute_box_volume(complex_box) - ten_atm_box_vol > 0.4

    # Set the pressure to 1 bar
    baro.set_pressure((1 * unit.atmosphere).value_in_unit(unit.bar))
    # Changing the barostat interval resets the barostat step.
    baro.set_interval(2)

    ctxt.multiple_steps(np.ones(2000) * lam)
    atm_box = ctxt.get_box()
    # Box will grow thanks to the lower pressure
    assert compute_box_volume(atm_box) > ten_atm_box_vol
Пример #16
0
def test_free_energy_estimator_with_endpoint_correction():
    """
    Test that we generate correctly shaped derivatives in the estimator code
    when the endpoint correction is turned on. We expected that f([a,b,c,...])
    to generate derivatives df/da, df/db, df/dc, df/d... such that
    df/da.shape == a.shape, df/db.shape == b.shape, df/dc == c.shape, and etc.
    """

    n_atoms = 15
    x0 = np.random.rand(n_atoms, 3)
    v0 = np.zeros_like(x0)

    n_bonds = 3
    n_angles = 4
    n_restraints = 5

    hb_pot, hb_params = get_harmonic_bond(n_atoms, n_bonds)
    ha_pot, ha_params = get_harmonic_angle(n_atoms, n_angles)
    rs_pot, rs_params = get_harmonic_restraints(n_atoms, n_restraints)

    sys_params = [hb_params, ha_params, rs_params]
    unbound_potentials = [hb_pot, ha_pot, rs_pot]

    masses = np.random.rand(n_atoms)

    box = np.eye(3, dtype=np.float64)

    seed = 2021

    group_idxs = get_group_indices(get_bond_list(hb_pot))

    temperature = 300.0
    pressure = 1.0

    integrator = LangevinIntegrator(temperature, 1.5e-3, 1.0, masses, seed)

    barostat = MonteCarloBarostat(x0.shape[0], pressure, temperature,
                                  group_idxs, 25, seed)

    beta = 0.125

    lambda_schedule = np.linspace(0, 1.0, 4)

    def loss_fn(sys_params):

        endpoint_correct = True
        mdl = estimator_abfe.FreeEnergyModel(
            unbound_potentials,
            endpoint_correct,
            client,
            box,
            x0,
            v0,
            integrator,
            barostat,
            lambda_schedule,
            100,
            100,
            beta,
            "test",
        )

        dG, bar_dG_err, results = estimator_abfe.deltaG(mdl, sys_params)

        return dG**2

    for client in [None, CUDAPoolClient(1)]:
        loss_fn(sys_params)
Пример #17
0
    def _futures_a_to_b(self, ff_params, mol_a, mol_b, combined_core_idxs, x0,
                        box0, prefix, seed):

        num_host_atoms = x0.shape[0] - mol_a.GetNumAtoms() - mol_b.GetNumAtoms(
        )

        # (ytz): super ugly, undo combined_core_idxs to get back original idxs
        core_idxs = combined_core_idxs - num_host_atoms
        core_idxs[:, 1] -= mol_a.GetNumAtoms()

        dual_topology = self.setup_topology(mol_a, mol_b)
        rfe = free_energy_rabfe.RelativeFreeEnergy(dual_topology)

        unbound_potentials, sys_params, masses = rfe.prepare_host_edge(
            ff_params, self.host_system)

        k_core = 30.0

        core_params = np.zeros_like(combined_core_idxs).astype(np.float64)
        core_params[:, 0] = k_core

        restraint_potential = potentials.HarmonicBond(combined_core_idxs, )

        unbound_potentials.append(restraint_potential)
        sys_params.append(core_params)

        # tbd sample from boltzmann distribution later
        v0 = np.zeros_like(x0)

        beta = 1 / (constants.BOLTZ * self.temperature)

        bond_list = np.concatenate(
            [unbound_potentials[0].get_idxs(), core_idxs])
        masses = model_utils.apply_hmr(masses, bond_list)

        friction = 1.0
        integrator = LangevinIntegrator(self.temperature, self.dt, friction,
                                        masses, seed)
        bond_list = list(map(tuple, bond_list))
        group_indices = get_group_indices(bond_list)
        barostat_interval = 5

        barostat = MonteCarloBarostat(x0.shape[0], self.pressure,
                                      self.temperature, group_indices,
                                      barostat_interval, seed)

        endpoint_correct = True
        model = estimator_abfe.FreeEnergyModel(
            unbound_potentials,
            endpoint_correct,
            self.client,
            box0,  # important, use equilibrated box.
            x0,
            v0,
            integrator,
            barostat,
            self.host_schedule,
            self.equil_steps,
            self.prod_steps,
            beta,
            prefix,
        )

        bound_potentials = []
        for params, unbound_pot in zip(sys_params, model.unbound_potentials):
            bp = unbound_pot.bind(np.asarray(params))
            bound_potentials.append(bp)

        all_args = []
        for lamb_idx, lamb in enumerate(model.lambda_schedule):

            subsample_interval = 1000

            all_args.append((
                lamb,
                model.box,
                model.x0,
                model.v0,
                bound_potentials,
                model.integrator,
                model.barostat,
                model.equil_steps,
                model.prod_steps,
                subsample_interval,
                subsample_interval,
                model.lambda_schedule,
            ))

        if endpoint_correct:

            assert isinstance(bound_potentials[-1], potentials.HarmonicBond)

            all_args.append((
                1.0,
                model.box,
                model.x0,
                model.v0,
                bound_potentials[:-1],  # strip out the restraints
                model.integrator,
                model.barostat,
                model.equil_steps,
                model.prod_steps,
                subsample_interval,
                subsample_interval,
                [],  # no need to evaluate Us for the endpoint correction
            ))

        futures = []
        if self.client is None:
            for args in all_args:
                futures.append(_MockFuture(estimator_abfe.simulate(*args)))
        else:
            for args in all_args:
                futures.append(
                    self.client.submit(estimator_abfe.simulate, *args))

        return sys_params, model, futures
Пример #18
0
def test_barostat_is_deterministic():
    """Verify that the barostat results in the same box size shift after 1000
    steps. This is important to debugging as well as providing the ability to replicate
    simulations
    """
    platform_version = get_platform_version()
    lam = 1.0
    temperature = 300.0 * unit.kelvin
    initial_waterbox_width = 3.0 * unit.nanometer
    timestep = 1.5 * unit.femtosecond
    barostat_interval = 3
    collision_rate = 1.0 / unit.picosecond
    seed = 2021
    np.random.seed(seed)

    # OpenEye's AM1 Charging values are OS platform dependent. To ensure that we have deterministic values
    # we check against our two most common OS versions, Ubuntu 18.04 and 20.04.
    box_vol = 26.869380588831582
    lig_charge_vals = np.array([
        1.4572377542719206, -0.37011462071257184, 1.1478267014520305,
        -4.920284514559682, 0.16985194917937935
    ])
    if "ubuntu" not in platform_version:
        print(
            f"Test expected to run under ubuntu 20.04 or 18.04, got {platform_version}"
        )
    if "18.04" in platform_version:
        box_vol = 26.711716908713402
        lig_charge_vals[3] = -4.920166483601927

    pressure = 1.0 * unit.atmosphere

    mol_a = hif2a_ligand_pair.mol_a
    ff = hif2a_ligand_pair.ff
    complex_system, complex_coords, complex_box, complex_top = build_water_system(
        initial_waterbox_width.value_in_unit(unit.nanometer))

    min_complex_coords = minimize_host_4d([mol_a], complex_system,
                                          complex_coords, ff, complex_box)
    afe = AbsoluteFreeEnergy(mol_a, ff)

    unbound_potentials, sys_params, masses, coords = afe.prepare_host_edge(
        ff.get_ordered_params(), complex_system, min_complex_coords)

    # get list of molecules for barostat by looking at bond table
    harmonic_bond_potential = unbound_potentials[0]
    bond_list = get_bond_list(harmonic_bond_potential)
    group_indices = get_group_indices(bond_list)

    u_impls = []
    # Look at the first five atoms and their assigned charges
    ligand_charges = sys_params[-1][:, 0][len(min_complex_coords):][:5]
    np.testing.assert_array_almost_equal(lig_charge_vals,
                                         ligand_charges,
                                         decimal=5)
    for params, unbound_pot in zip(sys_params, unbound_potentials):
        bp = unbound_pot.bind(np.asarray(params))
        bp_impl = bp.bound_impl(precision=np.float32)
        u_impls.append(bp_impl)

    integrator = LangevinIntegrator(
        temperature.value_in_unit(unit.kelvin),
        timestep.value_in_unit(unit.picosecond),
        collision_rate.value_in_unit(unit.picosecond**-1),
        masses,
        seed,
    )
    integrator_impl = integrator.impl()

    v_0 = sample_velocities(masses * unit.amu, temperature)

    baro = custom_ops.MonteCarloBarostat(
        coords.shape[0],
        pressure.value_in_unit(unit.bar),
        temperature.value_in_unit(unit.kelvin),
        group_indices,
        barostat_interval,
        u_impls,
        seed,
    )

    ctxt = custom_ops.Context(coords,
                              v_0,
                              complex_box,
                              integrator_impl,
                              u_impls,
                              barostat=baro)
    ctxt.multiple_steps(np.ones(1000) * lam)
    atm_box = ctxt.get_box()
    np.testing.assert_almost_equal(compute_box_volume(atm_box),
                                   box_vol,
                                   decimal=5)