Пример #1
0
class Truncate(LibFcn):
    name = prefix + "truncate"
    sig = Sigs([Sig([{"x": P.Array(P.Array(P.Double()))}, {"keep": P.Int()}], P.Array(P.Array(P.Double()))),
                Sig([{"x": P.Map(P.Map(P.Double()))}, {"keep": P.Array(P.String())}], P.Map(P.Map(P.Double())))])
    errcodeBase = 24120
    def __call__(self, state, scope, pos, paramTypes, x, keep):
        if keep < 0:
            keep = 0

        if isinstance(x, (list, tuple)) and all(isinstance(xi, (list, tuple)) for xi in x):
            rows = len(x)
            if rows < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            cols = len(x[0])
            if cols < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            if raggedArray(x):
                raise PFARuntimeException("ragged columns", self.errcodeBase + 1, self.name, pos)
            return x[:keep]

        elif isinstance(x, dict) and all(isinstance(x[i], dict) for i in x.keys()):
            rows = rowKeys(x)
            cols = colKeys(x)
            if len(rows) < 1 or len(cols) < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            return dict((k, x[k]) for k in rows if k in keep)
Пример #2
0
class Symmetric(LibFcn):
    name = prefix + "symmetric"
    sig = Sigs([Sig([{"x": P.Array(P.Array(P.Double()))}, {"tol": P.Double()}], P.Boolean()),
                Sig([{"x": P.Map(P.Map(P.Double()))}, {"tol": P.Double()}], P.Boolean())])
    errcodeBase = 24100
    @staticmethod
    def same(x, y, tol):
        if math.isinf(x) and math.isinf(y) and ((x > 0.0 and y > 0.0) or (x < 0.0 and y < 0.0)):
            return True
        elif math.isnan(x) and math.isnan(y):
            return True
        elif not math.isinf(x) and not math.isnan(x) and not math.isinf(y) and not math.isnan(y):
            return abs(x - y) < tol
        else:
            return False
    def __call__(self, state, scope, pos, paramTypes, x, tol):
        if isinstance(x, (list, tuple)) and all(isinstance(xi, (list, tuple)) for xi in x):
            rows = len(x)
            if rows < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            cols = len(x[0])
            if cols < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            if raggedArray(x):
                raise PFARuntimeException("ragged columns", self.errcodeBase + 1, self.name, pos)
            if rows != cols:
                raise PFARuntimeException("non-square matrix", self.errcodeBase + 2, self.name, pos)
            return all(all(self.same(x[i][j], x[j][i], tol) for j in range(cols)) for i in range(rows))

        elif isinstance(x, dict) and all(isinstance(x[i], dict) for i in x.keys()):
            keys = list(rowKeys(x).union(colKeys(x)))
            if len(keys) < 1 or all(len(row) == 0 for row in x.values()):
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            return all(all(self.same(x.get(i, {}).get(j, 0.0), x.get(j, {}).get(i, 0.0), tol) for j in keys) for i in keys)
Пример #3
0
class Bernoulli(LibFcn):
    name = prefix + "bernoulli"
    sig = Sigs([
        Sig([{
            "datum": P.Array(P.String())
        }, {
            "classModel": P.Map(P.Double())
        }], P.Double()),
        Sig([{
            "datum": P.Array(P.String())
        }, {
            "classModel": P.WildRecord("C", {"values": P.Map(P.Double())})
        }], P.Double())
    ])

    errcodeBase = 10020

    def __call__(self, state, scope, pos, paramTypes, datum, classModel):
        if paramTypes[1]["type"] == "record":
            classModel = classModel["values"]

        ll = 0.0
        for v in list(classModel.values()):
            if (v <= 0.0) or (v >= 1.0):
                raise PFARuntimeException(
                    "probability in classModel cannot be less than 0 or greater than 1",
                    self.errcodeBase + 0, self.name, pos)
            ll += math.log(1.0 - v)
        for item in datum:
            p = classModel.get(item, None)
            if p is not None:
                ll += math.log(p) - math.log(1.0 - p)
        return ll
Пример #4
0
class Det(LibFcn):
    name = prefix + "det"
    sig = Sigs([Sig([{"x": P.Array(P.Array(P.Double()))}], P.Double()),
                Sig([{"x": P.Map(P.Map(P.Double()))}], P.Double())])
    errcodeBase = 24090
    def __call__(self, state, scope, pos, paramTypes, x):
        if isinstance(x, (list, tuple)) and all(isinstance(xi, (list, tuple)) for xi in x):
            rows = len(x)
            if rows < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            cols = len(x[0])
            if cols < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            if raggedArray(x):
                raise PFARuntimeException("ragged columns", self.errcodeBase + 1, self.name, pos)
            if rows != cols:
                raise PFARuntimeException("non-square matrix", self.errcodeBase + 2, self.name, pos)
            if any(any(math.isnan(z) or math.isinf(z) for z in row) for row in x):
                return float("nan")
            else:
                return float(np().linalg.det(arraysToMatrix(x)))

        elif isinstance(x, dict) and all(isinstance(x[i], dict) for i in x.keys()):
            keys = list(rowKeys(x).union(colKeys(x)))
            if len(keys) < 1 or all(len(row) == 0 for row in x.values()):
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            if any(any(math.isnan(z) or math.isinf(z) for z in row.values()) for row in x.values()):
                return float("nan")
            else:
                return float(np().linalg.det(mapsToMatrix(x, keys, keys)))
Пример #5
0
class AbsDiff(LibFcn):
    name = prefix + "absDiff"
    sig = Sig([{"x": P.Double()}, {"y": P.Double()}], P.Double())
    errcodeBase = 28010

    def __call__(self, state, scope, pos, paramTypes, x, y):
        return abs(x - y)
Пример #6
0
class Divide(LibFcn):
    name = "/"
    sig = Sig([{"x": P.Double()}, {"y": P.Double()}], P.Double())
    errcodeBase = 18030

    def __call__(self, state, scope, pos, paramTypes, x, y):
        return div(x, y)
Пример #7
0
class KSTwoSample(LibFcn):
    name = prefix + "kolmogorov"
    sig = Sig([{
        "x": P.Array(P.Double())
    }, {
        "y": P.Array(P.Double())
    }], P.Double())
    errcodeBase = 38000

    def __call__(self, state, scope, pos, paramTypes, x, y):
        x = sorted([xi for xi in x if not math.isnan(xi)])
        y = sorted([yi for yi in y if not math.isnan(yi)])
        n1, n2 = len(x), len(y)
        if (x == y):
            return 1.0
        elif ((len(x) == 0) or (len(y) == 0)):
            return 0.0
        else:
            j1 = j2 = 0
            fn1 = fn2 = d = 0.0
            while ((j1 < n1) and (j2 < n2)):
                d1 = x[j1]
                d2 = y[j2]
                if d1 <= d2:
                    j1 += 1
                    fn1 = float(j1) / n1
                if d2 <= d1:
                    j2 += 1
                    fn2 = float(j2) / n2
                dt = abs(fn2 - fn1)
                if dt > d:
                    d = dt
            en = math.sqrt((n1 * n2) / float(n1 + n2))
            stat = (en + 0.12 + 0.11 / en) * d
            return 1.0 - kolomogorov_cdf(stat)
Пример #8
0
class Euclidean(MetricWithMissingValues):
    name = prefix + "euclidean"
    sig = Sigs([
        Sig([{
            "similarity":
            P.Fcn([P.Wildcard("A"), P.Wildcard("B")], P.Double())
        }, {
            "x": P.Array(P.Union([P.Null(), P.Wildcard("A")]))
        }, {
            "y": P.Array(P.Union([P.Null(), P.Wildcard("B")]))
        }], P.Double()),
        Sig([{
            "similarity":
            P.Fcn([P.Wildcard("A"), P.Wildcard("B")], P.Double())
        }, {
            "x": P.Array(P.Union([P.Null(), P.Wildcard("A")]))
        }, {
            "y": P.Array(P.Union([P.Null(), P.Wildcard("B")]))
        }, {
            "missingWeight": P.Array(P.Double())
        }], P.Double())
    ])
    errcodeBase = 28030

    def increment(self, tally, x):
        return tally + x**2

    def finalize(self, x):
        return math.sqrt(x)
Пример #9
0
class Linear(LibFcn):
    name = prefix + "linear"
    sig = Sig([{"x": P.Array(P.Double())}, 
               {"y": P.Array(P.Double())}], P.Double())
    errcodeBase = 23000
    def __call__(self, state, scope, pos, paramTypes, x, y):
        return dot(x, y, self.errcodeBase + 0, self.name, pos)
Пример #10
0
class Gaussian(LibFcn):
    name = prefix + "gaussian"
    sig = Sig([{"mu": P.Double()}, {"sigma": P.Double()}], P.Double())
    errcodeBase = 34120

    def __call__(self, state, scope, pos, paramTypes, mu, sigma):
        return state.rand.gauss(mu, sigma)
Пример #11
0
class SoftMax(LibFcn):
    name = prefix + "softmax"
    sig = Sigs([
        Sig([{
            "x": P.Array(P.Double())
        }], P.Array(P.Double())),
        Sig([{
            "x": P.Map(P.Double())
        }], P.Map(P.Double()))
    ])
    errcodeBase = 25000

    def __call__(self, state, scope, pos, paramTypes, x):
        if len(x) == 0:
            raise PFARuntimeException("empty input", self.errcodeBase + 0,
                                      self.name, pos)
        if paramTypes[0]["type"] == "map":
            xx = x.copy()
            tmp = map(abs, xx.values())
            if xx.values()[tmp.index(max(tmp))] >= 0:
                m = max(xx.values())
            else:
                m = min(xx.values())
            denom = sum([math.exp(v - m) for v in x.values()])
            for key in x.keys():
                xx[key] = float(math.exp(xx[key] - m) / denom)
            return xx
        else:
            tmp = map(abs, x)
            if x[tmp.index(max(tmp))] >= 0:
                m = max(x)
            else:
                m = min(x)
            denom = sum([math.exp(v - m) for v in x])
            return [float(math.exp(val - m) / denom) for val in x]
Пример #12
0
class Mahalanobis(LibFcn):
    name = prefix + "mahalanobis"
    sig = Sigs([Sig([{"observation": P.Array(P.Double())}, {"prediction": P.Array(P.Double())}, {"covariance": P.Array(P.Array(P.Double()))}], P.Double(), Lifespan(None, PFAVersion(0, 7, 2), PFAVersion(0, 9, 0), "use test.mahalanobis instead")),
                Sig([{"observation": P.Map(P.Double())}, {"prediction": P.Map(P.Double())}, {"covariance": P.Map(P.Map(P.Double()))}], P.Double(), Lifespan(None, PFAVersion(0, 7, 2), PFAVersion(0, 9, 0), "use test.mahalanobis instead"))])
    errcodeBase = 31040
    def __call__(self, state, scope, pos, paramTypes, observation, prediction, covariance):
        if isinstance(observation, (tuple, list)):
            if (len(observation) < 1):
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            if (len(observation) != len(prediction)):
                raise PFARuntimeException("misaligned prediction", self.errcodeBase + 1, self.name, pos)
            if (not all(len(i)==len(covariance[0]) for i in covariance)) and (len(covariance) != len(covariance[0])):
                raise PFARuntimeException("misaligned covariance", self.errcodeBase + 2, self.name, pos)
            x = np().array([(o - p) for o, p in zip(observation, prediction)])
            C = np().array(covariance)
        else:
            if (len(observation) < 1):
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            if (len(observation) != len(prediction)):
                raise PFARuntimeException("misaligned prediction", self.errcodeBase + 1, self.name, pos)
            # use observation keys throughout
            keys = list(observation.keys())
            try:
                x = np().array([observation[key] - prediction[key] for key in keys])
            except:
                raise PFARuntimeException("misaligned prediction", self.errcodeBase + 1, self.name, pos)
            C = np().empty((len(keys), len(keys)))
            try:
                for i,k1 in enumerate(keys):
                    for j,k2 in enumerate(keys):
                        C[i,j] = float(covariance[k1][k2])
            except:
                raise PFARuntimeException("misaligned covariance", self.errcodeBase + 2, self.name, pos)
        return float(np().sqrt(np().linalg.solve(C, x).T.dot(x)))
Пример #13
0
class ErrorOnNonNum(LibFcn):
    name = prefix + "errorOnNonNum"
    sig = Sigs([
        Sig([{
            "x": P.Float()
        }], P.Float()),
        Sig([{
            "x": P.Double()
        }], P.Double())
    ])
    errcodeBase = 21050

    def __call__(self, state, scope, pos, paramTypes, x):
        if math.isnan(x):
            raise PFARuntimeException("encountered nan", self.errcodeBase + 0,
                                      self.name, pos)
        elif math.isinf(x):
            if x > 0.0:
                raise PFARuntimeException("encountered +inf",
                                          self.errcodeBase + 1, self.name, pos)
            else:
                raise PFARuntimeException("encountered -inf",
                                          self.errcodeBase + 2, self.name, pos)
        else:
            return x
Пример #14
0
class Transpose(LibFcn):
    name = prefix + "transpose"
    sig = Sigs([Sig([{"x": P.Array(P.Array(P.Double()))}], P.Array(P.Array(P.Double()))),
                Sig([{"x": P.Map(P.Map(P.Double()))}], P.Map(P.Map(P.Double())))])
    errcodeBase = 24060
    def __call__(self, state, scope, pos, paramTypes, x):
        if isinstance(x, (list, tuple)) and all(isinstance(xi, (list, tuple)) for xi in x):
            rows = len(x)
            if rows < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            cols = len(x[0])
            if cols < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            if raggedArray(x):
                raise PFARuntimeException("ragged columns", self.errcodeBase + 1, self.name, pos)
            return [[x[r][c] for r in range(rows)] for c in range(cols)]

        elif isinstance(x, dict) and all(isinstance(x[i], dict) for i in x.keys()):
            rows = rowKeys(x)
            cols = colKeys(x)
            if len(rows) < 1 or len(cols) < 1:
                raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
            if raggedMap(x):
                raise PFARuntimeException("ragged columns", self.errcodeBase + 1, self.name, pos)
            return dict((c, dict((r, x[r][c]) for r in rows)) for c in cols)
Пример #15
0
class Chi2Prob(LibFcn):
    name = prefix + "chi2Prob"
    sig = Sig([{
        "state": P.WildRecord("A", {
            "chi2": P.Double(),
            "dof": P.Int()
        })
    }], P.Double())
    errcodeBase = 38060

    def __call__(self, state, scope, pos, paramTypes, state_):
        chi2 = state_["chi2"]
        dof = state_["dof"]
        if dof < 0:
            raise PFARuntimeException("invalid parameterization",
                                      self.errcodeBase + 0, self.name, pos)
        elif dof == 0:
            if chi2 > 0:
                return 1.0
            else:
                return 0.0
        elif math.isnan(chi2):
            return float("nan")
        elif math.isinf(chi2):
            if chi2 > 0:
                return 1.0
            else:
                return 0.0
        else:
            return float(
                Chi2Distribution(dof, self.errcodeBase + 0, self.name,
                                 pos).CDF(chi2))
Пример #16
0
class UpdateHoltWintersPeriodic(LibFcn):
    name = prefix + "updateHoltWintersPeriodic"
    sig = Sig([{"x": P.Double()}, {"alpha": P.Double()}, {"beta": P.Double()}, {"gamma": P.Double()}, {"state": P.WildRecord("A", {"level": P.Double(), "trend": P.Double(), "cycle": P.Array(P.Double()), "multiplicative": P.Boolean()})}], P.Wildcard("A"))
    errcodeBase = 14050
    def __call__(self, state, scope, pos, paramTypes, x, alpha, beta, gamma, theState):
        if alpha < 0.0 or alpha > 1.0:
            raise PFARuntimeException("alpha out of range", self.errcodeBase + 0, self.name, pos)
        if beta < 0.0 or beta > 1.0:
            raise PFARuntimeException("beta out of range", self.errcodeBase + 1, self.name, pos)
        if gamma < 0.0 or gamma > 1.0:
            raise PFARuntimeException("gamma out of range", self.errcodeBase + 2, self.name, pos)

        level_prev = theState["level"]
        trend_prev = theState["trend"]
        cycle_unrotated = theState["cycle"]
        if len(cycle_unrotated) == 0:
            raise PFARuntimeException("empty cycle", self.errcodeBase + 3, self.name, pos)
        cycle_rotated = cycle_unrotated[1:] + [cycle_unrotated[0]]
        cycle_prev = cycle_rotated[0]

        if theState["multiplicative"]:
            level = div(alpha * x, cycle_prev) + (1.0 - alpha) * (level_prev + trend_prev)
            trend = beta * (level - level_prev) + (1.0 - beta) * trend_prev
            cycle = div(gamma * x, level) + (1.0 - gamma) * cycle_prev
        else:
            level = alpha * (x - cycle_prev) + (1.0 - alpha) * (level_prev + trend_prev)
            trend = beta * (level - level_prev) + (1.0 - beta) * trend_prev
            cycle = gamma * (x - level) + (1.0 - gamma) * cycle_prev

        return dict(theState, level=level, trend=trend, cycle=([cycle] + cycle_rotated[1:]))
Пример #17
0
class Update(UpdateMeanVariance):
    name = prefix + "update"
    sig = Sig([{"x": P.Double()}, {"w": P.Double()}, {"state": P.WildRecord("A", {"count": P.Double()})}], P.Wildcard("A"))
    errcodeBase = 14000
    def _getRecord(self, paramType):
        if isinstance(paramType, AvroUnion):
            for t in paramType.types:
                if not isinstance(t, AvroNull):
                    return t
        else:
            return paramType

    def __call__(self, state, scope, pos, paramTypes, x, w, theState, level):
        originalCount = theState["count"]
        count = originalCount + w
        if level == 0:
            return dict(theState, count=count)
        else:
            mean = theState["mean"]
            delta = x - mean
            shift = div(delta * w, count)
            mean += shift
            if level == 1:
                return dict(theState, count=count, mean=mean)
            else:
                varianceTimesCount = theState["variance"] * originalCount
                varianceTimesCount += originalCount * delta * shift
                return dict(theState, count=count, mean=mean, variance=div(varianceTimesCount, count))
Пример #18
0
class UpdateEWMA(LibFcn):
    name = prefix + "updateEWMA"
    sig = Sig([{"x": P.Double()}, {"alpha": P.Double()}, {"state": P.WildRecord("A", {"mean": P.Double()})}], P.Wildcard("A"))
    errcodeBase = 14030
    def _getRecord(self, paramType):
        if isinstance(paramType, AvroUnion):
            for t in paramType.types:
                if not isinstance(t, AvroNull):
                    return t
        else:
            return paramType

    def genpy(self, paramTypes, args, pos):
        hasVariance = False
        for x in self._getRecord(paramTypes[2]).fields:
            if x.name == "variance":
                if not x.avroType.accepts(AvroDouble()):
                    raise PFASemanticException(self.name + " is being given a state record type in which the \"variance\" field is not a double: " + str(x.avroType), None)
                hasVariance = True
        return "self.f[{0}]({1}, {2})".format(repr(self.name), ", ".join(["state", "scope", repr(pos), repr(paramTypes)] + args), hasVariance)

    def __call__(self, state, scope, pos, paramTypes, x, alpha, theState, hasVariance):
        if alpha < 0.0 or alpha > 1.0:
            raise PFARuntimeException("alpha out of range", self.errcodeBase + 0, self.name, pos)

        mean = theState["mean"]
        diff = x - mean
        incr = alpha * diff

        if hasVariance:
            variance = theState["variance"]
            return dict(theState, mean=(mean + incr), variance=((1.0 - alpha) * (variance + diff * incr)))
        else:
            return dict(theState, mean=(mean + incr))
Пример #19
0
class Bin(LibFcn):
    name = prefix + "bin"
    sig = Sigs([Sig([{"x": P.Double()}, {"numbins": P.Int()}, {"low": P.Double()}, {"high": P.Double()}], P.Int()),
                Sig([{"x": P.Double()}, {"origin": P.Double()}, {"width": P.Double()}], P.Int())])
    errcodeBase = 22000
    def __call__(self, state, scope, pos, paramTypes, x, *args):
        if len(args) == 3:
            numbins, low, high = args
            if low >= high or math.isnan(low) or math.isnan(high):
                raise PFARuntimeException("bad histogram range", self.errcodeBase + 0, self.name, pos)
            if numbins < 1:
                raise PFARuntimeException("bad histogram scale", self.errcodeBase + 1, self.name, pos)
            if math.isnan(x) or x < low or x >= high:
                raise PFARuntimeException("x out of range", self.errcodeBase + 2, self.name, pos)

            out = int(math.floor(numbins * div((x - low), (high - low))))

            if out < 0 or out >= numbins:
                raise PFARuntimeException("x out of range", self.errcodeBase + 2, self.name, pos)
            return out
        else:
            origin, width = args
            if math.isnan(origin) or math.isinf(origin):
                raise PFARuntimeException("bad histogram range", self.errcodeBase + 0, self.name, pos)
            if width <= 0.0 or math.isnan(width):
                raise PFARuntimeException("bad histogram scale", self.errcodeBase + 1, self.name, pos)
            if math.isnan(x) or math.isinf(x):
                raise PFARuntimeException("x out of range", self.errcodeBase + 2, self.name, pos)
            else:
                return int(math.floor(div((x - origin), width)))
Пример #20
0
class UpdateHoltWinters(LibFcn):
    name = prefix + "updateHoltWinters"
    sig = Sig(
        [{
            "x": P.Double()
        }, {
            "alpha": P.Double()
        }, {
            "beta": P.Double()
        }, {
            "state": P.WildRecord("A", {
                "level": P.Double(),
                "trend": P.Double()
            })
        }], P.Wildcard("A"))
    errcodeBase = 14040

    def __call__(self, state, scope, pos, paramTypes, x, alpha, beta,
                 theState):
        if alpha < 0.0 or alpha > 1.0:
            raise PFARuntimeException("alpha out of range",
                                      self.errcodeBase + 0, self.name, pos)
        if beta < 0.0 or beta > 1.0:
            raise PFARuntimeException("beta out of range",
                                      self.errcodeBase + 1, self.name, pos)
        level_prev = theState["level"]
        trend_prev = theState["trend"]
        level = alpha * x + (1.0 - alpha) * (level_prev + trend_prev)
        trend = beta * (level - level_prev) + (1.0 - beta) * trend_prev
        return dict(theState, level=level, trend=trend)
Пример #21
0
class Trace(LibFcn):
    name = prefix + "trace"
    sig = Sigs([
        Sig([{
            "x": P.Array(P.Array(P.Double()))
        }], P.Double()),
        Sig([{
            "x": P.Map(P.Map(P.Double()))
        }], P.Double())
    ])
    errcodeBase = 24080

    def __call__(self, state, scope, pos, paramTypes, x):
        if isinstance(x, (list, tuple)) and all(
                isinstance(xi, (list, tuple)) for xi in x):
            rows = len(x)
            if rows == 0:
                return 0.0
            else:
                cols = len(x[0])
                if raggedArray(x):
                    raise PFARuntimeException("ragged columns",
                                              self.errcodeBase + 0, self.name,
                                              pos)
                return sum(x[i][i] for i in xrange(min(rows, cols)))

        elif isinstance(x, dict) and all(
                isinstance(x[i], dict) for i in x.keys()):
            keys = rowKeys(x).intersection(colKeys(x))
            return sum(x[i][i] for i in keys)
Пример #22
0
class Taxicab(MetricWithMissingValues):
    name = prefix + "taxicab"
    sig = Sigs([
        Sig([{
            "similarity":
            P.Fcn([P.Wildcard("A"), P.Wildcard("B")], P.Double())
        }, {
            "x": P.Array(P.Union([P.Null(), P.Wildcard("A")]))
        }, {
            "y": P.Array(P.Union([P.Null(), P.Wildcard("B")]))
        }], P.Double()),
        Sig([{
            "similarity":
            P.Fcn([P.Wildcard("A"), P.Wildcard("B")], P.Double())
        }, {
            "x": P.Array(P.Union([P.Null(), P.Wildcard("A")]))
        }, {
            "y": P.Array(P.Union([P.Null(), P.Wildcard("B")]))
        }, {
            "missingWeight": P.Array(P.Double())
        }], P.Double())
    ])
    errcodeBase = 28060

    def increment(self, tally, x):
        return tally + x

    def finalize(self, x):
        return x
Пример #23
0
class Forecast1HoltWinters(LibFcn):
    name = prefix + "forecast1HoltWinters"
    sig = Sig(
        [{
            "state": P.WildRecord("A", {
                "level": P.Double(),
                "trend": P.Double()
            })
        }], P.Double())

    errcodeBase = 14060

    def genpy(self, paramTypes, args, pos):
        hasCycle = False
        hasMultiplicative = False
        for x in paramTypes[0].fields:
            if x.name == "cycle":
                if not x.avroType.accepts(AvroArray(AvroDouble())):
                    raise PFASemanticException(
                        self.name +
                        " is being given a state record type in which the \"cycle\" field is not an array of double: "
                        + str(x.avroType), None)
                hasCycle = True
            elif x.name == "multiplicative":
                if not x.avroType.accepts(AvroBoolean()):
                    raise PFASemanticException(
                        self.name +
                        " is being given a state record type in which the \"multiplicative\" field is not a boolean: "
                        + str(x.avroType), None)
                hasMultiplicative = True

        if hasCycle ^ hasMultiplicative:
            raise PFASemanticException(
                self.name +
                " is being given a state record type with a \"cycle\" but no \"multiplicative\" or vice-versa",
                None)

        return "self.f[{0}]({1}, {2})".format(
            repr(self.name), ", ".join(
                ["state", "scope",
                 repr(pos), repr(paramTypes)] + args), hasCycle)

    def __call__(self, state, scope, pos, paramTypes, theState, hasPeriodic):
        level = theState["level"]
        trend = theState["trend"]

        if not hasPeriodic:
            return level + trend
        else:
            cycle = theState["cycle"]
            L = len(cycle)
            if L == 0:
                raise PFARuntimeException("empty cycle", self.errcodeBase + 0,
                                          self.name, pos)

            if theState["multiplicative"]:
                return (level + trend) * cycle[1 % L]
            else:
                return level + trend + cycle[1 % L]
Пример #24
0
class GeoMean(LibFcn):
    name = prefix + "geomean"
    sig = Sig([{"a": P.Array(P.Double())}], P.Double())
    errcodeBase = 15440
    def __call__(self, state, scope, pos, paramTypes, a):
        if len(a) == 0:
            return float("nan")
        else:
            return reduce(lambda a, b: a * b, a, 1.0)**(1.0/len(a))
Пример #25
0
class Score(LibFcn):
    name = prefix + "score"
    sig = Sig([{
        "datum": P.Array(P.Double())
    }, {
        "model":
        P.WildRecord(
            "L", {
                "const":
                P.Double(),
                "posClass":
                P.Array(
                    P.WildRecord("M", {
                        "supVec": P.Array(P.Double()),
                        "coeff": P.Double()
                    })),
                "negClass":
                P.Array(
                    P.WildRecord("N", {
                        "supVec": P.Array(P.Double()),
                        "coeff": P.Double()
                    }))
            })
    }, {
        "kernel":
        P.Fcn([P.Array(P.Double()), P.Array(P.Double())], P.Double())
    }], P.Double())
    errcodeBase = 12000

    def __call__(self, state, scope, pos, paramTypes, datum, model, kernel):
        const = model["const"]
        negClass = model["negClass"]
        posClass = model["posClass"]
        if len(negClass) == 0 and len(posClass) == 0:
            raise PFARuntimeException("no support vectors",
                                      self.errcodeBase + 0, self.name, pos)
        negClassScore = 0.0
        for sv in negClass:
            supVec = sv["supVec"]
            if len(supVec) != len(datum):
                raise PFARuntimeException(
                    "support vectors must have same length as datum",
                    self.errcodeBase + 1, self.name, pos)
            coeff = sv["coeff"]
            negClassScore += callfcn(state, scope, kernel,
                                     [supVec, datum]) * coeff
        posClassScore = 0.0
        for sv in posClass:
            supVec = sv["supVec"]
            if len(supVec) != len(datum):
                raise PFARuntimeException(
                    "support vectors must have same length as datum",
                    self.errcodeBase + 1, self.name, pos)
            coeff = sv["coeff"]
            posClassScore += callfcn(state, scope, kernel,
                                     [supVec, datum]) * coeff
        return negClassScore + posClassScore + const
Пример #26
0
class Sigmoid(LibFcn):
    name = prefix + "sigmoid"
    sig = Sig([{"x": P.Array(P.Double())}, 
               {"y": P.Array(P.Double())},
               {"gamma": P.Double()},
               {"intercept": P.Double()}], P.Double())
    errcodeBase = 23030
    def __call__(self, state, scope, pos, paramTypes, x, y, gamma, intercept):
        return math.tanh(gamma * dot(x, y, self.errcodeBase + 0, self.name, pos) + intercept)
Пример #27
0
class TanH(LibFcn):
    name = prefix + "tanh"
    sig = Sig([{"x": P.Double()}], P.Double())
    errcodeBase = 27260

    def genpy(self, paramTypes, args, pos):
        return "math.tanh({0})".format(*args)

    def __call__(self, state, scope, pos, paramTypes, x):
        return math.tanh(x)
Пример #28
0
class ACos(LibFcn):
    name = prefix + "acos"
    sig = Sig([{"x": P.Double()}], P.Double())
    errcodeBase = 27030

    def __call__(self, state, scope, pos, paramTypes, x):
        try:
            return math.acos(x)
        except ValueError:
            return float("nan")
Пример #29
0
class RandomDouble(LibFcn):
    name = prefix + "double"
    sig = Sig([{"low": P.Double()}, {"high": P.Double()}], P.Double())
    errcodeBase = 34030

    def __call__(self, state, scope, pos, paramTypes, low, high):
        if high <= low:
            raise PFARuntimeException("high must be greater than low",
                                      self.errcodeBase + 0, self.name, pos)
        return state.rand.uniform(low, high)
Пример #30
0
class Tan(LibFcn):
    name = prefix + "tan"
    sig = Sig([{"x": P.Double()}], P.Double())
    errcodeBase = 27250

    def __call__(self, state, scope, pos, paramTypes, x):
        if math.isinf(x) or math.isnan(x):
            return float("nan")
        else:
            return math.tan(x)