def likeAPerson(): time.sleep(5) for key, value in api.get_recommendations().items(): match = [] if (key == "results"): for person in value: rating = 0 person_id = "" name = "" for key, value in person.items(): if (key == "_id"): person_id = value time.sleep(5) if key == 'photos' and value: if len(value) >= 2: rating += 1 if key == 'name': name = value if rating > 0: print("Like on : ", name) match = api.like(person_id) likes_remaining = match["likes_remaining"] if likes_remaining == 0: print("Acabaram os likes, terminei por hoje") quit(0) print(match) else: print("Unlike: ", name)
def matches(): if tinder.authverif() == True: matches = tinder.get_recommendations() return matches else: print('Sorry, something went wrong') return None
def start_session(): api.authverif() likes_remaining = True num_likes = 0 num_dislikes = 0 while likes_remaining: # Retrieve recommended profiles from Tinder. for person in api.get_recommendations()['results']: person_id = person['_id'] rating = rater.get_rating(person) if hot_or_not(rating): if not _like(person_id): likes_remaining = False break num_likes += 1 else: _dislike(person_id) num_dislikes += 1 print(f"Swiping: {num_likes} likes, {num_dislikes} dislikes", end='\r') now = datetime.now() print( f"{now.strftime('%H:%M : %d/%m/%Y')} Session complete: {num_likes} likes, {num_dislikes} dislikes" )
def recommend(): if not tinder_api.authverif(): login() recommendations = tinder_api.get_recommendations( ) # output json {status='', results=[profile]} # print(recommendations['results']) # get list of profiles # print(recommendations['results'][0]) return render_template('recommend.html')
def recGen(ageMin=18, ageMax=22, distance=100): ti.change_preferences(age_filter_min=ageMin, age_filter_max=ageMax, distance_filter=distance) recommendations = ti.get_recommendations() df = pd.DataFrame.from_dict(recommendations["results"]) df = df[['_id', 'name', 'gender', 'birth_date', 'bio', 'photos']] df = df.rename(index=str, columns={'_id': 'ID', 'birth_date': 'dob'}) imgurls = [] for i in df['photos']: imgurls.append(i[0]['processedFiles'][0]['url']) df = df.drop(['photos'], axis=1) df['imgurl'] = pd.Series(imgurls).values df["dob"] = df["dob"].apply(lambda x: calculate_age(x)) df = df.rename(index=str, columns={"dob": "age"}) return df
if __name__ == '__main__': if api.authverif() == True: print("Gathering Data...") #match_info = get_match_info() targetAmount = 500 currentAmount = 0 cycle = 0 start_time = time.time() while currentAmount < targetAmount: if cycle > 0: pause() cycle += 1 progress = round((currentAmount / targetAmount) * 100, 2) print(str(progress) + "% Running cycle #" + str(cycle) + "...") people = api.get_recommendations() n = findPeople(people) currentAmount += n if n == 0: choice = input( "Didn't receive any new records. Wanna continue?") if not choice == 'y': print("Aborting.") break print("Job completed in " + str(cycle) + " cycles, " + str(datetime.timedelta(seconds=(time.time() - start_time))) + ". Added a total of " + str(currentAmount) + " people to the datafile.") else: print("Something went wrong. You were not authorized.")
loop += 1 print(loop) if EXISTS <= 0: if all([location["visited"] for location in LOCATIONS]): print("un-visiting locations...") for location in LOCATIONS: location["visited"] = False for location in LOCATIONS: if not location["visited"]: print("Moving to {0}".format(location["label"])) tinder_api.update_location(location["lat"], location["lon"]) location["visited"] = True EXISTS = 5 CURRENT_LOCATION = location["label"] break r = tinder_api.get_recommendations() try: recommendations = r["results"] except KeyError as e: print(r) raise e print("Fetching {0} recommendations".format(len(recommendations))) for recommendation in recommendations: recommendation["t_id"] = recommendation.pop("_id") try: Human.objects.get(t_id=recommendation["t_id"]) except Human.DoesNotExist: try: human = Human(**recommendation) except Exception as e: raise e
sub_img, int(np.floor((side - sub_img.shape[1]) / 2)), int(np.ceil((side - sub_img.shape[1]) / 2)), int(np.floor((side - sub_img.shape[0]) / 2)), int(np.ceil((side - sub_img.shape[0]) / 2)), cv2.BORDER_CONSTANT) sub_image_resized = cv2.resize(src=sub_image_padded, dsize=(350, 350)) processed_images.append(sub_image_resized) return processed_images # Get recommendations, analyze and swipe them. person_id = '' liked_people = 0 all_poeple = 0 for request_ix in range(num_requests): # Retrieve recommended profiles from Tinder. for key, value in api.get_recommendations(headers).items(): if (key == "results"): # Loop over profiles. for person in value: print("---------------------------------------") all_poeple += 1 liked = False ratings = [0] for key, value in person.items(): if (key == "_id"): person_id = value print('Person id: ', person_id) person_data = api.get_person(person_id, headers) name = person_data["results"]["name"] print("Name: " + name) if (key == "photos"):
get_my_locations('locations.csv') # получаем 3 случайных локации из файла и записываем в список my_locations for location in my_locations: try: lat = location.split(":")[0] lon = location.split(":")[1] api.get_ping(lat,lon) matches = get_match_info() for match in matches: try: match_id = matches[i]['match_id'] offer_id = 1 text = select_msg(match_id,offer_id) api.send_msg(match_id, text) except: continue rec = api.get_recommendations() i = 0 for user in rec: try: if i%3=0: api.dislike(user["person_id"]) else: api.like(user["person_id"]) i ++ except: continue except: break
def gettoken_id(fb_username, fb_password): fb_username = '******' fb_password = '******' global _id global fig host = 'https://api.gotinder.com' fb_access_token = fb_auth_token.get_fb_access_token( fb_username, fb_password) fb_user_id = fb_auth_token.get_fb_id(fb_access_token) tinder_api.get_auth_token(fb_access_token, fb_user_id, host) print("#################################################") while (like < 30 or dislike < 30): try: recommendations = tinder_api.get_recommendations() except: recommendations = tinder_api.get_recommendations() for index in range(len(recommendations['results'])): global images images = [] name = recommendations['results'][index]['name'] birth_date = features.calculate_age( recommendations['results'][index]['birth_date']) ping_time = recommendations['results'][index]['ping_time'] if name == '5 GUM': continue _id = recommendations['results'][index]['_id'] print("name is {} and is {} years old and bio is {}".format( name, birth_date, recommendations['results'][index]['bio'])) try: if recommendations['results'][index]['bio']: fig = plt.figure('Biography', figsize=(6, 4)) t = (recommendations['results'][index]['bio']) text = fig.text(0.5, 0.5, t, ha='center', va='center', size=10) text.set_path_effects([path_effects.Normal()]) plt.axis('off') plt.tight_layout() plt.show(block=False) except: plt.close() pass number_of_subplots = len(recommendations['results'][index]['photos']) if number_of_subplots < 1: continue elif number_of_subplots == 1: fig, axes = plt.subplots(figsize=(15, 15)) elif number_of_subplots <= 4: fig, axes = plt.subplots(1, number_of_subplots, figsize=(15, 15)) elif number_of_subplots > 4: fig, axes = plt.subplots(int(number_of_subplots / 4) + 1, 4, figsize=(15, 15)) fig.canvas.mpl_connect('key_press_event', press) subplots_adjust(hspace=0.000) for i, v in enumerate(range(number_of_subplots)): p = recommendations['results'][index]['photos'][i] image = io.imread(p['url']) images.append(image) if number_of_subplots == 1: axes.axis('off') axes.imshow(image) axes.axis('off') elif number_of_subplots <= 4: axes[i].axis('off') axes[i].imshow(image) axes[i].axis('off') else: axes[int(i / 4), int(i % 4)].axis('off') axes[int(i / 4), int(i % 4)].imshow(image) axes[int(i / 4), int(i % 4)].axis('off') if number_of_subplots == 5: for j in range(4): axes[int(i / 4), int(j)].axis('off') elif number_of_subplots > 5: while i % 4 != 0: axes[int(i / 4), int(i % 4)].axis('off') i += 1 plt.tight_layout() #plt.axis('off') plt.show(block=True) print("###################################")
def get_recs(self): return tinder_api.get_recommendations(self.auth_token)
for circuit in circuits: q = Q_program.get_quantum_register("q") c = Q_program.get_classical_register('c') decision_circuit = Q_program.create_circuit(circuit, [q], [c]) decision_circuit.h(q[0]) #Turn the qubit into |0> + |1> decision_circuit.measure(q[0], c[0]) _ = Q_program.get_qasms(circuits) # Suppress the output ###Main Loop### recommendations = Queue() #Queue to hold tinder recommendations decisions = Queue() #Queue to hold QX decisions while True: #Replenish the queues if recommendations.empty(): results = get_recommendations() results = results['results'] for key in results: recommendations.put(key['_id']) if decisions.empty(): results = Q_program.execute(circuits, device, shots=1, max_credits=5, wait=10, timeout=240) for ciruit in circuits: for key in results.get_counts(ciruit): decisions.put(int(key))