def do_lstsqr(dataroot='~/Data/AIA/', ldirroot='~/ts/pickle/', sfigroot='~/ts/img/', scsvroot='~/ts/csv/', corename='shutdownfun3_6hr', sunlocation='disk', fits_level='1.5', waves=['171', '193', '211', '131'], regions=['qs', 'loopfootpoints'], windows=['no window'], manip='none'): five_min = 1.0 / 300.0 three_min = 1.0 / 180.0 # main loop for iwave, wave in enumerate(waves): # Which wavelength? print('Wave: ' + wave + ' (%i out of %i)' % (iwave + 1, len(waves))) # Now that the loading and saving locations are seot up, proceed with # the analysis. for iregion, region in enumerate(regions): # Which region print('Region: ' + region + ' (%i out of %i)' % (iregion + 1, len(regions))) # Create the branches in order branches = [corename, sunlocation, fits_level, wave, region] # Set up the roots we are interested in roots = {"pickle": ldirroot, "image": sfigroot, "csv": scsvroot} # Data and save locations are based here locations = aia_specific.save_location_calculator(roots, branches) # set the saving locations sfig = locations["image"] scsv = locations["csv"] # Identifier ident = aia_specific.ident_creator(branches) # Go through all the windows for iwindow, window in enumerate(windows): # Which window print('Window: ' + window + ' (%i out of %i)' % (iwindow + 1, len(windows))) # Update the region identifier region_id = '.'.join((ident, window, manip)) # Load the data pkl_location = locations['pickle'] ifilename = ident + '.datacube' pkl_file_location = os.path.join(pkl_location, ifilename + '.pickle') print('Loading ' + pkl_file_location) pkl_file = open(pkl_file_location, 'rb') dc = pickle.load(pkl_file) pkl_file.close() # Get some properties of the datacube ny = dc.shape[0] nx = dc.shape[1] nt = dc.shape[2] tsdetails = tsDetails(nx, ny, nt) # Define an array to store the analyzed data dc_analysed = np.zeros_like(dc) # calculate a window function win, dummy_winname = DefineWindow(window, nt) # Create the name for the data #data_name = wave + ' (' + fits_level + winname + ', ' + manip + '), ' + region data_name = region_id # Create a location to save the figures savefig = os.path.join(os.path.expanduser(sfig), window, manip) if not(os.path.isdir(savefig)): os.makedirs(savefig) savefig = os.path.join(savefig, region_id) # Create a time series object dt = 12.0 t = dt * np.arange(0, nt) tsdummy = TimeSeries(t, t) freqs = tsdummy.PowerSpectrum.frequencies.positive iobs = np.zeros(tsdummy.PowerSpectrum.Npower.shape) logiobs = np.zeros(tsdummy.PowerSpectrum.Npower.shape) nposfreq = len(iobs) nfreq = tsdummy.PowerSpectrum.frequencies.nfreq # storage pwr = np.zeros((ny, nx, nposfreq)) logpwr = np.zeros_like(pwr) doriginal = np.zeros_like(t) dmanip = np.zeros_like(t) fft_transform = np.zeros((ny, nx, nfreq), dtype=np.complex64) for i in range(0, nx): for j in range(0, ny): # Get the next time-series d = dc[j, i, :].flatten() # Fix the data for any non-finite entries d = tsutils.fix_nonfinite(d) # Sum up all the original data doriginal = doriginal + d # Remove the mean #if manip == 'submean': # d = d - np.mean(d) # Relative intensity if manip == 'relative': dmean = np.mean(d) d = (d - dmean) / dmean # Sum up all the manipulated data dmanip = dmanip + d # Multiply the data by the apodization window d = d * win # Keep the analyzed data cube dc_analysed[j, i, :] = d # Form a time series object. Handy for calculating the Fourier power at all non-zero frequencies ts = TimeSeries(t, d) # Define the Fourier power we are analyzing this_power = ts.PowerSpectrum.ppower # Get the total Fourier power iobs = iobs + this_power # Store the individual Fourier power pwr[j, i, :] = this_power # Sum up the log of the Fourier power - equivalent to doing the geometric mean logiobs = logiobs + np.log(this_power) # Store the individual log Fourier power logpwr[j, i, :] = np.log(this_power) # Get the FFT transform values and store them fft_transform[j, i, :] = ts.fft_transform ############################################################### # Post-processing of the data products # Limits to the data dc_analysed_minmax = (np.min(dc_analysed), np.max(dc_analysed)) # Average of the analyzed time-series and create a time series object full_data = np.mean(dc_analysed, axis=(0, 1)) full_ts = TimeSeries(t, full_data) full_ts.name = data_name full_ts.label = 'average emission ' + tsdetails # Fourier power: average over all the pixels iobs = iobs / (1.0 * nx * ny) # Fourier power: standard deviation over all the pixels sigma = np.std(pwr, axis=(0, 1)) # Logarithmic power: average over all the pixels logiobs = logiobs / (1.0 * nx * ny) # Logarithmic power: standard deviation over all pixels logsigma = np.std(logpwr, axis=(0, 1)) # Original data: average doriginal = doriginal / (1.0 * nx * ny) # Manipulated data: average dmanip = dmanip / (1.0 * nx * ny) ############################################################### # Power spectrum analysis: arithmetic mean approach # Normalize the frequency. xnorm = tsdummy.PowerSpectrum.frequencies.positive[0] x = freqs / xnorm # Fourier power: fit a power law to the arithmetic mean of the # Fourier power # Generate a guess pguess = [iobs[0], 1.8, iobs[-1]] # 5 minute power bump #gguess = [1.0, five_min, 0.0025] # Final guess #p0 = [np.sqrt(iobs[0]), 1.8, iobs[-1], # 0.01, 1.4, 0.25] #p0 = pguess #bff = ObservedPowerSpectrumModel(x, p0[0], p0[1], p0[2], p0[3], p0[4], p0[5]) # do the fit p0 = pguess answer = curve_fit(PowerLawPlusConstant, x, iobs, sigma=sigma, p0=pguess) #answer = curve_fit(ObservedPowerSpectrumModel, x, iobs, p0=p0) # Get the fit parameters out and calculate the best fit param = answer[0] bf = PowerLawPlusConstant(x, param[0], param[1], param[2]) #bf = ObservedPowerSpectrumModel(x, param[0], param[1], param[2], param[3], param[4], param[5]) # Error estimate for the power law index nerr = np.sqrt(answer[1][1, 1]) # Fourier powerr: get a Time series from the arithmetic sum of # all the time-series at every pixel, find the Fourier power # and do the fit full_ts_iobs = full_ts.PowerSpectrum.ppower / np.mean(full_ts.PowerSpectrum.ppower) answer_full_ts = curve_fit(LogPowerLawPlusConstant, x, np.log(full_ts_iobs), p0=answer[0]) #answer_full_ts = fmin_tnc(LogPowerLawPlusConstant, x, approx_grad=True) # Get the fit parameters out and calculate the best fit param_fts = answer_full_ts[0] bf_fts = np.exp(LogPowerLawPlusConstant(x, param_fts[0], param_fts[1], param_fts[2])) nerr_fts = np.sqrt(answer[1][1, 1]) # Plots of power spectra: arithmetic means of summed emission # and summed power spectra plt.figure(1) plt.loglog(freqs, full_ts_iobs, color='r', label='power spectrum from summed emission (exponential distributed)') plt.loglog(freqs, bf_fts, color='r', linestyle="--", label='fit to power spectrum of summed emission n=%4.2f +/- %4.2f' % (param_fts[1], nerr_fts)) plt.loglog(freqs, iobs, color='b', label='arithmetic mean of power spectra from each pixel (Erlang distributed)') plt.loglog(freqs, bf, color='b', linestyle="--", label='fit to arithmetic mean of power spectra from each pixel n=%4.2f +/- %4.2f' % (param[1], nerr)) plt.axvline(five_min, color='k', linestyle='-.', label='5 mins.') plt.axvline(three_min, color='k', linestyle='--', label='3 mins.') plt.axhline(1.0, color='k', label='average power') plt.xlabel('frequency (Hz)') plt.ylabel('normalized power [%i time series, %i samples each]' % (nx * ny, nt)) plt.title(data_name + ' - aPS') plt.legend(loc=1, fontsize=10) plt.text(freqs[0], 500, 'note: least-squares fit used, but data is not Gaussian distributed', fontsize=8) #plt.ylim(0.0001, 1000.0) plt.savefig(savefig + '.arithmetic_mean_power_spectra.png') ############################################################### # Power spectrum analysis: geometric mean approach # ------------------------------------------------------------------------ # Do the same thing over again, this time working with the log of the # normalized power. This is effectively the geometric mean # Fit the function to the log of the mean power answer2 = curve_fit(LogPowerLawPlusConstant, x, logiobs, sigma=logsigma, p0=answer[0]) # Get the fit parameters out and calculate the best fit param2 = answer2[0] bf2 = np.exp(LogPowerLawPlusConstant(x, param2[0], param2[1], param2[2])) # Error estimate for the power law index nerr2 = np.sqrt(answer2[1][1, 1]) # Create the histogram of all the log powers. Histograms look normal-ish if # you take the logarithm of the power. This suggests a log-normal distribution # of power in all frequencies # number of histogram bins bins = 100 hpwr = np.zeros((nposfreq, bins)) for f in range(0, nposfreq): h = np.histogram(logpwr[:, :, f], bins=bins, range=[np.min(logpwr), np.max(logpwr)]) hpwr[f, :] = h[0] / (1.0 * np.sum(h[0])) # Calculate the probability density in each frequency bin. p = [0.68, 0.95] lim = np.zeros((len(p), 2, nposfreq)) for i, thisp in enumerate(p): tailp = 0.5 * (1.0 - thisp) for f in range(0, nposfreq): lo = 0 while np.sum(hpwr[f, 0:lo]) <= tailp: lo = lo + 1 hi = 0 while np.sum(hpwr[f, 0:hi]) <= 1.0 - tailp: hi = hi + 1 lim[i, 0, f] = np.exp(h[1][lo]) lim[i, 1, f] = np.exp(h[1][hi]) # Give the best plot we can under the circumstances. Since we have been # looking at the log of the power, plots are slightly different plt.figure(2) plt.loglog(freqs, np.exp(logiobs), label='geometric mean of power spectra at each pixel') plt.loglog(freqs, bf2, color='k', label='best fit n=%4.2f +/- %4.2f' % (param2[1], nerr2)) plt.loglog(freqs, lim[0, 0, :], linestyle='--', label='lower 68%') plt.loglog(freqs, lim[0, 1, :], linestyle='--', label='upper 68%') plt.loglog(freqs, lim[1, 0, :], linestyle=':', label='lower 95%') plt.loglog(freqs, lim[1, 1, :], linestyle=':', label='upper 95%') plt.axvline(five_min, color='k', linestyle='-.', label='5 mins.') plt.axvline(three_min, color='k', linestyle='--', label='3 mins.') plt.xlabel('frequency (Hz)') plt.ylabel('power [%i time series, %i samples each]' % (nx * ny, nt)) plt.title(data_name + ' - gPS') plt.legend(loc=1, fontsize=10) plt.savefig(savefig + '.geometric_mean_power_spectra.png') # plot some histograms of the log power at a small number of equally spaced # frequencies findex = [0, 11, 19, 38, 76] plt.figure(3) plt.xlabel('$\log_{10}(power)$') plt.ylabel('proportion found at given frequency') plt.title(data_name + ' - power distributions') for f in findex: plt.plot(h[1][1:] / np.log(10.0), hpwr[f, :], label='%7.5f Hz' % (freqs[f])) plt.legend(loc=3, fontsize=10) plt.savefig(savefig + '.power_spectra_distributions.png') # plot out the time series plt.figure(4) full_ts.peek() plt.savefig(savefig + '.full_ts_timeseries.png') plt.close('all') ############################################################### # Time series plots # Plot all the analyzed time series plt.figure(10) for i in range(0, nx): for j in range(0, ny): plt.plot(t, dc_analysed[j, i, :]) plt.xlabel('time (seconds)') plt.ylabel('analyzed emission ' + tsdetails) plt.title(data_name) plt.ylim(dc_analysed_minmax) plt.xlim((t[0], t[-1])) plt.savefig(savefig + '.all_analyzed_ts.png') # Plot a histogram of the studied data at each time bins = 50 hist_dc_analysed = np.zeros((bins, nt)) for this_time in range(0, nt): hist_dc_analysed[:, this_time], bin_edges = np.histogram(dc_analysed[:, :, this_time], bins=bins, range=dc_analysed_minmax) hist_dc_analysed = hist_dc_analysed / (1.0 * nx * ny) plt.figure(12) plt.xlabel('time (seconds)') plt.ylabel('analyzed emission ' + tsdetails) plt.imshow(hist_dc_analysed, aspect='auto', origin='lower', extent=(t[0], t[-1], dc_analysed_minmax[0], dc_analysed_minmax[1])) plt.colorbar() plt.title(data_name) plt.savefig(savefig + '.all_analyzed_ts_histogram.png') ############################################################### # Fourier power plots # Plot all the analyzed FFTs plt.figure(11) for i in range(0, nx): for j in range(0, ny): ts = TimeSeries(t, dc_analysed[j, i, :]) ts.peek_ps() plt.loglog() plt.axvline(five_min, color='k', linestyle='-.', label='5 mins.') plt.axvline(three_min, color='k', linestyle='--', label='3 mins.') plt.xlabel('frequency (Hz)') plt.ylabel('FFT power ' + tsdetails) plt.title(data_name) plt.savefig(savefig + '.all_analyzed_fft.png') # Plot a histogram of the studied FFTs at each time bins = 50 minmax = [np.min(logpwr), np.max(logpwr)] hist_dc_analysed_logpwr = np.zeros((bins, nposfreq)) for this_freq in range(0, nposfreq): hist_dc_analysed_logpwr[:, this_freq], bin_edges = np.histogram(logpwr[:, :, this_freq], bins=bins, range=minmax) hist_dc_analysed_logpwr = hist_dc_analysed_logpwr / (1.0 * nx * ny) plt.figure(13) plt.xlabel('frequency (Hz)') plt.ylabel('FFT power ' + tsdetails) plt.imshow(hist_dc_analysed_logpwr, aspect='auto', origin='lower', extent=(freqs[0], freqs[-1], np.exp(minmax[0]), np.exp(minmax[1]))) plt.semilogy() plt.colorbar() plt.title(data_name) plt.savefig(savefig + '.all_analyzed_fft_histogram.png') ############################################################### # Save various data products # Fourier Power of the analyzed data ofilename = region_id pkl_write(pkl_location, 'OUT.' + ofilename + '.fourier_power.pickle', (freqs, pwr)) # Analyzed data pkl_write(pkl_location, 'OUT.' + ofilename + '.dc_analysed.pickle', (t, dc_analysed)) # Fourier transform pkl_write(pkl_location, 'OUT.' + ofilename + '.fft_transform.pickle', (freqs, fft_transform)) # Save the full time series to a CSV file csv_timeseries_write(os.path.join(os.path.expanduser(scsv), window, manip), '.'.join((data_name, 'average_analyzed_ts.csv')), (t, full_data)) # Original data csv_timeseries_write(os.path.join(os.path.expanduser(scsv)), '.'.join((ident, 'average_original_ts.csv')), (t, doriginal))
def do_lstsqr(dataroot='~/Data/AIA/', ldirroot='~/ts/pickle/', sfigroot='~/ts/img/', scsvroot='~/ts/csv/', corename='shutdownfun3_6hr', sunlocation='disk', fits_level='1.5', waves=['171', '193', '211', '131'], regions=['qs', 'loopfootpoints'], windows=['no window'], manip='none', savefig_format='eps', freqfactor=[1000.0, 'mHz'], sunday_name={"qs": "quiet Sun", "loopfootpoints": "loop footpoints"}): five_min = freqfactor[0] * 1.0 / 300.0 three_min = freqfactor[0] * 1.0 / 180.0 # main loop for iwave, wave in enumerate(waves): # Which wavelength? print('Wave: ' + wave + ' (%i out of %i)' % (iwave + 1, len(waves))) # Now that the loading and saving locations are seot up, proceed with # the analysis. for iregion, region in enumerate(regions): # Which region print('Region: ' + region + ' (%i out of %i)' % (iregion + 1, len(regions))) # Create the branches in order branches = [corename, sunlocation, fits_level, wave, region] # Set up the roots we are interested in roots = {"pickle": ldirroot, "image": sfigroot, "csv": scsvroot} # Data and save locations are based here locations = aia_specific.save_location_calculator(roots, branches) # set the saving locations sfig = locations["image"] scsv = locations["csv"] # Identifier ident = aia_specific.ident_creator(branches) # Go through all the windows for iwindow, window in enumerate(windows): # Which window print('Window: ' + window + ' (%i out of %i)' % (iwindow + 1, len(windows))) # Update the region identifier region_id = '.'.join((ident, window, manip)) # Load the data pkl_location = locations['pickle'] ifilename = ident + '.datacube' pkl_file_location = os.path.join(pkl_location, ifilename + '.pickle') print('Loading ' + pkl_file_location) pkl_file = open(pkl_file_location, 'rb') dc = pickle.load(pkl_file) pkl_file.close() # Get some properties of the datacube ny = dc.shape[0] nx = dc.shape[1] nt = dc.shape[2] tsdetails = tsDetails(nx, ny, nt) # Define an array to store the analyzed data dc_analysed = np.zeros_like(dc) # calculate a window function win, dummy_winname = DefineWindow(window, nt) # Create the name for the data #data_name = wave + ' (' + fits_level + winname + ', ' + manip + '), ' + region #data_name = region_id if region in sunday_name: data_name = 'AIA ' + str(wave) + ', ' + sunday_name[region] else: data_name = 'AIA ' + str(wave) + ', ' + region # Create a location to save the figures savefig = os.path.join(os.path.expanduser(sfig), window, manip) if not(os.path.isdir(savefig)): os.makedirs(savefig) savefig = os.path.join(savefig, region_id) # Create a time series object dt = 12.0 t = dt * np.arange(0, nt) tsdummy = TimeSeries(t, t) freqs = freqfactor[0] * tsdummy.PowerSpectrum.frequencies.positive iobs = np.zeros(tsdummy.PowerSpectrum.Npower.shape) logiobs = np.zeros(tsdummy.PowerSpectrum.Npower.shape) nposfreq = len(iobs) nfreq = tsdummy.PowerSpectrum.frequencies.nfreq # storage pwr = np.zeros((ny, nx, nposfreq)) logpwr = np.zeros_like(pwr) doriginal = np.zeros_like(t) dmanip = np.zeros_like(t) fft_transform = np.zeros((ny, nx, nfreq), dtype=np.complex64) for i in range(0, nx): for j in range(0, ny): # Get the next time-series d = dc[j, i, :].flatten() # Fix the data for any non-finite entries d = tsutils.fix_nonfinite(d) # Sum up all the original data doriginal = doriginal + d # Remove the mean #if manip == 'submean': # d = d - np.mean(d) # Basic rescaling of the time-series d = ts_manip(d, manip) # Sum up all the manipulated data dmanip = dmanip + d # Multiply the data by the apodization window d = ts_apply_window(d, win) # Keep the analyzed data cube dc_analysed[j, i, :] = d # Form a time series object. Handy for calculating the Fourier power at all non-zero frequencies ts = TimeSeries(t, d) # Define the Fourier power we are analyzing this_power = ts.PowerSpectrum.ppower # Get the total Fourier power iobs = iobs + this_power # Store the individual Fourier power pwr[j, i, :] = this_power # Sum up the log of the Fourier power - equivalent to doing the geometric mean logiobs = logiobs + np.log(this_power) # Store the individual log Fourier power logpwr[j, i, :] = np.log(this_power) # Get the FFT transform values and store them fft_transform[j, i, :] = ts.fft_transform ############################################################### # Post-processing of the data products # Limits to the data dc_analysed_minmax = (np.min(dc_analysed), np.max(dc_analysed)) # Original data: average doriginal = doriginal / (1.0 * nx * ny) # Manipulated data: average dmanip = dmanip / (1.0 * nx * ny) # Average of the analyzed time-series and create a time series # object full_data = np.mean(dc_analysed, axis=(0, 1)) full_ts = TimeSeries(t, full_data) full_ts.name = data_name full_ts.label = 'average analyzed emission ' + tsdetails # Time series of the average original data doriginal = ts_manip(doriginal, manip) doriginal = ts_apply_window(d, win) doriginal_ts = TimeSeries(t, doriginal) doriginal_ts.name = data_name doriginal_ts.label = 'average summed emission ' + tsdetails # Fourier power: average over all the pixels iobs = iobs / (1.0 * nx * ny) # Fourier power: standard deviation over all the pixels sigma = np.std(pwr, axis=(0, 1)) # Logarithmic power: average over all the pixels logiobs = logiobs / (1.0 * nx * ny) # Logarithmic power: standard deviation over all pixels logsigma = np.std(logpwr, axis=(0, 1)) ############################################################### # Power spectrum analysis: arithmetic mean approach # Normalize the frequency. xnorm = tsdummy.PowerSpectrum.frequencies.positive[0] x = freqs / (xnorm * freqfactor[0]) # Fourier power: fit a power law to the arithmetic mean of the # Fourier power #answer = curve_fit(aia_plaw_fit.PowerLawPlusConstant, x, iobs, sigma=sigma, p0=pguess) answer, error = aia_plaw.do_fit(x, iobs, aia_plaw.PowerLawPlusConstant, sigma=sigma) # Get the fit parameters out and calculate the best fit param = answer[0, 0, :] bf = aia_plaw.PowerLawPlusConstant(x, answer[0, 0, 0], answer[0, 0, 1], answer[0, 0, 2]) # Error estimate for the power law index nerr = np.sqrt(error[0, 0, 1]) ############################################################### # Estimate the correlation distance in the region. This is # done by calculating the cross-correlation coefficient between # two randomly selected pixels in the region. If we do this # often enough then we can estimate the distance at which the # the cross-correlation between two pixels is zero. This # length-scale is then squared to get the estimated area that # contains a statistically independent time-series. If we # divide the number of pixels in the region by this estimated # area then we get an estimate of the number of independent # time series in the region. def cornorm(a, norm): return (a - np.mean(a)) / (np.std(a) * norm) def exponential_decay(x, A, tau): return A * np.exp(-x / tau) def exponential_decay2(x, A1, tau1, A2, tau2): return A1 * np.exp(-x / tau1) + A2 * np.exp(-x / tau2) def exponential_decay3(x, A1, tau1, const): return A1 * np.exp(-x / tau1) + const def linear(x, c, m): return -m * x + c nsample = 10000 npicked = 0 lag = 1 cc = [] distance = [] while npicked < nsample: loc1 = (np.random.randint(0, ny), np.random.randint(0, nx)) loc2 = (np.random.randint(0, ny), np.random.randint(0, nx)) if loc1 != loc2: # Calculate the distance between the two locations distance.append(np.sqrt((loc1[0] - loc2[0]) ** 2 + (loc1[1] - loc2[1]) ** 2)) # Get the time series ts1 = dc_analysed[loc1[0], loc1[1], :] ts2 = dc_analysed[loc2[0], loc2[1], :] # Calculate the cross-correlation coefficient ccvalue = np.correlate(cornorm(ts1, np.size(ts1)), cornorm(ts2, 1.0), mode='full') cc.append(ccvalue[nt - 1 + lag]) # Advance the counter npicked = npicked + 1 distance = np.asarray(distance) # Get a histogram of the distances # What is the average correlation coefficient cc = np.asarray(cc) ccc = np.zeros(np.rint(np.max(distance)) + 1) ccc_min = np.rint(np.min(distance)) xccc = np.arange(0.0, np.rint(np.max(distance)) + 1) hist = np.zeros_like(ccc) for jj, d in enumerate(distance): dloc = np.rint(d) hist[dloc] = hist[dloc] + 1 ccc[dloc] = ccc[dloc] + cc[jj] ccc = ccc / hist ccc[0] = 1.0 # Fit the positive part of the cross-correlation plot with an # exponential decay curve to get an estimate of the decay # decay constant. This can be used to estimate where exactly # the cross-correlation falls below a certain level. cccpos = ccc >= 0.0 if region != 'moss': ccc_answer, ccc_error = curve_fit(exponential_decay, xccc[cccpos], ccc[cccpos]) amplitude = ccc_answer[0] decay_constant = ccc_answer[1] print('Model 0 ', amplitude, decay_constant) # Estimated decorrelation lengths decorr_length1 = decay_constant * (np.log(amplitude) - np.log(0.1)) decorr_length2 = decay_constant * (np.log(amplitude) - np.log(0.05)) ccc_best_fit = exponential_decay(xccc, amplitude, decay_constant) else: ccc_answer, ccc_error = curve_fit(exponential_decay3, xccc[cccpos], ccc[cccpos]) ccc_best_fit = exponential_decay(xccc, ccc_answer[0], ccc_answer[1]) plt.figure(3) plt.xlabel('distance d (pixels)') plt.ylabel('average cross correlation coefficient at lag %i [%i samples]' % (lag, nsample)) plt.title('Average cross correlation vs. distance') plt.plot(xccc, ccc, label='data') plt.plot(xccc, ccc_best_fit, label='Model 1 best fit') #if region == 'moss': # plt.plot(xccc, ccc_best_fit_orig, label='Model 0 best fit') plt.axhline(0.1, color='k', linestyle='--') plt.axhline(0.05, color='k', linestyle='-.') plt.axhline(0.0, color='k') #plt.axvline(decorr_length1, color='r', label='Length-scale (cc=0.1) = %3.2f pixels' % (decorr_length1), linestyle='--') #plt.axvline(decorr_length2, color='r', label='Length-scale (cc=0.05) = %3.2f pixels' % (decorr_length2), linestyle='-.') plt.legend() plt.savefig(savefig + '.lag%i_cross_corr.%s' % (lag, savefig_format)) # Fourier power: get a Time series from the arithmetic sum of # all the time-series at every pixel, then apply the # manipulation and the window. Find the Fourier power # and do the fit. doriginal_ts_iobs = doriginal_ts.PowerSpectrum.ppower answer_doriginal_ts = curve_fit(aia_plaw.LogPowerLawPlusConstant, x, np.log(doriginal_ts_iobs), p0=answer[0]) param_dts = answer_doriginal_ts[0] bf_dts = np.exp(aia_plaw.LogPowerLawPlusConstant(x, param_dts[0], param_dts[1], param_dts[2])) nerr_dts = np.sqrt(answer_doriginal_ts[1][1, 1]) # ------------------------------------------------------------- # Plots of power spectra: arithmetic means of summed emission # and summed power spectra ax = plt.subplot(111) # Set the scale type on each axis ax.set_xscale('log') ax.set_yscale('log') # Set the formatting of the tick labels xformatter = plt.FuncFormatter(log_10_product) ax.xaxis.set_major_formatter(xformatter) # Arithmetic mean of all the time series, then analysis ax.plot(freqs, doriginal_ts_iobs, color='r', label='sum over region') ax.plot(freqs, bf_dts, color='r', linestyle="--", label='fit to sum over region n=%4.2f +/- %4.2f' % (param_dts[1], nerr_dts)) # Arithmetic mean of the power spectra from each pixel ax.plot(freqs, iobs, color='b', label='arithmetic mean of power spectra from each pixel (Erlang distributed)') ax.plot(freqs, bf, color='b', linestyle="--", label='fit to arithmetic mean of power spectra from each pixel n=%4.2f +/- %4.2f' % (param[1], nerr)) # Extra information for the plot ax.axvline(five_min, color=s5min.color, linestyle=s5min.linestyle, label=s5min.label) ax.axvline(three_min, color=s3min.color, linestyle=s3min.linestyle, label=s3min.label) #plt.axhline(1.0, color='k', label='average power') plt.xlabel('frequency (%s)' % (freqfactor[1])) plt.ylabel('normalized power [%i time series, %i samples each]' % (nx * ny, nt)) plt.title(data_name + ' - arithmetic mean') #plt.grid() plt.legend(loc=3, fontsize=10, framealpha=0.5) #plt.text(freqs[0], 1.0, 'note: least-squares fit used, but data is not Gaussian distributed', fontsize=8) plt.savefig(savefig + '.arithmetic_mean_power_spectra.%s' % (savefig_format)) plt.close('all') # ------------------------------------------------------------- ############################################################### # Power spectrum analysis: geometric mean approach # ------------------------------------------------------------------------ # Do the same thing over again, this time working with the log of the # normalized power. This is the geometric mean # Fit the function to the log of the mean power answer2 = curve_fit(aia_plaw.LogPowerLawPlusConstant, x, logiobs, sigma=logsigma, p0=answer[0]) # Get the fit parameters out and calculate the best fit param2 = answer2[0] bf2 = np.exp(aia_plaw.LogPowerLawPlusConstant(x, param2[0], param2[1], param2[2])) # Error estimate for the power law index nerr2 = np.sqrt(answer2[1][1, 1]) # Create the histogram of all the log powers. Histograms look normal-ish if # you take the logarithm of the power. This suggests a log-normal distribution # of power in all frequencies # number of histogram bins # Calculate the probability density in each frequency bin. bins = 100 bin_edges, hpwr, lim = calculate_histograms(nposfreq, logpwr, bins) histogram_loc = np.zeros(shape=(bins)) for kk in range(0, bins): histogram_loc[kk] = 0.5 * (bin_edges[kk] + bin_edges[kk + 1]) # ------------------------------------------------------------- # plot some histograms of the log power at a small number of # frequencies. findex = [] f_of_interest = [0.5 * five_min, five_min, three_min, 2 * three_min, 3 * three_min] hcolor = ['r', 'b', 'g', 'k', 'm'] for thisf in f_of_interest: findex.append(np.unravel_index(np.argmin(np.abs(thisf - freqs)), freqs.shape)[0]) plt.figure(3) plt.xlabel('$\log_{10}(power)$') plt.ylabel('proportion found at given frequency') plt.title(data_name + ' : power distributions') for jj, f in enumerate(findex): xx = histogram_loc / np.log(10.0) yy = hpwr[f, :] gfit = curve_fit(aia_plaw.GaussianShape2, xx, yy) #print gfit[0] plt.plot(xx, yy, color=hcolor[jj], label='%7.2f %s, $\sigma=$ %3.2f' % (freqs[f], freqfactor[1], np.abs(gfit[0][2]))) plt.plot(xx, aia_plaw.GaussianShape2(xx, gfit[0][0], gfit[0][1],gfit[0][2]), color=hcolor[jj], linestyle='--') plt.legend(loc=3, fontsize=10, framealpha=0.5) plt.savefig(savefig + '.power_spectra_distributions.%s' % (savefig_format)) plt.close('all') # Fit all the histogram curves to find the Gaussian width. # Stick with natural units to get the fit values which are # passed along to other programs logiobs_distrib_width = np.zeros((nposfreq)) error_logiobs_distrib_width = np.zeros_like(logiobs_distrib_width) iobs_peak = np.zeros_like(logiobs_distrib_width) logiobs_peak_location = np.zeros_like(logiobs_distrib_width) logiobs_std = np.zeros_like(logiobs_distrib_width) for jj, f in enumerate(freqs): all_logiobs_at_f = logpwr[:, :, jj] logiobs_std[jj] = np.std(all_logiobs_at_f) xx = histogram_loc yy = hpwr[jj, :] iobs_peak[jj] = xx[np.argmax(yy)] try: p0 = [0, 0, 0] p0[0] = np.max(yy) p0[1] = xx[np.argmax(yy)] p0[2] = 0.5#np.sqrt(np.mean(((p0[1] - xx) * yy) ** 2)) gfit = curve_fit(aia_plaw.GaussianShape2, xx, yy, p0=p0) logiobs_distrib_width[jj] = np.abs(gfit[0][2]) error_logiobs_distrib_width[jj] = np.sqrt(np.abs(gfit[1][2, 2])) logiobs_peak_location[jj] = gfit[0][1] except: logiobs_distrib_width[jj] = None error_logiobs_distrib_width[jj] = None logiobs_peak_location[jj] = None # ------------------------------------------------------------- # Plots of power spectra: geometric mean of power spectra at # each pixel ax = plt.subplot(111) # Set the scale type on each axis ax.set_xscale('log') # Set the formatting of the tick labels xformatter = plt.FuncFormatter(log_10_product) ax.xaxis.set_major_formatter(xformatter) # Geometric mean ax.plot(freqs, logiobs / np.log(10.0), color='k', label='geometric mean of power spectra at each pixel') #ax.plot(freqs, bf2, color='k', label='best fit n=%4.2f +/- %4.2f' % (param2[1], nerr2)) # Power at each frequency - distributions ax.plot(freqs, np.log10(lim[0, 0, :]), label=s_L68.label, color=s_L68.color, linewidth=s_L68.linewidth, linestyle=s_L68.linestyle) ax.plot(freqs, np.log10(lim[1, 0, :]), label=s_L95.label, color=s_L95.color, linewidth=s_L95.linewidth, linestyle=s_L95.linestyle) ax.plot(freqs, np.log10(lim[0, 1, :]), label=s_U68.label, color=s_U68.color, linewidth=s_U68.linewidth, linestyle=s_U68.linestyle) ax.plot(freqs, np.log10(lim[1, 1, :]), label=s_U95.label, color=s_U95.color, linewidth=s_U95.linewidth, linestyle=s_U95.linestyle) # Position of the fitted peak in each distribution ax.plot(freqs, logiobs_peak_location / np.log(10.0), color='m', label='fitted frequency') # Extra information for the plot ax.axvline(five_min, color=s5min.color, linestyle=s5min.linestyle, label=s5min.label) ax.axvline(three_min, color=s3min.color, linestyle=s3min.linestyle, label=s3min.label) plt.xlabel('frequency (%s)' % (freqfactor[1])) plt.ylabel('power [%i time series, %i samples each]' % (nx * ny, nt)) plt.title(data_name + ' : geometric mean') plt.legend(loc=3, fontsize=10, framealpha=0.5) plt.savefig(savefig + '.geometric_mean_power_spectra.%s' % (savefig_format)) plt.close('all') # ------------------------------------------------------------- # plot out the time series plt.figure(4) full_ts.peek() plt.savefig(savefig + '.full_ts_timeseries.%s' % (savefig_format)) plt.close('all') # ------------------------------------------------------------- # plot some histograms of the power at a small number of # frequencies. """ histogram_loc2, hpwr2, lim2 = calculate_histograms(nposfreq, pwr, 100) findex = [] f_of_interest = [0.5 * five_min, five_min, three_min, 2 * three_min, 3 * three_min] for thisf in f_of_interest: findex.append(np.unravel_index(np.argmin(np.abs(thisf - freqs)), freqs.shape)[0]) plt.figure(3) plt.xlabel('power') plt.ylabel('proportion found at given frequency') plt.title(data_name + ' - power distributions') for f in findex: xx = histogram_loc2[1:] / np.log(10.0) yy = hpwr2[f, :] plt.loglog(xx, yy, label='%7.2f %s' % (freqs[f], freqfactor[1])) plt.legend(loc=3, fontsize=10, framealpha=0.5) plt.savefig(savefig + '.notlog_power_spectra_distributions.%s' % (savefig_format)) # plot out the time series plt.figure(4) full_ts.peek() plt.savefig(savefig + '.full_ts_timeseries.%s' % (savefig_format)) plt.close('all') """ ############################################################### # Time series plots # Plot all the analyzed time series plt.figure(10) for i in range(0, nx): for j in range(0, ny): plt.plot(t, dc_analysed[j, i, :]) plt.xlabel('time (seconds)') plt.ylabel('analyzed emission ' + tsdetails) plt.title(data_name) plt.ylim(dc_analysed_minmax) plt.xlim((t[0], t[-1])) plt.savefig(savefig + '.all_analyzed_ts.%s' % (savefig_format)) # Plot a histogram of the studied data at each time bins = 50 hist_dc_analysed = np.zeros((bins, nt)) for this_time in range(0, nt): hist_dc_analysed[:, this_time], bin_edges = np.histogram(dc_analysed[:, :, this_time], bins=bins, range=dc_analysed_minmax) hist_dc_analysed = hist_dc_analysed / (1.0 * nx * ny) plt.figure(12) plt.xlabel('time (seconds)') plt.ylabel('analyzed emission ' + tsdetails) plt.imshow(hist_dc_analysed, aspect='auto', origin='lower', extent=(t[0], t[-1], dc_analysed_minmax[0], dc_analysed_minmax[1])) plt.colorbar() plt.title(data_name) plt.savefig(savefig + '.all_analyzed_ts_histogram.%s' % (savefig_format)) ############################################################### # Fourier power plots # Plot all the analyzed FFTs plt.figure(11) for i in range(0, nx): for j in range(0, ny): ts = TimeSeries(t, dc_analysed[j, i, :]) plt.loglog(freqs, ts.PowerSpectrum.ppower) plt.loglog() plt.axvline(five_min, color=s5min.color, linestyle=s5min.linestyle, label=s5min.label) plt.axvline(three_min, color=s3min.color, linestyle=s3min.linestyle, label=s3min.label) plt.xlabel('frequency (%s)' % (freqfactor[1])) plt.ylabel('FFT power ' + tsdetails) plt.title(data_name) plt.savefig(savefig + '.all_analyzed_fft.%s' % (savefig_format)) # Plot a histogram of the studied FFTs at each time bins = 50 minmax = [np.min(logpwr), np.max(logpwr)] hist_dc_analysed_logpwr = np.zeros((bins, nposfreq)) for this_freq in range(0, nposfreq): hist_dc_analysed_logpwr[:, this_freq], bin_edges = np.histogram(logpwr[:, :, this_freq], bins=bins, range=minmax) hist_dc_analysed_logpwr = hist_dc_analysed_logpwr / (1.0 * nx * ny) plt.figure(13) plt.xlabel('frequency (%s)' % (freqfactor[1])) plt.ylabel('FFT power ' + tsdetails) plt.imshow(hist_dc_analysed_logpwr, aspect='auto', origin='lower', extent=(freqs[0], freqs[-1], np.exp(minmax[0]), np.exp(minmax[1]))) plt.semilogy() plt.colorbar() plt.title(data_name) plt.savefig(savefig + '.all_analyzed_fft_histogram.%s' % (savefig_format)) ############################################################### # Plot of the widths as a function of the frequency. plt.figure(14) plt.xlabel('frequency (%s)' % (freqfactor[1])) plt.ylabel('decades of frequency') plt.semilogx(freqs, (logiobs_distrib_width + error_logiobs_distrib_width) / np.log(10.0), label='+ error', linestyle='--') plt.semilogx(freqs, (logiobs_distrib_width - error_logiobs_distrib_width) / np.log(10.0), label='- error', linestyle='--') plt.semilogx(freqs, logiobs_distrib_width / np.log(10.0), label='estimated width') plt.semilogx(freqs, logiobs_std / np.log(10.0), label='standard deviation') plt.semilogx(freqs, (logiobs - logiobs_peak_location) / np.log(10.0), label='mean - fitted peak') plt.title(data_name + ' - distribution widths') plt.legend(loc=3, framealpha=0.3, fontsize=10) plt.savefig(savefig + '.logiobs_distribution_width.%s' % (savefig_format)) ############################################################### # Save various data products # Fourier Power of the analyzed data ofilename = region_id pkl_write(pkl_location, 'OUT.' + ofilename + '.fourier_power.pickle', (freqs / freqfactor[0], pwr)) # Analyzed data pkl_write(pkl_location, 'OUT.' + ofilename + '.dc_analysed.pickle', (t, dc_analysed)) # Fourier transform pkl_write(pkl_location, 'OUT.' + ofilename + '.fft_transform.pickle', (freqs / freqfactor[0], fft_transform)) # Arithmetic mean of power spectra pkl_write(pkl_location, 'OUT.' + ofilename + '.iobs.pickle', (freqs / freqfactor[0], np.log(iobs))) # Geometric mean of power spectra #(freqs / freqfactor[0], logiobs, logiobs_distrib_width)) pkl_write(pkl_location, 'OUT.' + ofilename + '.logiobs.pickle', (freqs / freqfactor[0], logiobs, iobs_peak, logiobs_peak_location, nx * ny, xccc, ccc, ccc_answer)) # Widths of the power distributions pkl_write(pkl_location, 'OUT.' + ofilename + '.distribution_widths.pickle', (freqs / freqfactor[0], logiobs_distrib_width, logiobs_std, np.abs(logiobs - logiobs_peak_location))) # Error in the Widths of the power distributions pkl_write(pkl_location, 'OUT.' + ofilename + '.distribution_widths_error.pickle', (freqs / freqfactor[0], error_logiobs_distrib_width)) # Bump fit #pkl_write(pkl_location, # 'OUT.' + ofilename + '.bump_fit_all.pickle', # (bump_ans_all, bump_err_all)) # Simple fit #pkl_write(pkl_location, # 'OUT.' + ofilename + '.simple_fit_all.pickle', # (simple_ans_all, simple_err_all)) # Save the full time series to a CSV file csv_timeseries_write(os.path.join(os.path.expanduser(scsv), window, manip), '.'.join((data_name, 'average_analyzed_ts.csv')), (t, full_data)) # Original data csv_timeseries_write(os.path.join(os.path.expanduser(scsv)), '.'.join((ident, 'average_original_ts.csv')), (t, doriginal))
# plot some histograms of the log power at a small number of equally spaced # frequencies findex = np.arange(0, nposfreq, nposfreq / 5) plt.figure(3) plt.xlabel('$\log_{10}(power)$') plt.ylabel('proportion found at given frequency') plt.title(data_name + ' - power distributions') for f in findex: plt.plot(h[1][1:] / np.log(10.0), hpwr[f, :], label='%7.5f Hz' % (freqs[f])) plt.legend(loc=3, fontsize=10) plt.savefig(savefig + '.power_spectra_distributions.png') # plot out the time series plt.figure(4) full_ts.peek() plt.savefig(savefig + '.full_ts_timeseries.png') # # Make maps of the Fourier power # fmap = [] franges = [[1.0/360.0, 1.0/240.0], [1.0/240.0, 1.0/120.0]] for fr in franges: ind = [] for i, testf in enumerate(freqs): if testf >= fr[0] and testf <= fr[1]: ind.append(i) fmap.append(np.sum(pwr[:,:,ind[:]], axis=2))
alpha = 0.0001 data[0] = 1.0 for i in range(0, nt - 1): data[i+1] = data[i] + alpha*np.random.normal() ts = TimeSeries(dt * np.arange(0, nt), data) plt.figure(1) ts.peek_ps() plt.loglog() plt.figure(2) ts.peek() this = ([ts.pfreq, ts.ppower],) norm_estimate = np.zeros((3,)) norm_estimate[0] = ts.ppower[0] norm_estimate[1] = norm_estimate[0] / 1000.0 norm_estimate[2] = norm_estimate[0] * 1000.0 background_estimate = np.zeros_like(norm_estimate) background_estimate[0] = np.mean(ts.ppower[-10:-1]) background_estimate[1] = background_estimate[0] / 1000.0 background_estimate[2] = background_estimate[0] * 1000.0 estimate = {"norm_estimate": norm_estimate, "background_estimate": background_estimate}
raise ValueError, "Input vector needs to be bigger than window size." if window_len < 3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" s = np.r_[2 * x[0] - x[window_len - 1::-1], x, 2 * x[-1] - x[-1:-window_len:-1]] if window == 'flat': #moving average w = np.ones(window_len, 'd') else: w = eval('np.' + window + '(window_len)') y = np.convolve(w / w.sum(), s, mode='same') return y[window_len:-window_len + 1] tsoriginal = TimeSeries(t, data) plt.figure(10) tsoriginal.peek() meandata = np.mean(data) # relative data = (data - meandata) / meandata #data = data - smooth(data, window_len=84) # Create a time series object ts = TimeSeries(t, data) ts.label = 'emission' ts.units = 'arb. units' ts.name = 'simulated data [n=%4.2f]' % (model_param[1])
# frequencies findex = np.arange(0, nposfreq, nposfreq / 5) plt.figure(3) plt.xlabel('$\log_{10}(power)$') plt.ylabel('proportion found at given frequency') plt.title(data_name + ' - power distributions') for f in findex: plt.plot(h[1][1:] / np.log(10.0), hpwr[f, :], label='%7.5f Hz' % (freqs[f])) plt.legend(loc=3, fontsize=10) plt.savefig(savefig + '.power_spectra_distributions.png') # plot out the time series plt.figure(4) full_ts.peek() plt.savefig(savefig + '.full_ts_timeseries.png') # # Make maps of the Fourier power # fmap = [] franges = [[1.0 / 360.0, 1.0 / 240.0], [1.0 / 240.0, 1.0 / 120.0]] for fr in franges: ind = [] for i, testf in enumerate(freqs): if testf >= fr[0] and testf <= fr[1]: ind.append(i) fmap.append(np.sum(pwr[:, :, ind[:]], axis=2)) #
return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" s = np.r_[2 * x[0] - x[window_len - 1::-1], x, 2 * x[-1] - x[-1:-window_len:-1]] if window == 'flat': #moving average w = np.ones(window_len, 'd') else: w = eval('np.' + window + '(window_len)') y = np.convolve(w / w.sum(), s, mode='same') return y[window_len:-window_len + 1] tsoriginal = TimeSeries(t, data) plt.figure(10) tsoriginal.peek() meandata = np.mean(data) # relative data = (data - meandata) / meandata #data = data - smooth(data, window_len=84) # Create a time series object ts = TimeSeries(t, data) ts.label = 'emission' ts.units = 'arb. units' ts.name = 'simulated data [n=%4.2f]' % (model_param[1]) # Get the normalized power and the positive frequencies