Пример #1
0
    def process(self, mg):
        fig_prefix = self.params['fig_name']

        # distributed along feed
        mg.dataset_common_to_distributed('eigval', distributed_axis=1)
        mg.dataset_common_to_distributed('gain', distributed_axis=1)
        feed = mpiutil.scatter_array(mg.attrs['feed'])

        for idx, fd in enumerate(feed):
            plt.figure()
            plt.subplot(411)
            plt.imshow(mg['gain'].local_data[:, idx, 0, :].T.real,
                       origin='lower')  # xx
            plt.colorbar()
            plt.subplot(412)
            plt.imshow(mg['gain'].local_data[:, idx, 0, :].T.imag,
                       origin='lower')  # xx
            plt.colorbar()
            plt.subplot(413)
            plt.imshow(mg['gain'].local_data[:, idx, 1, :].T.real,
                       origin='lower')  # yy
            plt.colorbar()
            plt.subplot(414)
            plt.imshow(mg['gain'].local_data[:, idx, 1, :].T.imag,
                       origin='lower')  # yy
            plt.colorbar()

            fig_name = '%s_%d.png' % (fig_prefix, fd)
            fig_name = output_path(fig_name)
            plt.savefig(fig_name)
            plt.clf()

        return mg
Пример #2
0
    def __init__(self, parameter_file_or_dict=None, feedback=2):

        super(OneAndOne, self).__init__(parameter_file_or_dict, feedback)

        self.input_files = input_path(format_list(self.params['input_files']))
        self.output_files = output_path(format_list(self.params['output_files']), mkdir=False)

        self.iterable = self.params['iterable']
        if self.iterable:
            self.iter_start = self.params['iter_start']
            self.iter_step = self.params['iter_step']
            self.iter_num = self.params['iter_num']
        self._iter_cnt = 0 # inner iter counter

        # Inspect the `process` method to see how many arguments it takes.
        pro_argspec = inspect.getargspec(self.process)
        n_args = len(pro_argspec.args) - 1
        if n_args  > 1:
            msg = ("`process` method takes more than 1 argument, which is not"
                   " allowed")
            raise PipelineConfigError(msg)
        if pro_argspec.varargs or pro_argspec.keywords or pro_argspec.defaults:
            msg = ("`process` method may not have variable length or optional"
                   " arguments")
            raise PipelineConfigError(msg)
        if n_args == 0:
            self._no_input = True
        else: # n_args == 1
            self._no_input = False

            if len(self._in) != n_args and len(self.input_files) == 0:
                msg = ("No data to iterate over. There are no 'in' keys and no 'input_files'")
                raise PipelineConfigError(msg)
Пример #3
0
    def write_output(self, output):
        """Method for writing time ordered data output. """

        exclude = self.params['exclude']
        check_status = self.params['check_status']
        write_hints = self.params['write_hints']
        libver = self.params['libver']
        chunk_vis = self.params['chunk_vis']
        chunk_shape = self.params['chunk_shape']
        chunk_size = self.params['chunk_size']
        output_failed_continue = self.params['output_failed_continue']
        tag_output_iter = self.params['tag_output_iter']

        if self.iterable and tag_output_iter:
            output_files = output_path(self.output_files,
                                       relative=False,
                                       iteration=self.iteration)
        else:
            output_files = self.output_files

        try:
            output.to_files(output_files, exclude, check_status, write_hints,
                            libver, chunk_vis, chunk_shape, chunk_size)
        except Exception as e:
            if output_failed_continue:
                msg = 'Process %d writing output to files failed...' % mpiutil.rank
                logger.warning(msg)
                traceback.print_exc(file=sys.stdout)
            else:
                raise e
Пример #4
0
    def __init__(self, pipefile=None, feedback=2):

        # Read in the parameters.
        self.params, self.task_params = parse_ini.parse(pipefile, self.params_init, prefix=self.prefix, return_undeclared=True, feedback=feedback)
        self.tasks = self.params['tasks']

        # timing the running
        if self.params['timing']:
            self.start_time = datetime.datetime.now()
            if mpiutil.rank0:
                print 'Start the pipeline at %s...' % self.start_time

        # set environment var
        os.environ['TL_OUTPUT'] = self.params['outdir'] + '/'

        # copy pipefile to outdir if required
        if self.params['copy']:
            base_name = path.basename(pipefile)
            dst_file = '%s/%s' % (self.params['outdir'], base_name)
            outdir = output_path(dst_file, relative=False, mkdir=True)
            if mpiutil.rank0:
                if self.params['overwrite']:
                    shutil.copy2(pipefile, dst_file)
                else:
                    if not path.exists(dst_file):
                        shutil.copy2(pipefile, dst_file)
                    else:
                        base, ext = path.splitext(dst_file)
                        for cnt in itertools.count(1):
                            dst = '%s_%d%s' % (base, cnt, ext) # add cnt to file name
                            if not path.exists(dst):
                                shutil.copy2(pipefile, dst)
                                break

            mpiutil.barrier()
Пример #5
0
    def combine_results(self):

        output_combined = self.params['output_combined']
        output_combined = output_path(
            output_combined, relative=not output_combined.startswith('/'))
        self.allocate_output(output_combined, 'w')
        self.df_out[-1]['mode_list'] = self.mode_list

        for _m in self.mode_list:
            mode_key = 'cleaned_%02dmode' % _m
            self.create_dataset(-1,
                                mode_key,
                                dset_shp=self.dset_shp,
                                dset_info=self.map_info)
            self.create_dataset(-1,
                                mode_key + '_weight',
                                dset_shp=self.dset_shp,
                                dset_info=self.map_info)
            mask = np.ones(self.dset_shp[:1]).astype('bool')
            for ii in range(len(self.output_files)):
                for key in self.df_out[ii][mode_key].keys():
                    self.df_out[-1][mode_key][:]\
                            += self.df_out[ii]['weight'][:]\
                            *  self.df_out[ii]['%s/%s'%(mode_key, key)][:]
                    self.df_out[-1][mode_key + '_weight'][:]\
                            += self.df_out[ii]['weight'][:]
                mask *= ~(self.df_out[ii]['mask'][:].astype('bool'))
            weight = self.df_out[-1][mode_key + '_weight'][:]
            weight[weight == 0] = np.inf
            self.df_out[-1][mode_key][:] /= weight
            self.df_out[-1][mode_key + '_mask'] = (~mask).astype('int')
Пример #6
0
    def __init__(self, pipefile=None, feedback=2):

        # Read in the parameters.
        self.params, self.task_params = parse_ini.parse(pipefile, self.params_init, prefix=self.prefix, return_undeclared=True, feedback=feedback)
        self.tasks = self.params['tasks']

        # set environment var
        os.environ['TL_OUTPUT'] = self.params['outdir'] + '/'

        # copy pipefile to outdir if required
        if self.params['copy']:
            base_name = path.basename(pipefile)
            dst_file = '%s/%s' % (self.params['outdir'], base_name)
            outdir = output_path(dst_file, relative=False, mkdir=True)
            if mpiutil.rank0:
                if self.params['overwrite']:
                    shutil.copy2(pipefile, dst_file)
                else:
                    if not path.exists(dst_file):
                        shutil.copy2(pipefile, dst_file)
                    else:
                        base, ext = path.splitext(dst_file)
                        for cnt in itertools.count(1):
                            dst = '%s_%d%s' % (base, cnt, ext) # add cnt to file name
                            if not path.exists(dst):
                                shutil.copy2(pipefile, dst)
                                break

            mpiutil.barrier()
Пример #7
0
    def process(self, mg):
        fig_prefix = self.params['fig_name']

        # distributed along feed
        mg.dataset_common_to_distributed('eigval', distributed_axis=1)
        mg.dataset_common_to_distributed('gain', distributed_axis=1)
        feed = mpiutil.scatter_array(mg.attrs['feed'])

        for idx, fd in enumerate(feed):
            plt.figure()
            plt.subplot(411)
            plt.imshow(mg['gain'].local_data[:, idx, 0, :].T.real, origin='lower') # xx
            plt.colorbar()
            plt.subplot(412)
            plt.imshow(mg['gain'].local_data[:, idx, 0, :].T.imag, origin='lower') # xx
            plt.colorbar()
            plt.subplot(413)
            plt.imshow(mg['gain'].local_data[:, idx, 1, :].T.real, origin='lower') # yy
            plt.colorbar()
            plt.subplot(414)
            plt.imshow(mg['gain'].local_data[:, idx, 1, :].T.imag, origin='lower') # yy
            plt.colorbar()

            fig_name = '%s_%d.png' % (fig_prefix, fd)
            fig_name = output_path(fig_name)
            plt.savefig(fig_name)
            plt.clf()

        return mg
Пример #8
0
    def write_to_file_splitmock(self):

        output_prefix = '/%s_cube_%s' % (self.params['prefix'],
                                         self.params['scenario'])

        for outfile in self.outfiles_split:
            mock_idx = self.iter_list[self.iter]
            output_file = output_prefix + '_%03d_%s.h5' % (mock_idx, outfile)
            output_file = output_path(output_file, relative=True)
            #self.allocate_output(output_file, 'w')
            if outfile is 'optsim':
                map_key = 'delta'
                weight_key = 'separable'
                map_name = 'sim_map_optsim'
                weight_name = 'sel'

            else:
                map_key = self.params['map_tmp_key']
                weight_key = self.params['map_tmp_weight']
                map_name = 'sim_map_' + outfile
                weight_name = 'weight'

            map_pad = self.map_pad
            map_shp = self.map_tmp.shape
            _map_shp = (map_shp[0], map_shp[1] - 2 * map_pad,
                        map_shp[2] - 2 * map_pad)
            map_slice = (slice(0, None), slice(map_pad, map_shp[1] - map_pad),
                         slice(map_pad, map_shp[2] - map_pad))
            with h5py.File(output_file, 'w') as f:
                d = f.create_dataset(map_key,
                                     _map_shp,
                                     dtype=self.map_tmp.dtype)
                _d = getattr(self, map_name)
                d[:] = _d[map_slice]
                for key, value in self.map_tmp.info.iteritems():
                    d.attrs[key] = repr(value)
                d.attrs['freq_delta'] = repr(self.map_tmp.info['freq_delta'] /
                                             1.e6)
                d.attrs['freq_centre'] = repr(
                    self.map_tmp.info['freq_centre'] / 1.e6)
                #d.attrs['ra_delta']    = repr(self.map_tmp.info['ra_delta'])
                #d.attrs['ra_centre']   = repr(self.map_tmp.info['ra_centre'])
                #d.attrs['dec_delta']   = repr(self.map_tmp.info['dec_delta'])
                #d.attrs['dec_centre']  = repr(self.map_tmp.info['dec_centre'])

                if hasattr(self, weight_name):
                    #mask =
                    #mask[mask!=0] = 1.
                    #d[:] *= mask
                    n = f.create_dataset(weight_key,
                                         _map_shp,
                                         dtype=self.map_tmp.dtype)
                    n[:] = getattr(self, weight_name)[map_slice]
                    for key, value in self.map_tmp.info.iteritems():
                        n.attrs[key] = repr(value)
                    n.attrs['freq_delta'] = repr(
                        self.map_tmp.info['freq_delta'] / 1.e6)
                    n.attrs['freq_centre'] = repr(
                        self.map_tmp.info['freq_centre'] / 1.e6)
Пример #9
0
    def init_output(self):

        suffix = '_%s.h5'%self.params['data_sets']
        output_file = self.output_files[0]
        output_file = output_path(output_file + suffix, 
                relative = not output_file.startswith('/'))
        #if mpiutil.rank0:
        #    self.df = h5py.File(output_file, mode='w')
        self.allocate_output(output_file, 'w')
Пример #10
0
    def read_process_write(self, tstream):
        """Overwrite the method of superclass."""

        if isinstance(tstream, timestream.Timestream):
            return self.process(tstream)
        else:
            ts_dir = output_path(self.params['ts_dir'])
            ts_name = self.params['ts_name']
            if mpiutil.rank0:
                print 'Try to load tstream from %s/%s' % (ts_dir, ts_name)
            tstream = timestream.Timestream.load(ts_dir, ts_name)
            return self.process(tstream)
Пример #11
0
    def write_output(self, output):
        """Method for writing time ordered data output. """

        exclude = self.params['exclude']
        check_status = self.params['check_status']
        libver = self.params['libver']
        tag_output_iter = self.params['tag_output_iter']

        if self.iterable and tag_output_iter:
            output_files = output_path(self.output_files,
                                       relative=False,
                                       iteration=self.iteration)
        else:
            output_files = self.output_files
        output.to_files(output_files, exclude, check_status, libver)
Пример #12
0
    def read_input(self):

        for input_file in self.input_files:

            print input_file
            self.open(input_file)

        self.map_tmp = al.make_vect(al.load_h5(self.df_in[0], 'dirty_map'))
        self.map_shp = self.map_tmp.shape
        for output_file in self.output_files:
            output_file = output_path(output_file,
                                      relative=not output_file.startswith('/'))
            self.allocate_output(output_file, 'w')
            self.create_dataset_like(-1, 'clean_map', self.map_tmp)
            self.create_dataset_like(-1, 'noise_diag', self.map_tmp)

        return 1
Пример #13
0
    def write_output(self, output):

        norm = self.hitmap
        norm[norm==0] = np.inf
        self.avgmap /= norm

        nside = self.params['nside']
        map_name = 'avgmap_nside%d_f%6.2fMHz.fits'%(nside, self.freq)
        map_name = output_path(map_name)

        hp.write_map(map_name, self.avgmap, coord='C', overwrite=True)

        self.avgmap[self.avgmap==0] = hp.UNSEEN
        hp.mollview(self.avgmap, title='Map @ %6.2f MHz'%self.freq, badcolor='none')
        hp.graticule(coord='C', dpar=30, dmer=30)

        plt.show()
Пример #14
0
    def write_output(self, output):

        #super(PlotSpectrum, self).write_output(output)

        fig_prefix = self.params['output_files'][0]
        main_data = self.params['main_data']
        ymin      = self.params['ymin']
        ymax      = self.params['ymax']

        axhh = self.axhh
        axvv = self.axvv
        fig  = self.fig

        x_label = self.x_label

        axhh.set_xticklabels([])
        #axhh.set_ylabel(r'${\rm frequency\, [GHz]\, HH}$')
        #axhh.set_ylabel('HH Polarization')
        #if xmin is None: xmin = x_axis[0]
        #if xmax is None: xmax = x_axis[-1]
        xmin = self.xmin
        xmax = self.xmax
        axhh.set_xlim(xmin=self.xmin, xmax=self.xmax)
        axhh.set_ylim(ymin=ymin, ymax=ymax)
        axhh.minorticks_on()
        axhh.tick_params(length=4, width=1, direction='in')
        axhh.tick_params(which='minor', length=2, width=1, direction='in')
        axhh.legend(title=self.params['legend_title'])
        axhh.set_ylabel('HH Polarization')

        #axvv.set_xlabel(r'$({\rm time} - {\rm UT}\quad %s\,) [{\rm hour}]$'%t_start)
        axvv.set_xlabel(x_label)
        #axvv.set_ylabel(r'${\rm frequency\, [GHz]\, VV}$')
        #axvv.set_ylabel('VV Polarization')
        axvv.set_xlim(xmin=self.xmin, xmax=self.xmax)
        axvv.set_ylim(ymin=ymin, ymax=ymax)
        axvv.minorticks_on()
        axvv.tick_params(length=4, width=1, direction='in')
        axvv.tick_params(which='minor', length=2, width=1, direction='in')
        axvv.set_ylabel('VV Polarization')

        if fig_prefix is not None:
            fig_name = '%s_%s_Spec.png' % (fig_prefix, main_data)
            fig_name = output_path(fig_name)
            plt.savefig(fig_name, formate='png') #, dpi=100)
Пример #15
0
    def write_output(self, output):

        super(PlotPointingvsTime, self).write_output(output)

        fig_prefix = self.params['output_files'][0]
        main_data = self.params['main_data']

        axhh = self.axhh
        axvv = self.axvv
        fig  = self.fig

        axhh.set_ylabel('Azimuth [arcmin]')
        axvv.set_ylabel('Elevation [arcmin]')

        if fig_prefix is not None:
            fig_name = '%s_%s_AzEl.png' % (fig_prefix, main_data)
            fig_name = output_path(fig_name)
            plt.savefig(fig_name, formate='png') #, dpi=100)
Пример #16
0
    def write_output(self, output):

        super(PlotVvsTime, self).write_output(output)

        fig_prefix = self.params['output_files'][0]
        main_data = self.params['main_data']

        axhh = self.axhh
        axvv = self.axvv
        fig  = self.fig

        axhh.set_ylabel('HH Polarization')
        axvv.set_ylabel('VV Polarization')

        if fig_prefix is not None:
            fig_name = '%s_%s_TS.png' % (fig_prefix, main_data)
            fig_name = output_path(fig_name)
            plt.savefig(fig_name, formate='png') #, dpi=100)
Пример #17
0
    def read_input(self):

        for input_file in self.input_files:

            if mpiutil.rank0:
                logger.info('%s' % input_file)
            self.open(input_file)

        map_tmp = al.load_h5(self.df_in[0], 'dirty_map')
        self.map_tmp = al.make_vect(map_tmp, axis_names=map_tmp.info['axes'])
        self.map_shp = self.map_tmp.shape
        for output_file in self.output_files:
            output_file = output_path(output_file,
                                      relative=not output_file.startswith('/'))
            self.allocate_output(output_file, 'w')
            self.create_dataset_like(-1, 'clean_map', self.map_tmp)
            self.create_dataset_like(-1, 'noise_diag', self.map_tmp)
            self.create_dataset_like(-1, 'dirty_map', self.map_tmp)

        return 1
Пример #18
0
    def init_output(self):

        output_file = self.output_files[0]
        output_file = output_path(output_file, 
                relative= not output_file.startswith('/'))
        self.allocate_output(output_file, 'w')
        # load one file to get the ant_n and pol_n
        self.create_dataset('binavg_1d', self.dset_shp + (self.knum,))
        self.create_dataset('counts_1d', self.dset_shp + (self.knum,))

        self.create_dataset('binavg_2d', self.dset_shp + (self.knum_x, self.knum_y))
        self.create_dataset('counts_2d', self.dset_shp + (self.knum_x, self.knum_y))

        self.df['kbin'] = self.kbin
        self.df['kbin_x'] = self.kbin_x
        self.df['kbin_y'] = self.kbin_y
        self.df['kbin_edges'] = self.kbin_edges
        self.df['kbin_x_edges'] = self.kbin_x_edges
        self.df['kbin_y_edges'] = self.kbin_y_edges
        self.df['sim'] = self.params['sim']
Пример #19
0
    def write_to_file(self):

        output_prefix = '/%s_cube_%s' % (self.params['prefix'],
                                         self.params['scenario'])

        for outfile in self.outfiles:
            mock_idx = self.iter_list[self.iter]
            output_file = output_prefix + '_%03d_%s.h5' % (mock_idx, outfile)
            output_file = output_path(output_file, relative=True)
            #self.allocate_output(output_file, 'w')
            if outfile is 'optsim':
                map_key = 'delta'
                weight_key = 'separable'
                map_name = 'sim_map_optsim'
                weight_name = 'sel'

            else:
                map_key = self.params['map_tmp_key']
                weight_key = self.params['map_tmp_weight']
                map_name = 'sim_map_' + outfile
                weight_name = 'weight'

            with h5py.File(output_file, 'w') as f:
                d = f.create_dataset(map_key,
                                     self.map_tmp.shape,
                                     dtype=self.map_tmp.dtype)
                d[:] = getattr(self, map_name)
                for key, value in self.map_tmp.info.iteritems():
                    d.attrs[key] = repr(value)

                if hasattr(self, weight_name):
                    #mask =
                    #mask[mask!=0] = 1.
                    #d[:] *= mask
                    n = f.create_dataset(weight_key,
                                         self.map_tmp.shape,
                                         dtype=self.map_tmp.dtype)
                    n[:] = getattr(self, weight_name)
                    for key, value in self.map_tmp.info.iteritems():
                        n.attrs[key] = repr(value)
Пример #20
0
    def open_outputfiles(self):

        output_prefix = '/%s_cube_%s' % (self.params['prefix'],
                                         self.params['scenario'])
        output_file = output_prefix + '.h5'
        output_file = output_path(output_file, relative=True)
        self.allocate_output(output_file, 'w')

        dset_shp = (self.params['mock_n'], ) + self.map_tmp.shape
        dset_info = {}
        dset_info['axes'] = ('mock', 'freq', 'ra', 'dec')
        dset_info['type'] = 'vect'
        dset_info['mock_delta'] = 1
        dset_info['mock_centre'] = self.params['mock_n'] // 2
        dset_info['freq_delta'] = self.map_tmp.info['freq_delta'] / 1.e6
        dset_info['freq_centre'] = self.map_tmp.info['freq_centre'] / 1.e6
        dset_info['ra_delta'] = self.map_tmp.info['ra_delta']
        dset_info['ra_centre'] = self.map_tmp.info['ra_centre']
        dset_info['dec_delta'] = self.map_tmp.info['dec_delta']
        dset_info['dec_centre'] = self.map_tmp.info['dec_centre']
        #if self.params['outfile_raw']:
        for outfile in self.outfiles:
            self.create_dataset(outfile, dset_shp, dset_info)
Пример #21
0
    def setup(self):

        super(SurveySimToMap, self).setup()

        params = self.params
        freq = params['freq']
        self.n_freq = freq.shape[0]
        self.freq_spacing = freq[1] - freq[0]
        self.n_ra, self.n_dec = params['map_shape']
        self.map_shp = (self.n_freq, self.n_ra, self.n_dec)
        self.spacing = params['pixel_spacing']
        self.dec_spacing = self.spacing
        self.ra_spacing = self.spacing / sp.cos(
            params['field_centre'][1] * sp.pi / 180.)

        axis_names = ('freq', 'ra', 'dec')
        map_tmp = np.zeros(self.map_shp, dtype=__dtype__)
        map_tmp = al.make_vect(map_tmp, axis_names=axis_names)
        map_tmp.set_axis_info('freq', freq[self.n_freq // 2],
                              self.freq_spacing)
        map_tmp.set_axis_info('ra', params['field_centre'][0], self.ra_spacing)
        map_tmp.set_axis_info('dec', params['field_centre'][1],
                              self.dec_spacing)
        self.map_tmp = map_tmp

        mock_n = self.mock_n

        #for ii in range(mock_n):
        for ii in self.HI_mock_ids:
            output_file = 'sim_mock%03d_%s_%s_%s_%s.h5' % (
                ii, self.params['prefix'], self.params['survey_mode'],
                self.params['HI_scenario'], self.params['HI_model_type'])
            output_file = output_path(output_file, relative=True)
            self.allocate_output(output_file, 'w')
            self.create_dataset_like(-1, 'dirty_map', map_tmp)
            self.create_dataset_like(-1, 'clean_map', map_tmp)
            self.create_dataset_like(-1, 'count_map', map_tmp)
Пример #22
0
    def flag(self, vis, vis_mask, li, gi, bl, ts, **kwargs):
        """Function that does the actual flag."""

        freq_window = self.params['freq_window']
        time_window = self.params['time_window']
        freq_sigma = self.params['freq_sigma']
        time_sigma = self.params['time_sigma']
        plot_fit = self.params['plot_fit']
        freq_fig_prefix = self.params['freq_fig_name']
        time_fig_prefix = self.params['time_fig_name']
        tag_output_iter = self.params['tag_output_iter']
        iteration = self.iteration
        freq_flag = kwargs.get('freq_flag')
        time_flag = kwargs.get('time_flag')

        time = ts.time[:]
        nt = len(time)
        freq = ts.freq[:]
        nfreq = len(freq)

        if isinstance(ts, Timestream): # for Timestream
            pol = bl[0]
            bl = tuple(bl[1])
        elif isinstance(ts, RawTimestream): # for RawTimestream
            pol = None
            bl = tuple(bl)
        else:
            raise ValueError('Need either a RawTimestream or Timestream')

        if freq_flag:
            # time integration
            tm_vis = np.ma.mean(np.ma.array(vis, mask=vis_mask), axis=0)
            abs_vis = np.abs(tm_vis)
            if np.ma.count_masked(tm_vis) > 0: # has masked value
                abs_vis_valid = abs_vis[~abs_vis.mask]
                inds_valid = np.arange(nfreq)[~abs_vis.mask]
                itp = InterpolatedUnivariateSpline(inds_valid, abs_vis_valid)
                abs_vis_itp = itp(np.arange(nfreq))
                abs_vis1 = abs_vis_itp.copy()
            else:
                abs_vis1 = abs_vis.copy()

            for cnt in xrange(10):
                if cnt != 0:
                    abs_vis1[inds] = smooth[inds]
                smooth = savitzky_golay(abs_vis1, freq_window, 3)

                # flage RFI
                diff = abs_vis1 - smooth
                mean = np.mean(diff)
                std = np.std(diff)
                inds = np.where(np.abs(diff - mean) > freq_sigma*std)[0]
                if len(inds) == 0:
                    break

            diff = abs_vis - smooth
            mean = np.mean(diff)
            std = np.std(diff)
            inds = np.where(np.abs(diff - mean) > freq_sigma*std)[0] # masked inds
            vis_mask[:, inds] = True # set mask

            if plot_fit:
                plt.figure()
                plt.plot(freq, abs_vis, label='data')
                plt.plot(freq[inds], abs_vis[inds], 'ro', label='flag')
                plt.plot(freq, smooth, label='smooth')
                plt.xlabel(r'$\nu$ / MHz')
                plt.legend(loc='best')
                if pol is None:
                    fig_name = '%s_%d_%d.png' % (freq_fig_prefix, bl[0], bl[1])
                else:
                    fig_name = '%s_%d_%d_%s.png' % (freq_fig_prefix, bl[0], bl[1], pol)
                if tag_output_iter:
                    fig_name = output_path(fig_name, iteration=iteration)
                else:
                    fig_name = output_path(fig_name)
                plt.savefig(fig_name)
                plt.close()

        if time_flag:
            # freq integration
            fm_vis = np.ma.mean(np.ma.array(vis, mask=vis_mask), axis=1)
            abs_vis = np.abs(fm_vis)
            if np.ma.count_masked(fm_vis) > 0: # has masked value
                abs_vis_valid = abs_vis[~abs_vis.mask]
                inds_valid = np.arange(nt)[~abs_vis.mask]
                itp = InterpolatedUnivariateSpline(inds_valid, abs_vis_valid)
                abs_vis_itp = itp(np.arange(nt))
                abs_vis1 = abs_vis_itp.copy()
            else:
                abs_vis1 = abs_vis.copy()

            for cnt in xrange(10):
                if cnt != 0:
                    abs_vis1[inds] = smooth[inds]
                smooth = savitzky_golay(abs_vis1, time_window, 3)

                # flage RFI
                diff = abs_vis1 - smooth
                mean = np.mean(diff)
                std = np.std(diff)
                inds = np.where(np.abs(diff - mean) > time_sigma*std)[0]
                if len(inds) == 0:
                    break

            diff = abs_vis - smooth
            mean = np.mean(diff)
            std = np.std(diff)
            inds = np.where(np.abs(diff - mean) > time_sigma*std)[0] # masked inds
            # Addtional threshold
            # inds1 = np.where(np.abs(diff[inds]) > 1.0e-2*np.abs(smooth[inds]))[0]
            # inds = inds[inds1]
            vis_mask[inds] = True # set mask

            if plot_fit:
                plt.figure()
                plt.plot(time, abs_vis, label='data')
                plt.plot(time[inds], abs_vis[inds], 'ro', label='flag')
                plt.plot(time, smooth, label='smooth')
                plt.xlabel(r'$t$ / Julian Date')
                plt.legend(loc='best')
                if pol is None:
                    fig_name = '%s_%d_%d.png' % (time_fig_prefix, bl[0], bl[1])
                else:
                    fig_name = '%s_%d_%d_%s.png' % (time_fig_prefix, bl[0], bl[1], pol)
                if tag_output_iter:
                    fig_name = output_path(fig_name, iteration=iteration)
                else:
                    fig_name = output_path(fig_name)
                plt.savefig(fig_name)
                plt.close()

        return vis, vis_mask
Пример #23
0
    def plot(self, vis, vis_mask, li, gi, bl, ts, **kwargs):
        """Function that does the actual plot work."""

        plot_type = self.params['plot_type']
        bl_incl = self.params['bl_incl']
        bl_excl = self.params['bl_excl']
        flag_mask = self.params['flag_mask']
        flag_ns = self.params['flag_ns']
        slices = self.params['slices']
        fig_prefix = self.params['fig_name']
        rotate_xdate = self.params['rotate_xdate']
        feed_no = self.params['feed_no']
        tag_output_iter = self.params['tag_output_iter']
        iteration = self.iteration

        if isinstance(ts, Timestream):  # for Timestream
            pol = bl[0]
            bl = tuple(bl[1])
            feed_no = True
        elif isinstance(ts, RawTimestream):  # for RawTimestream
            pol = None
            bl = tuple(bl)
            if feed_no:
                pol = ts['bl_pol'].local_data[li]
                bl = tuple(ts['true_blorder'].local_data[li])
        else:
            raise ValueError('Need either a RawTimestream or Timestream')

        if bl_incl != 'all':
            bl1 = set(bl)
            bl_incl = [{f1, f2} for (f1, f2) in bl_incl]
            bl_excl = [{f1, f2} for (f1, f2) in bl_excl]
            if (not bl1 in bl_incl) or (bl1 in bl_excl):
                return

        if plot_type == 'time':
            nt = vis.shape[0]
            c = nt / 2
            s = max(0, c - slices / 2)
            e = min(nt, s + slices)
            if flag_mask:
                vis1 = np.ma.array(vis[s:e], mask=vis_mask[s:e])
            elif flag_ns:
                vis1 = vis[s:e].copy()
                if 'ns_on' in ts.iterkeys():
                    ns_on = ts['ns_on'][s:e]
                    on = np.where(ns_on)[0]
                    vis1[on] = complex(np.nan, np.nan)
            else:
                vis1 = vis[s:e]

            o = c - s
            shift = 0.1 * np.ma.max(np.abs(vis1[o]))

            ax_val = ts.freq[:]
            xlabel = r'$\nu$ / MHz'
        elif plot_type == 'freq':
            nfreq = vis.shape[1]
            c = nfreq / 2
            s = max(0, c - slices / 2)
            e = min(nfreq, s + slices)
            if flag_mask:
                vis1 = np.ma.array(vis[:, s:e], mask=vis_mask[:, s:e])
            elif flag_ns:
                vis1 = vis[:, s:e].copy()
                if 'ns_on' in ts.iterkeys():
                    ns_on = ts['ns_on'][:]
                    on = np.where(ns_on)[0]
                    vis1[on] = complex(np.nan, np.nan)
            else:
                vis1 = vis[:, s:e]

            o = c - s
            shift = 0.1 * np.ma.max(np.abs(vis1[:, o]))

            # ax_val = ts.time[:]
            # xlabel = r'$t$ / Julian Date'
            ax_val = np.array(
                [datetime.fromtimestamp(sec) for sec in ts['sec1970'][:]])
            xlabel = '%s' % ax_val[0].date()
            ax_val = mdates.date2num(ax_val)
        else:
            raise ValueError(
                'Unknown plot_type %s, must be either time or freq' %
                plot_type)

        plt.figure()
        f, axarr = plt.subplots(3, sharex=True)
        for i in range(e - s):
            if plot_type == 'time':
                axarr[0].plot(ax_val,
                              vis1[i].real + (i - o) * shift,
                              label='real')
            elif plot_type == 'freq':
                axarr[0].plot(ax_val,
                              vis1[:, i].real + (i - o) * shift,
                              label='real')
            if i == 0:
                axarr[0].legend()

            if plot_type == 'time':
                axarr[1].plot(ax_val,
                              vis1[i].imag + (i - o) * shift,
                              label='imag')
            elif plot_type == 'freq':
                axarr[1].plot(ax_val,
                              vis1[:, i].imag + (i - o) * shift,
                              label='imag')
            if i == 0:
                axarr[1].legend()

            if plot_type == 'time':
                axarr[2].plot(ax_val,
                              np.abs(vis1[i]) + (i - o) * shift,
                              label='abs')
            elif plot_type == 'freq':
                axarr[2].plot(ax_val,
                              np.abs(vis1[:, i]) + (i - o) * shift,
                              label='abs')
            if i == 0:
                axarr[2].legend()

        if plot_type == 'freq':
            axarr[2].xaxis_date()
            date_format = mdates.DateFormatter('%H:%M')
            axarr[2].xaxis.set_major_formatter(date_format)
            if rotate_xdate:
                # set the x-axis tick labels to diagonal so it fits better
                f.autofmt_xdate()
            else:
                # half the number of date ticks so they do not overlap
                # axarr[2].set_xticks(axarr[2].get_xticks()[::2])
                # reduce the number of tick locators
                locator = MaxNLocator(nbins=6)
                axarr[2].xaxis.set_major_locator(locator)
                axarr[2].xaxis.set_minor_locator(AutoMinorLocator(2))

        axarr[2].set_xlabel(xlabel)

        if feed_no:
            fig_name = '%s_%s_%d_%d_%s.png' % (fig_prefix, plot_type, bl[0],
                                               bl[1], ts.pol_dict[pol])
        else:
            fig_name = '%s_%s_%d_%d.png' % (fig_prefix, plot_type, bl[0],
                                            bl[1])
        if tag_output_iter:
            fig_name = output_path(fig_name, iteration=iteration)
        else:
            fig_name = output_path(fig_name)
        plt.savefig(fig_name)
        plt.close()
Пример #24
0
    def process(self, ts):

        mask_daytime = self.params['mask_daytime']
        mask_time_range = self.params['mask_time_range']
        tsys = self.params['tsys']
        accuracy_boost = self.params['accuracy_boost']
        l_boost = self.params['l_boost']
        bl_range = self.params['bl_range']
        auto_correlations = self.params['auto_correlations']
        time_avg = self.params['time_avg']
        pol = self.params['pol']
        interp = self.params['interp']
        beam_dir = output_path(self.params['beam_dir'])
        use_existed_beam = self.params['use_existed_beam']
        gen_inv = self.params['gen_invbeam']
        noise_weight = self.params['noise_weight']
        ts_dir = output_path(self.params['ts_dir'])
        ts_name = self.params['ts_name']
        no_m_zero = self.params['no_m_zero']
        simulate = self.params['simulate']
        input_maps = self.params['input_maps']
        prior_map = self.params['prior_map']
        add_noise = self.params['add_noise']
        dirty_map = self.params['dirty_map']
        nbin = self.params['nbin']
        method = self.params['method']
        normalize = self.params['normalize']
        threshold = self.params['threshold']
        eps = self.params['epsilon']
        correct_order = self.params['correct_order']

        if use_existed_beam:
            # load the saved telescope from disk
            tel = None
        else:
            assert isinstance(ts, Timestream), '%s only works for Timestream object' % self.__class__.__name__

            ts.redistribute('baseline')

            lat = ts.attrs['sitelat']
            # lon = ts.attrs['sitelon']
            lon = 0.0
            # lon = np.degrees(ts['ra_dec'][0, 0]) # the first ra
            local_origin = False
            freqs = ts.freq[:] # MHz
            nfreq = freqs.shape[0]
            band_width = ts.attrs['freqstep'] # MHz
            try:
                ndays = ts.attrs['ndays']
            except KeyError:
                ndays = 1
            feeds = ts['feedno'][:]
            bl_order = mpiutil.gather_array(ts.local_bl, axis=0, root=None, comm=ts.comm)
            bls = [ tuple(bl) for bl in bl_order ]
            az, alt = ts['az_alt'][0]
            az = np.degrees(az)
            alt = np.degrees(alt)
            pointing = [az, alt, 0.0]
            feedpos = ts['feedpos'][:]

            if ts.is_dish:
                from tlpipe.map.drift.telescope import tl_dish

                dish_width = ts.attrs['dishdiam']
                tel = tl_dish.TlUnpolarisedDishArray(lat, lon, freqs, band_width, tsys, ndays, accuracy_boost, l_boost, bl_range, auto_correlations, local_origin, dish_width, feedpos, pointing)
            elif ts.is_cylinder:
                from tlpipe.map.drift.telescope import tl_cylinder

                # factor = 1.2 # suppose an illumination efficiency, keep same with that in timestream_common
                factor = 0.79 # for xx
                # factor = 0.88 # for yy
                cyl_width = factor * ts.attrs['cywid']
                tel = tl_cylinder.TlUnpolarisedCylinder(lat, lon, freqs, band_width, tsys, ndays, accuracy_boost, l_boost, bl_range, auto_correlations, local_origin, cyl_width, feedpos)
            else:
                raise RuntimeError('Unknown array type %s' % ts.attrs['telescope'])

            if not simulate:
                # select the corresponding vis and vis_mask
                if pol == 'xx':
                    local_vis = ts.local_vis[:, :, 0, :]
                    local_vis_mask = ts.local_vis_mask[:, :, 0, :]
                elif pol == 'yy':
                    local_vis = ts.local_vis[:, :, 1, :]
                    local_vis_mask = ts.local_vis_mask[:, :, 1, :]
                elif pol == 'I':
                    xx_vis = ts.local_vis[:, :, 0, :]
                    xx_vis_mask = ts.local_vis_mask[:, :, 0, :]
                    yy_vis = ts.local_vis[:, :, 1, :]
                    yy_vis_mask = ts.local_vis_mask[:, :, 1, :]

                    local_vis = np.zeros_like(xx_vis)
                    for ti in xrange(local_vis.shape[0]):
                        for fi in xrange(local_vis.shape[1]):
                            for bi in xrange(local_vis.shape[2]):
                                if xx_vis_mask[ti, fi, bi] != yy_vis_mask[ti, fi, bi]:
                                    if xx_vis_mask[ti, fi, bi]:
                                        local_vis[ti, fi, bi] = yy_vis[ti, fi, bi]
                                    else:
                                        local_vis[ti, fi, bi] = xx_vis[ti, fi, bi]
                                else:
                                    local_vis[ti, fi, bi] = 0.5 * (xx_vis[ti, fi, bi] + yy_vis[ti, fi, bi])
                    local_vis_mask = xx_vis_mask | yy_vis_mask
                else:
                    raise ValueError('Invalid pol: %s' % pol)

                if interp != 'none':
                    for fi in xrange(local_vis.shape[1]):
                        for bi in xrange(local_vis.shape[2]):
                            # interpolate for local_vis
                            true_inds = np.where(local_vis_mask[:, fi, bi])[0] # masked inds
                            if len(true_inds) > 0:
                                false_inds = np.where(~local_vis_mask[:, fi, bi])[0] # un-masked inds
                                if len(false_inds) > 0.1 * local_vis.shape[0]:
                # nearest interpolate for local_vis
                                    if interp in ('linear', 'nearest'):
                                        itp_real = interp1d(false_inds, local_vis[false_inds, fi, bi].real, kind=interp, fill_value='extrapolate', assume_sorted=True)
                                        itp_imag = interp1d(false_inds, local_vis[false_inds, fi, bi].imag, kind=interp, fill_value='extrapolate', assume_sorted=True)
                                    elif interp == 'rbf':
                                        itp_real = Rbf(false_inds, local_vis[false_inds, fi, bi].real, smooth=10)
                                        itp_imag = Rbf(false_inds, local_vis[false_inds, fi, bi].imag, smooth=10)
                                    else:
                                        raise ValueError('Unknown interpolation method: %s' % interp)
                                    local_vis[true_inds, fi, bi] = itp_real(true_inds) + 1.0J * itp_imag(true_inds) # the interpolated vis
                                else:
                                    local_vis[:, fi, bi] = 0 # TODO: may need to take special care

                # average data
                nt = ts['sec1970'].shape[0]
                phi_size = 2*tel.mmax + 1

                # phi = np.zeros((phi_size,), dtype=ts['ra_dec'].dtype)
                phi = np.linspace(0, 2*np.pi, phi_size, endpoint=False)
                vis = np.zeros((phi_size,)+local_vis.shape[1:], dtype=local_vis.dtype)

                if time_avg == 'avg':
                    nt_m = float(nt) / phi_size
                    # roll data to have phi=0 near the first
                    roll_len = np.int(np.around(0.5*nt_m))
                    local_vis[:] = np.roll(local_vis[:], roll_len, axis=0)
                    if interp == 'none':
                        local_vis_mask[:] = np.roll(local_vis_mask[:], roll_len, axis=0)
                    # ts['ra_dec'][:] = np.roll(ts['ra_dec'][:], roll_len, axis=0)

                    repeat_inds = np.repeat(np.arange(nt), phi_size)
                    num, start, end = mpiutil.split_m(nt*phi_size, phi_size)

                    # average over time
                    for idx in xrange(phi_size):
                        inds, weight = unique(repeat_inds[start[idx]:end[idx]], return_counts=True)
                        if interp == 'none':
                            vis[idx] = average(np.ma.array(local_vis[inds], mask=local_vis_mask[inds]), axis=0, weights=weight) # time mean
                        else:
                            vis[idx] = average(local_vis[inds], axis=0, weights=weight) # time mean
                        # phi[idx] = np.average(ts['ra_dec'][:, 0][inds], axis=0, weights=weight)
                elif time_avg == 'fft':
                    if interp == 'none':
                        raise ValueError('Can not do fft average without first interpolation')
                    Vm = np.fft.fftshift(np.fft.fft(local_vis, axis=0), axes=0)
                    vis[:] = np.fft.ifft(np.fft.ifftshift(Vm[nt/2-tel.mmax:nt/2+tel.mmax+1], axes=0), axis=0) / (1.0 * nt / phi_size)

                    # for fi in xrange(vis.shape[1]):
                    #     for bi in xrange(vis.shape[2]):
                    #         # plot local_vis and vis
                    #         import matplotlib
                    #         matplotlib.use('Agg')
                    #         import matplotlib.pyplot as plt

                    #         phi0 = np.linspace(0, 2*np.pi, nt, endpoint=False)
                    #         phi1 = np.linspace(0, 2*np.pi, phi_size, endpoint=False)
                    #         plt.figure()
                    #         plt.subplot(211)
                    #         plt.plot(phi0, local_vis[:, fi, bi].real, label='v0.real')
                    #         plt.plot(phi1, vis[:, fi, bi].real, label='v1.real')
                    #         plt.legend()
                    #         plt.subplot(212)
                    #         plt.plot(phi0, local_vis[:, fi, bi].imag, label='v0.imag')
                    #         plt.plot(phi1, vis[:, fi, bi].imag, label='v1.imag')
                    #         plt.legend()
                    #         plt.savefig('vis_fft/vis_%d_%d.png' % (fi, bi))
                    #         plt.close()

                else:
                    raise ValueError('Unknown time_avg: %s' % time_avg)

                del local_vis
                del local_vis_mask

                # mask daytime data
                if mask_daytime:
                    day_or_night = np.where(ts['local_hour'][:]>=mask_time_range[0] & ts['local_hour'][:]<=mask_time_range[1], True, False)
                    day_inds = np.where(np.repeat(day_or_night, phi_size).reshape(nt, phi_size).astype(np.int).sum(axis=1).astype(bool))[0]
                    vis[day_inds] = 0

                del ts # no longer need ts

                # redistribute vis to time axis
                vis = mpiarray.MPIArray.wrap(vis, axis=2).redistribute(0).local_array

                allpairs = tel.allpairs
                redundancy = tel.redundancy
                nrd = len(redundancy)

                # reorder bls according to allpairs
                vis_tmp = np.zeros_like(vis)
                for ind, (a1, a2) in enumerate(allpairs):
                    try:
                        b_ind = bls.index((feeds[a1], feeds[a2]))
                        vis_tmp[:, :, ind] = vis[:, :, b_ind]
                    except ValueError:
                        b_ind = bls.index((feeds[a2], feeds[a1]))
                        vis_tmp[:, :, ind] = vis[:, :, b_ind].conj()

                del vis

                # average over redundancy
                vis_stream = np.zeros(vis_tmp.shape[:-1]+(nrd,), dtype=vis_tmp.dtype)
                red_bin = np.cumsum(np.insert(redundancy, 0, 0)) # redundancy bin
                # average over redundancy
                for ind in xrange(nrd):
                    vis_stream[:, :, ind] = np.sum(vis_tmp[:, :, red_bin[ind]:red_bin[ind+1]], axis=2) / redundancy[ind]

                del vis_tmp

        # beamtransfer
        bt = beamtransfer.BeamTransfer(beam_dir, tel, noise_weight, True)
        if not use_existed_beam:
            bt.generate()
        if tel is None:
            tel = bt.telescope

        if simulate:
            ndays = 733
            tstream = timestream.simulate(bt, ts_dir, ts_name, input_maps, ndays, add_noise=add_noise)
        else:
            # timestream and map-making
            tstream = timestream.Timestream(ts_dir, ts_name, bt, no_m_zero)
            parent_path = os.path.dirname(tstream._fdir(0))

            if os.path.exists(parent_path + '/COMPLETED'):
                if mpiutil.rank0:
                    print 'Use existed timestream_f files in %s' % parent_path
            else:
                for fi in mpiutil.mpirange(nfreq):
                    # Make directory if required
                    if not os.path.exists(tstream._fdir(fi)):
                        os.makedirs(tstream._fdir(fi))

                # create memh5 object and write data to temporary file
                vis_h5 = memh5.MemGroup(distributed=True)
                vis_h5.create_dataset('/timestream', data=mpiarray.MPIArray.wrap(vis_stream, axis=0))
                tmp_file = parent_path +'/vis_stream_temp.hdf5'
                vis_h5.to_hdf5(tmp_file, hints=False)
                del vis_h5

                # re-organize data as need for tstream
                # make load even among nodes
                for fi in mpiutil.mpirange(nfreq, method='rand'):
                    # read the needed data from the temporary file
                    with h5py.File(tmp_file, 'r') as f:
                        vis_fi = f['/timestream'][:, fi, :]
                    # Write file contents
                    with h5py.File(tstream._ffile(fi), 'w') as f:
                        # Timestream data
                        # allocate space for vis_stream
                        shp = (nrd, phi_size)
                        f.create_dataset('/timestream', data=vis_fi.T)
                        f.create_dataset('/phi', data=phi)

                        # Telescope layout data
                        f.create_dataset('/feedmap', data=tel.feedmap)
                        f.create_dataset('/feedconj', data=tel.feedconj)
                        f.create_dataset('/feedmask', data=tel.feedmask)
                        f.create_dataset('/uniquepairs', data=tel.uniquepairs)
                        f.create_dataset('/baselines', data=tel.baselines)

                        # Telescope frequencies
                        f.create_dataset('/frequencies', data=freqs)

                        # Write metadata
                        f.attrs['beamtransfer_path'] = os.path.abspath(bt.directory)
                        f.attrs['ntime'] = phi_size

                mpiutil.barrier()

                # remove temp file
                if mpiutil.rank0:
                    os.remove(tmp_file)
                    # mark all frequencies tstream files are saved correctly
                    open(parent_path + '/COMPLETED', 'a').close()

        tstream.generate_mmodes()
        nside = hputil.nside_for_lmax(tel.lmax, accuracy_boost=tel.accuracy_boost)
        if dirty_map:
            tstream.mapmake_full(nside, 'map_full_dirty.hdf5', nbin, dirty=True, method=method, normalize=normalize, threshold=threshold)
        else:
            tstream.mapmake_full(nside, 'map_full.hdf5', nbin, dirty=False, method=method, normalize=normalize, threshold=threshold, eps=eps, correct_order=correct_order, prior_map_file=prior_map)

        # ts.add_history(self.history)

        return tstream
Пример #25
0
    def process(self, ts):

        assert isinstance(ts, Timestream), '%s only works for Timestream object' % self.__class__.__name__

        mask_daytime = self.params['mask_daytime']
        mask_time_range = self.params['mask_time_range']
        beam_theta_range = self.params['beam_theta_range']
        tsys = self.params['tsys']
        accuracy_boost = self.params['accuracy_boost']
        l_boost = self.params['l_boost']
        bl_range = self.params['bl_range']
        auto_correlations = self.params['auto_correlations']
        pol = self.params['pol']
        beam_dir = output_path(self.params['beam_dir'])
        gen_inv = self.params['gen_invbeam']
        noise_weight = self.params['noise_weight']
        ts_dir = output_path(self.params['ts_dir'])
        ts_name = self.params['ts_name']
        simulate = self.params['simulate']
        input_maps = self.params['input_maps']
        add_noise = self.params['add_noise']
        dirty_map = self.params['dirty_map']
        nbin = self.params['nbin']
        method = self.params['method']
        normalize = self.params['normalize']
        threshold = self.params['threshold']

        ts.redistribute('frequency')

        lat = ts.attrs['sitelat']
        # lon = ts.attrs['sitelon']
        lon = 0.0
        # lon = np.degrees(ts['ra_dec'][0, 0]) # the first ra
        local_origin = False
        freq = ts.freq
        freqs = ts.freq.data.to_numpy_array(root=None) # MHz
        band_width = ts.attrs['freqstep'] # MHz
        ndays = 1
        feeds = ts['feedno'][:]
        az, alt = ts['az_alt'][0]
        az = np.degrees(az)
        alt = np.degrees(alt)
        pointing = [az, alt, 0.0]
        feedpos = ts['feedpos'][:]

        if ts.is_dish:
            dish_width = ts.attrs['dishdiam']
            tel = tl_dish.TlUnpolarisedDishArray(lat, lon, freqs, band_width, tsys, ndays, accuracy_boost, l_boost, bl_range, auto_correlations, local_origin, dish_width, feedpos, pointing)
        elif ts.is_cylinder:
            factor = 1.2 # suppose an illumination efficiency, keep same with that in timestream_common
            cyl_width = factor * ts.attrs['cywid']
            tel = tl_cylinder.TlUnpolarisedCylinder(lat, lon, freqs, band_width, tsys, ndays, accuracy_boost, l_boost, bl_range, auto_correlations, local_origin, cyl_width, feedpos)
        else:
            raise RuntimeError('Unknown array type %s' % ts.attrs['telescope'])

        if not simulate:
            # mask daytime data
            if mask_daytime:
                day_inds = np.where(np.logical_and(ts['local_hour'][:]>=mask_time_range[0], ts['local_hour'][:]<=mask_time_range[1]))[0]
                ts.local_vis_mask[day_inds] = True # do not change vis directly

            # average data
            nt = ts['sec1970'].shape[0]
            phi_size = 2*tel.mmax + 1
            nt_m = float(nt) / phi_size

            # roll data to have phi=0 near the first
            roll_len = np.int(np.around(0.5*nt_m))
            ts.local_vis[:] = np.roll(ts.local_vis[:], roll_len, axis=0)
            ts.local_vis_mask[:] = np.roll(ts.local_vis_mask[:], roll_len, axis=0)
            ts['ra_dec'][:] = np.roll(ts['ra_dec'][:], roll_len, axis=0)

            repeat_inds = np.repeat(np.arange(nt), phi_size)
            num, start, end = mpiutil.split_m(nt*phi_size, phi_size)

            # phi = np.zeros((phi_size,), dtype=ts['ra_dec'].dtype)
            phi = np.linspace(0, 2*np.pi, phi_size, endpoint=False)
            vis = np.zeros((phi_size,)+ts.local_vis.shape[1:], dtype=ts.vis.dtype)
            # average over time
            for idx in xrange(phi_size):
                inds, weight = unique(repeat_inds[start[idx]:end[idx]], return_counts=True)
                vis[idx] = average(np.ma.array(ts.local_vis[inds], mask=ts.local_vis_mask[inds]), axis=0, weights=weight) # time mean
                # phi[idx] = np.average(ts['ra_dec'][:, 0][inds], axis=0, weights=weight)

            if pol == 'xx':
                vis = vis[:, :, 0, :]
            elif pol == 'yy':
                vis = vis[:, :, 1, :]
            elif pol == 'I':
                vis = 0.5 * (vis[:, :, 0, :] + vis[:, :, 1, :])
            elif pol == 'all':
                vis = np.sum(vis, axis=2) # sum over all pol
            else:
                raise ValueError('Invalid pol: %s' % pol)

            allpairs = tel.allpairs
            redundancy = tel.redundancy

            # reorder bls according to allpairs
            vis_tmp = np.zeros_like(vis)
            bls = [ tuple(bl) for bl in ts['blorder'][:] ]
            for ind, (a1, a2) in enumerate(allpairs):
                try:
                    b_ind = bls.index((feeds[a1], feeds[a2]))
                    vis_tmp[:, :, ind] = vis[:, :, b_ind]
                except ValueError:
                    b_ind = bls.index((feeds[a2], feeds[a1]))
                    vis_tmp[:, :, ind] = vis[:, :, b_ind].conj()

            # average over redundancy
            vis_stream = np.zeros(vis.shape[:-1]+(len(redundancy),), dtype=vis_tmp.dtype)
            red_bin = np.cumsum(np.insert(redundancy, 0, 0)) # redundancy bin
            # average over redundancy
            for ind in xrange(len(redundancy)):
                vis_stream[:, :, ind] = np.sum(vis_tmp[:, :, red_bin[ind]:red_bin[ind+1]], axis=2) / redundancy[ind]

            del vis
            del vis_tmp

        # beamtransfer
        bt = beamtransfer.BeamTransfer(beam_dir, tel, noise_weight, True)
        bt.generate()

        if simulate:
            ndays = 733
            print ndays
            tstream = timestream.simulate(bt, ts_dir, ts_name, input_maps, ndays, add_noise=add_noise)
        else:
            # timestream and map-making
            tstream = timestream.Timestream(ts_dir, ts_name, bt)
            for lfi, fi in freq.data.enumerate(axis=0):
                # Make directory if required
                if not os.path.exists(tstream._fdir(fi)):
                    os.makedirs(tstream._fdir(fi))

                # Write file contents
                with h5py.File(tstream._ffile(fi), 'w') as f:

                    # Timestream data
                    f.create_dataset('/timestream', data=vis_stream[:, lfi].T)
                    f.create_dataset('/phi', data=phi)

                    # Telescope layout data
                    f.create_dataset('/feedmap', data=tel.feedmap)
                    f.create_dataset('/feedconj', data=tel.feedconj)
                    f.create_dataset('/feedmask', data=tel.feedmask)
                    f.create_dataset('/uniquepairs', data=tel.uniquepairs)
                    f.create_dataset('/baselines', data=tel.baselines)

                    # Telescope frequencies
                    f.create_dataset('/frequencies', data=freqs)

                    # Write metadata
                    f.attrs['beamtransfer_path'] = os.path.abspath(bt.directory)
                    f.attrs['ntime'] = phi_size

            mpiutil.barrier()

        tstream.generate_mmodes()
        nside = hputil.nside_for_lmax(tel.lmax, accuracy_boost=tel.accuracy_boost)
        if dirty_map:
            tstream.mapmake_full(nside, 'map_full_dirty.hdf5', nbin, dirty=True, method=method, normalize=normalize, threshold=threshold)
        else:
            tstream.mapmake_full(nside, 'map_full.hdf5', nbin, dirty=False, method=method, normalize=normalize, threshold=threshold)

        # ts.add_history(self.history)

        return tstream
Пример #26
0
    def process(self, ts):

        calibrator = self.params['calibrator']
        catalog = self.params['catalog']
        file_prefix = self.params['file_name']
        plot_closure = self.params['plot_closure']
        fig_prefix = self.params['fig_name']
        bins = self.params['bins']
        gauss_fit = self.params['gauss_fit']
        tag_output_iter = self.params['tag_output_iter']

        ts.redistribute('frequency')

        nfreq = len(ts.local_freq[:]) # local nfreq
        feedno = ts['feedno'][:].tolist()
        pol = ts['pol'][:].tolist()
        bl = ts.local_bl[:] # local bls
        bls = [ tuple(b) for b in bl ]

        # calibrator
        srclist, cutoff, catalogs = a.scripting.parse_srcs(calibrator, catalog)
        cat = a.src.get_catalog(srclist, cutoff, catalogs)
        assert(len(cat) == 1), 'Allow only one calibrator'
        s = cat.values()[0]
        if mpiutil.rank0:
            print 'Calibrating for source %s with' % calibrator,
            print 'strength', s._jys, 'Jy',
            print 'measured at', s.mfreq, 'GHz',
            print 'with index', s.index

        ra = ts['ra_dec'][:, 0]
        ra = np.unwrap(ra)
        ra = ra[np.logical_not(ts['ns_on'][:])] # get only ns_off values
        abs_diff = np.abs(np.diff(s._ra - ra))
        ind1 = np.argmin(abs_diff)
        print 'ind1:', ind1

        for pi in [ pol.index('xx'), pol.index('yy') ]: # xx and yy
            if nfreq > 0: # skip empty processes
                # find the ind that not be all masked
                for i in xrange(20):
                    if not ts.local_vis_mask[ind1+i, :, pi].all():
                        ind = ind1 + i
                        break
                    if not ts.local_vis_mask[ind1-i, :, pi].all():
                        ind = ind1 - i
                        break
                else:
                    raise RuntimeError('vis is masked during this period for pol %s' % pol[pi])

                print 'ind:', ind

                for fi in xrange(nfreq):
                    gfi = fi + ts.freq.local_offset[0] # global freq index
                    vis = ts.local_vis[ind, fi, pi, :] # only I
                    vis_mask = ts.local_vis_mask[ind, fi, pi, :] # only I
                    closure = []
                    cache = dict()
                    for i, j, k in itertools.combinations(feedno, 3):
                        bi, vij = mk_cache(cache, (i, j), bls, vis)
                        if vis_mask[bi]:
                            continue

                        bi, vjk = mk_cache(cache, (j, k), bls, vis)
                        if vis_mask[bi]:
                            continue

                        bi, vki = mk_cache(cache, (k, i), bls, vis)
                        if vis_mask[bi]:
                            continue

                        # closure.append(np.angle(vij, True) + np.angle(vjk, True) + np.angle(vki, True)) # in degree, have 360 deg problem
                        c = lambda x: np.complex128(x) # complex128 to avoid overflow in the product
                        ang = np.angle(c(vij) * c(vjk) * c(vki), True) # in degree
                        closure.append(ang) # in degree

                    # save closure phase to file
                    file_name = '%s_%d_%s.hdf5' % (file_prefix, gfi, pol[pi])
                    if tag_output_iter:
                        file_name = output_path(file_name, iteration=self.iteration)
                    else:
                        file_name = output_path(file_name)
                    with h5py.File(file_name, 'w') as f:
                        f.create_dataset('closure_phase', data=np.array(closure))

                    if plot_closure:
                        # plot all closure phase
                        plt.figure()
                        plt.plot(closure, 'o')
                        fig_name = '%s_all_%d_%s.png' % (fig_prefix, gfi, pol[pi])
                        if tag_output_iter:
                            fig_name = output_path(fig_name, iteration=self.iteration)
                        else:
                            fig_name = output_path(fig_name)
                        plt.savefig(fig_name)
                        plt.close()

                        # plot histogram of closure phase
                        # histogram
                        plt.figure()
                        data = plt.hist(closure, bins=bins)
                        plt.xlabel('Closure phase / degree')

                        if gauss_fit:
                            # Generate data from bins as a set of points
                            x = [0.5 * (data[1][i] + data[1][i+1]) for i in xrange(len(data[1])-1)]
                            y = data[0]

                            popt, pcov = optimize.curve_fit(f, x, y)
                            A, b, c = popt

                            xmax = max(abs(x[0]), abs(x[-1]))
                            x_fit = np.linspace(-xmax, xmax, bins)
                            y_fit = f(x_fit, *popt)

                            lable = r'$a \, \exp{(- \frac{(x - \mu)^2} {2 \sigma^2})}$' + '\n\n' + r'$a = %f$' % A + '\n' + r'$\mu = %f$' % b + '\n' + r'$\sigma = %f$' % np.abs(c)
                            plt.plot(x_fit, y_fit, lw=2, color="r", label=lable)
                            plt.xlim(-xmax, xmax)
                            plt.legend()

                        fig_name = '%s_hist_%d_%s.png' % (fig_prefix, gfi, pol[pi])
                        if tag_output_iter:
                            fig_name = output_path(fig_name, iteration=self.iteration)
                        else:
                            fig_name = output_path(fig_name)
                        plt.savefig(fig_name)
                        plt.close()


        mpiutil.barrier()

        ts.add_history(self.history)

        return ts
Пример #27
0
    def process(self, ts):

        calibrator = self.params['calibrator']
        catalog = self.params['catalog']
        span = self.params['span']
        save_gain = self.params['save_gain']
        gain_file = self.params['gain_file']

        ts.redistribute('frequency')

        lfreq = ts.local_freq[:] # local freq

        feedno = ts['feedno'][:].tolist()
        pol = ts['pol'][:].tolist()
        bl = ts.bl[:]
        bls = [ tuple(b) for b in bl ]
        # # antpointing = np.radians(ts['antpointing'][-1, :, :]) # radians
        # transitsource = ts['transitsource'][:]
        # transit_time = transitsource[-1, 0] # second, sec1970
        # int_time = ts.attrs['inttime'] # second

        # calibrator
        srclist, cutoff, catalogs = a.scripting.parse_srcs(calibrator, catalog)
        cat = a.src.get_catalog(srclist, cutoff, catalogs)
        assert(len(cat) == 1), 'Allow only one calibrator'
        s = cat.values()[0]
        if mpiutil.rank0:
            print 'Calibrating for source %s with' % calibrator,
            print 'strength', s._jys, 'Jy',
            print 'measured at', s.mfreq, 'GHz',
            print 'with index', s.index

        # get transit time of calibrator
        # array
        aa = ts.array
        aa.set_jultime(ts['jul_date'][0]) # the first obs time point
        next_transit = aa.next_transit(s)
        transit_time = a.phs.ephem2juldate(next_transit) # Julian date
        if transit_time > ts['jul_date'][-1]:
            local_next_transit = ephem.Date(next_transit + 8.0 * ephem.hour)
            raise RuntimeError('Data does not contain local transit time %s of source %s' % (local_next_transit, calibrator))

        # the first transit index
        transit_inds = [ np.searchsorted(ts['jul_date'][:], transit_time) ]
        # find all other transit indices
        aa.set_jultime(ts['jul_date'][0] + 1.0)
        transit_time = a.phs.ephem2juldate(aa.next_transit(s)) # Julian date
        cnt = 2
        while(transit_time <= ts['jul_date'][-1]):
            transit_inds.append(np.searchsorted(ts['jul_date'][:], transit_time))
            aa.set_jultime(ts['jul_date'][0] + 1.0*cnt)
            transit_time = a.phs.ephem2juldate(aa.next_transit(s)) # Julian date
            cnt += 1

        print transit_inds

        ### now only use the first transit point to do the cal
        ### may need to improve in the future
        transit_ind = transit_inds[0]
        int_time = ts.attrs['inttime'] # second
        start_ind = transit_ind - np.int(span / int_time)
        end_ind = transit_ind + np.int(span / int_time)

        nt = end_ind - start_ind
        nfeed = len(feedno)
        eigval = np.empty((nt, nfeed, 2, len(lfreq)), dtype=np.float64)
        eigval[:] = np.nan
        gain = np.empty((nt, nfeed, 2, len(lfreq)), dtype=np.complex128)
        gain[:] = complex(np.nan, np.nan)

        # construct visibility matrix for a single time, pol, freq
        Vmat = np.zeros((nfeed, nfeed), dtype=ts.main_data.dtype)
        for ind, ti in enumerate(range(start_ind, end_ind)):
            # when noise on, just pass
            if ts['ns_on'][ti]:
                continue
            aa.set_jultime(ts['jul_date'][ti])
            s.compute(aa)
            # get fluxes vs. freq of the calibrator
            Sc = s.get_jys()
            # get the topocentric coordinate of the calibrator at the current time
            s_top = s.get_crds('top', ncrd=3)
            aa.sim_cache(cat.get_crds('eq', ncrd=3)) # for compute bm_response and sim
            for pi in [pol.index('xx'), pol.index('yy')]: # xx, yy
                aa.set_active_pol(pol[pi])
                for fi, freq in enumerate(lfreq): # mpi among freq
                    for i, ai in enumerate(feedno):
                        for j, aj in enumerate(feedno):
                            # uij = aa.gen_uvw(i, j, src='z').squeeze() # (rj - ri)/lambda
                            uij = aa.gen_uvw(i, j, src='z')[:, 0, :] # (rj - ri)/lambda
                            # bmij = aa.bm_response(i, j).squeeze() # will get error for only one local freq
                            # import pdb
                            # pdb.set_trace()
                            bmij = aa.bm_response(i, j).reshape(-1)
                            try:
                                bi = bls.index((ai, aj))
                                # Vmat[i, j] = ts.local_vis[ti, fi, pi, bi] / (Sc[fi] * bmij[fi] * np.exp(-2.0J * np.pi * np.dot(s_top, uij[:, fi]))) # xx, yy
                                Vmat[i, j] = ts.local_vis[ti, fi, pi, bi] / (Sc[fi] * bmij[fi] * np.exp(2.0J * np.pi * np.dot(s_top, uij[:, fi]))) # xx, yy
                            except ValueError:
                                bi = bls.index((aj, ai))
                                # Vmat[i, j] = np.conj(ts.local_vis[ti, fi, pi, bi] / (Sc[fi] * bmij[fi] * np.exp(-2.0J * np.pi * np.dot(s_top, uij[:, fi])))) # xx, yy
                                Vmat[i, j] = np.conj(ts.local_vis[ti, fi, pi, bi] / (Sc[fi] * bmij[fi] * np.exp(2.0J * np.pi * np.dot(s_top, uij[:, fi])))) # xx, yy

                    # Eigen decomposition

                    Vmat = np.where(np.isfinite(Vmat), Vmat, 0)

                    e, U = eigh(Vmat)
                    eigval[ind, :, pi, fi] = e[::-1] # descending order
                    # max eigen-val
                    lbd = e[-1] # lambda
                    # the gain vector for this freq
                    gvec = np.sqrt(lbd) * U[:, -1] # only eigen-vector corresponding to the maximum eigen-val
                    gain[ind, :, pi, fi] = gvec

        # apply gain to vis
        # get the time mean gain
        tgain = np.ma.mean(np.ma.masked_invalid(gain), axis=0) # time mean
        tgain = mpiutil.gather_array(tgain, axis=-1, root=None)

        ts.redistribute('baseline')
        ts.pol_and_bl_data_operate(cal, tgain=tgain)

        # save gain if required:
        if save_gain:
            gain_file = output_path(gain_file)
            eigval = mpiarray.MPIArray.wrap(eigval, axis=3)
            gain = mpiarray.MPIArray.wrap(gain, axis=3)
            mem_gain = memh5.MemGroup(distributed=True)
            mem_gain.create_dataset('eigval', data=eigval)
            mem_gain.create_dataset('gain', data=gain)
            # add attris
            mem_gain.attrs['jul_data'] = ts['jul_date'][start_ind:end_ind]
            mem_gain.attrs['feed'] = np.array(feedno)
            mem_gain.attrs['pol'] = np.array(['xx', 'yy'])
            mem_gain.attrs['freq'] = ts.freq[:] # freq should be common

            # save to file
            mem_gain.to_hdf5(gain_file, hints=False)

        ts.add_history(self.history)

        return ts
Пример #28
0
    def process(self, ts):

        mask_daytime = self.params["mask_daytime"]
        mask_time_range = self.params["mask_time_range"]
        beam_theta_range = self.params["beam_theta_range"]
        tsys = self.params["tsys"]
        accuracy_boost = self.params["accuracy_boost"]
        l_boost = self.params["l_boost"]
        bl_range = self.params["bl_range"]
        auto_correlations = self.params["auto_correlations"]
        pol = self.params["pol"]
        beam_dir = output_path(self.params["beam_dir"])
        gen_inv = self.params["gen_invbeam"]
        noise_weight = self.params["noise_weight"]
        ts_dir = output_path(self.params["ts_dir"])
        ts_name = self.params["ts_name"]
        simulate = self.params["simulate"]
        input_maps = self.params["input_maps"]
        add_noise = self.params["add_noise"]

        ts.redistribute("frequency")

        lat = ts.attrs["sitelat"]
        # lon = ts.attrs['sitelon']
        lon = 0.0
        # lon = np.degrees(ts['ra_dec'][0, 0]) # the first ra
        freqs = ts.freq.data.to_numpy_array(root=None)
        ndays = 1
        feeds = ts["feedno"][:]
        az, alt = ts["az_alt"][0]
        az = np.degrees(az)
        alt = np.degrees(alt)
        pointing = [az, alt, 0.0]
        feedpos = ts["feedpos"][:]

        if ts.is_dish:
            dish_width = ts.attrs["dishdiam"]
            tel = tl_dish.TlUnpolarisedDishArray(
                lat,
                lon,
                freqs,
                beam_theta_range,
                tsys,
                ndays,
                accuracy_boost,
                l_boost,
                bl_range,
                auto_correlations,
                dish_width,
                feedpos,
                pointing,
            )
        elif ts.is_cylinder:
            cyl_width = ts.attrs["cywid"]
            tel = tl_cylinder.TlUnpolarisedCylinder(
                lat,
                lon,
                freqs,
                beam_theta_range,
                tsys,
                ndays,
                accuracy_boost,
                l_boost,
                bl_range,
                auto_correlations,
                cyl_width,
                feedpos,
            )
        else:
            raise RuntimeError("Unknown array type %s" % ts.attrs["telescope"])

        # import matplotlib
        # matplotlib.use('Agg')
        # import matplotlib.pyplot as plt
        # plt.figure()
        # plt.plot(ts['ra_dec'][:])
        # # plt.plot(ts['az_alt'][:])
        # plt.savefig('ra_dec1.png')

        if not simulate:
            # mask daytime data
            if mask_daytime:
                day_inds = np.where(
                    np.logical_and(ts["local_hour"][:] >= mask_time_range[0], ts["local_hour"][:] <= mask_time_range[1])
                )[0]
                ts.local_vis_mask[day_inds] = True  # do not change vis directly

            # average data
            nt = ts["sec1970"].shape[0]
            phi_size = tel.phi_size
            nt_m = float(nt) / phi_size

            # roll data to have phi=0 near the first
            roll_len = np.int(np.around(0.5 * nt_m))
            ts.local_vis[:] = np.roll(ts.local_vis[:], roll_len, axis=0)
            ts.local_vis_mask[:] = np.roll(ts.local_vis_mask[:], roll_len, axis=0)
            ts["ra_dec"][:] = np.roll(ts["ra_dec"][:], roll_len, axis=0)

            repeat_inds = np.repeat(np.arange(nt), phi_size)
            num, start, end = mpiutil.split_m(nt * phi_size, phi_size)

            # phi = np.zeros((phi_size,), dtype=ts['ra_dec'].dtype)
            phi = np.linspace(0, 2 * np.pi, phi_size, endpoint=False)
            vis = np.zeros((phi_size,) + ts.local_vis.shape[1:], dtype=ts.vis.dtype)
            # average over time
            for idx in xrange(phi_size):
                inds, weight = unique(repeat_inds[start[idx] : end[idx]], return_counts=True)
                vis[idx] = average(
                    np.ma.array(ts.local_vis[inds], mask=ts.local_vis_mask[inds]), axis=0, weights=weight
                )  # time mean
                # phi[idx] = np.average(ts['ra_dec'][:, 0][inds], axis=0, weights=weight)

            if pol == "xx":
                vis = vis[:, :, 0, :]
            elif pol == "yy":
                vis = vis[:, :, 1, :]
            elif pol == "I":
                vis = 0.5 * (vis[:, :, 0, :] + vis[:, :, 1, :])
            elif pol == "all":
                vis = np.sum(vis, axis=2)  # sum over all pol
            else:
                raise ValueError("Invalid pol: %s" % pol)

            allpairs = tel.allpairs
            redundancy = tel.redundancy

            # reorder bls according to allpairs
            vis_tmp = np.zeros_like(vis)
            bls = [tuple(bl) for bl in ts["blorder"][:]]
            for ind, (a1, a2) in enumerate(allpairs):
                try:
                    b_ind = bls.index((feeds[a1], feeds[a2]))
                    vis_tmp[:, :, ind] = vis[:, :, b_ind]
                except ValueError:
                    b_ind = bls.index((feeds[a2], feeds[a1]))
                    vis_tmp[:, :, ind] = vis[:, :, b_ind].conj()

            # average over redundancy
            vis_stream = np.zeros(vis.shape[:-1] + (len(redundancy),), dtype=vis_tmp.dtype)
            red_bin = np.cumsum(np.insert(redundancy, 0, 0))  # redundancy bin
            # average over redundancy
            for ind in xrange(len(redundancy)):
                vis_stream[:, :, ind] = np.sum(vis_tmp[:, :, red_bin[ind] : red_bin[ind + 1]], axis=2) / redundancy[ind]

            del vis
            del vis_tmp

            vis_stream = mpiarray.MPIArray.wrap(vis_stream, axis=1)
            vis_h5 = memh5.MemGroup(distributed=True)
            vis_h5.create_dataset("/timestream", data=vis_stream)
            vis_h5.create_dataset("/phi", data=phi)

            # Telescope layout data
            vis_h5.create_dataset("/feedmap", data=tel.feedmap)
            vis_h5.create_dataset("/feedconj", data=tel.feedconj)
            vis_h5.create_dataset("/feedmask", data=tel.feedmask)
            vis_h5.create_dataset("/uniquepairs", data=tel.uniquepairs)
            vis_h5.create_dataset("/baselines", data=tel.baselines)

            # Telescope frequencies
            vis_h5.create_dataset("/frequencies", data=freqs)

            # Write metadata
            # vis_h5.attrs['beamtransfer_path'] = os.path.abspath(bt.directory)
            vis_h5.attrs["ntime"] = phi_size

        # beamtransfer
        bt = beamtransfer.BeamTransfer(beam_dir, tel, gen_inv, noise_weight)
        bt.generate()

        if simulate:
            ndays = 733
            print ndays
            ts = timestream.simulate(bt, ts_dir, ts_name, input_maps, ndays, add_noise=add_noise)
        else:
            # timestream and map-making
            ts = timestream.Timestream(ts_dir, ts_name, bt)
            # Make directory if required
            try:
                os.makedirs(ts._tsdir)
            except OSError:
                # directory exists
                pass
            vis_h5.to_hdf5(ts._tsfile)
        # ts.generate_mmodes(vis_stream.to_numpy_array(root=None))
        ts.generate_mmodes()
        nside = hputil.nside_for_lmax(tel.lmax, accuracy_boost=tel.accuracy_boost)
        ts.mapmake_full(nside, "full")

        # ts.add_history(self.history)

        return ts
Пример #29
0
 def _init_output_files(self):
     self.output_files = output_path(format_list(
         self.params['output_files']),
                                     mkdir=False)
Пример #30
0
    def flag(self, vis, vis_mask, li, gi, bl, ts, **kwargs):
        """Function that does the actual flag."""

        freq_window = self.params['freq_window']
        time_window = self.params['time_window']
        freq_sigma = self.params['freq_sigma']
        time_sigma = self.params['time_sigma']
        plot_fit = self.params['plot_fit']
        freq_fig_prefix = self.params['freq_fig_name']
        time_fig_prefix = self.params['time_fig_name']
        tag_output_iter = self.params['tag_output_iter']
        iteration = self.iteration
        freq_flag = kwargs.get('freq_flag')
        time_flag = kwargs.get('time_flag')

        time = ts.time[:]
        nt = len(time)
        freq = ts.freq[:]
        nfreq = len(freq)

        if isinstance(ts, Timestream):  # for Timestream
            pol = bl[0]
            bl = tuple(bl[1])
        elif isinstance(ts, RawTimestream):  # for RawTimestream
            pol = None
            bl = tuple(bl)
        else:
            raise ValueError('Need either a RawTimestream or Timestream')

        if freq_flag:
            # time integration
            tm_vis = np.ma.mean(np.ma.array(vis, mask=vis_mask), axis=0)
            abs_vis = np.abs(tm_vis)
            if np.ma.count_masked(tm_vis) > 0:  # has masked value
                abs_vis_valid = abs_vis[~abs_vis.mask]
                inds_valid = np.arange(nfreq)[~abs_vis.mask]
                itp = InterpolatedUnivariateSpline(inds_valid, abs_vis_valid)
                abs_vis_itp = itp(np.arange(nfreq))
                abs_vis1 = abs_vis_itp.copy()
            else:
                abs_vis1 = abs_vis.copy()

            for cnt in xrange(10):
                if cnt != 0:
                    abs_vis1[inds] = smooth[inds]
                smooth = savitzky_golay(abs_vis1, freq_window, 3)

                # flage RFI
                diff = abs_vis1 - smooth
                mean = np.mean(diff)
                std = np.std(diff)
                inds = np.where(np.abs(diff - mean) > freq_sigma * std)[0]
                if len(inds) == 0:
                    break

            diff = abs_vis - smooth
            mean = np.mean(diff)
            std = np.std(diff)
            inds = np.where(
                np.abs(diff - mean) > freq_sigma * std)[0]  # masked inds
            vis_mask[:, inds] = True  # set mask

            if plot_fit:
                plt.figure()
                plt.plot(freq, abs_vis, label='data')
                plt.plot(freq[inds], abs_vis[inds], 'ro', label='flag')
                plt.plot(freq, smooth, label='smooth')
                plt.xlabel(r'$\nu$ / MHz')
                plt.legend(loc='best')
                if pol is None:
                    fig_name = '%s_%d_%d.png' % (freq_fig_prefix, bl[0], bl[1])
                else:
                    fig_name = '%s_%d_%d_%s.png' % (freq_fig_prefix, bl[0],
                                                    bl[1], pol)
                if tag_output_iter:
                    fig_name = output_path(fig_name, iteration=iteration)
                else:
                    fig_name = output_path(fig_name)
                plt.savefig(fig_name)
                plt.close()

        if time_flag:
            # freq integration
            fm_vis = np.ma.mean(np.ma.array(vis, mask=vis_mask), axis=1)
            abs_vis = np.abs(fm_vis)
            if np.ma.count_masked(fm_vis) > 0:  # has masked value
                abs_vis_valid = abs_vis[~abs_vis.mask]
                inds_valid = np.arange(nt)[~abs_vis.mask]
                itp = InterpolatedUnivariateSpline(inds_valid, abs_vis_valid)
                abs_vis_itp = itp(np.arange(nt))
                abs_vis1 = abs_vis_itp.copy()
            else:
                abs_vis1 = abs_vis.copy()

            for cnt in xrange(10):
                if cnt != 0:
                    abs_vis1[inds] = smooth[inds]
                smooth = savitzky_golay(abs_vis1, time_window, 3)

                # flage RFI
                diff = abs_vis1 - smooth
                mean = np.mean(diff)
                std = np.std(diff)
                inds = np.where(np.abs(diff - mean) > time_sigma * std)[0]
                if len(inds) == 0:
                    break

            diff = abs_vis - smooth
            mean = np.mean(diff)
            std = np.std(diff)
            inds = np.where(
                np.abs(diff - mean) > time_sigma * std)[0]  # masked inds
            # Addtional threshold
            # inds1 = np.where(np.abs(diff[inds]) > 1.0e-2*np.abs(smooth[inds]))[0]
            # inds = inds[inds1]
            vis_mask[inds] = True  # set mask

            if plot_fit:
                plt.figure()
                plt.plot(time, abs_vis, label='data')
                plt.plot(time[inds], abs_vis[inds], 'ro', label='flag')
                plt.plot(time, smooth, label='smooth')
                plt.xlabel(r'$t$ / Julian Date')
                plt.legend(loc='best')
                if pol is None:
                    fig_name = '%s_%d_%d.png' % (time_fig_prefix, bl[0], bl[1])
                else:
                    fig_name = '%s_%d_%d_%s.png' % (time_fig_prefix, bl[0],
                                                    bl[1], pol)
                if tag_output_iter:
                    fig_name = output_path(fig_name, iteration=iteration)
                else:
                    fig_name = output_path(fig_name)
                plt.savefig(fig_name)
                plt.close()
Пример #31
0
    def plot(self, vis, vis_mask, li, gi, bl, ts, **kwargs):
        """Function that does the actual plot work."""

        bl_incl = self.params['bl_incl']
        bl_excl = self.params['bl_excl']
        flag_mask = self.params['flag_mask']
        flag_ns = self.params['flag_ns']
        interpolate_ns = self.params['interpolate_ns']
        y_axis = self.params['y_axis']
        plot_abs = self.params['plot_abs']
        fig_prefix = self.params['fig_name']
        tag_output_iter = self.params['tag_output_iter']
        iteration = self.iteration

        if isinstance(ts, Timestream): # for Timestream
            pol = bl[0]
            bl = tuple(bl[1])
        elif isinstance(ts, RawTimestream): # for RawTimestream
            pol = None
            bl = tuple(bl)
        else:
            raise ValueError('Need either a RawTimestream or Timestream')

        if bl_incl != 'all':
            bl1 = set(bl)
            bl_incl = [ {f1, f2} for (f1, f2) in bl_incl ]
            bl_excl = [ {f1, f2} for (f1, f2) in bl_excl ]
            if (not bl1 in bl_incl) or (bl1 in bl_excl):
                return vis, vis_mask

        if flag_mask:
            vis1 = np.ma.array(vis, mask=vis_mask)
        elif flag_ns:
            vis1 = vis.copy()
            on = np.where(ts['ns_on'][:])[0]
            if not interpolate_ns:
                vis1[on] = complex(np.nan, np.nan)
            else:
                off = np.where(np.logical_not(ts['ns_on'][:]))[0]
                for fi in xrange(vis1.shape[1]):
                    itp_real = InterpolatedUnivariateSpline(off, vis1[off, fi].real)
                    itp_imag= InterpolatedUnivariateSpline(off, vis1[off, fi].imag)
                    vis1[on, fi] = itp_real(on) + 1.0J * itp_imag(on)
        else:
            vis1 = vis

        freq = ts.freq[:]
        if y_axis == 'jul_date':
            y_aixs = ts.time[:]
            y_label = r'$t$ / Julian Date'
        elif y_axis == 'ra':
            y_aixs = ts['ra_dec'][:, 0]
            y_label = r'RA / radian'
        extent = [freq[0], freq[-1], y_aixs[0], y_aixs[-1]]

        plt.figure()
        if plot_abs:
            fig, axarr = plt.subplots(1, 3, sharey=True)
        else:
            fig, axarr = plt.subplots(1, 2, sharey=True)
        im = axarr[0].imshow(vis1.real, extent=extent, origin='lower', aspect='auto')
        axarr[0].set_xlabel(r'$\nu$ / MHz')
        axarr[0].set_ylabel(y_label)
        plt.colorbar(im, ax=axarr[0])
        im = axarr[1].imshow(vis1.imag, extent=extent, origin='lower', aspect='auto')
        axarr[1].set_xlabel(r'$\nu$ / MHz')
        plt.colorbar(im, ax=axarr[1])
        if plot_abs:
            im = axarr[2].imshow(np.abs(vis1), extent=extent, origin='lower', aspect='auto')
            axarr[2].set_xlabel(r'$\nu$ / MHz')
            plt.colorbar(im, ax=axarr[2])

        if pol is None:
            fig_name = '%s_%d_%d.png' % (fig_prefix, bl[0], bl[1])
        else:
            fig_name = '%s_%d_%d_%s.png' % (fig_prefix, bl[0], bl[1], pol)

        if tag_output_iter:
            fig_name = output_path(fig_name, iteration=iteration)
        else:
            fig_name = output_path(fig_name)
        plt.savefig(fig_name)
        plt.close()

        return vis, vis_mask
Пример #32
0
    def plot(self, vis, vis_mask, li, gi, bl, ts, **kwargs):
        """Function that does the actual plot work."""

        bl_incl = self.params['bl_incl']
        bl_excl = self.params['bl_excl']
        flag_mask = self.params['flag_mask']
        flag_ns = self.params['flag_ns']
        interpolate_ns = self.params['interpolate_ns']
        y_axis = self.params['y_axis']
        plot_abs = self.params['plot_abs']
        abs_only = self.params['abs_only']
        gray_color = self.params['gray_color']
        color_flag = self.params['color_flag']
        flag_color = self.params['flag_color']
        transpose = self.params['transpose']
        hist_equal = self.params['hist_equal']
        fig_prefix = self.params['fig_name']
        rotate_xdate = self.params['rotate_xdate']
        feed_no = self.params['feed_no']
        order_bl = self.params['order_bl']
        tag_output_iter = self.params['tag_output_iter']
        iteration = self.iteration

        if isinstance(ts, Timestream):  # for Timestream
            pol = bl[0]
            bl = tuple(bl[1])
            feed_no = True
        elif isinstance(ts, RawTimestream):  # for RawTimestream
            pol = None
            bl = tuple(bl)
            if feed_no:
                pol = ts['bl_pol'].local_data[li]
                bl = tuple(ts['true_blorder'].local_data[li])
                if order_bl and (bl[0] > bl[1]):
                    bl = (bl[1], bl[0])
                    vis = vis.conj()
        else:
            raise ValueError('Need either a RawTimestream or Timestream')

        if bl_incl != 'all':
            bl1 = set(bl)
            bl_incl = [{f1, f2} for (f1, f2) in bl_incl]
            bl_excl = [{f1, f2} for (f1, f2) in bl_excl]
            if (not bl1 in bl_incl) or (bl1 in bl_excl):
                return

        if flag_mask:
            vis1 = np.ma.array(vis, mask=vis_mask)
        elif flag_ns:
            if 'ns_on' in ts.iterkeys():
                vis1 = vis.copy()
                on = np.where(ts['ns_on'][:])[0]
                if not interpolate_ns:
                    vis1[on] = complex(np.nan, np.nan)
                else:
                    off = np.where(np.logical_not(ts['ns_on'][:]))[0]
                    for fi in xrange(vis1.shape[1]):
                        itp_real = InterpolatedUnivariateSpline(
                            off, vis1[off, fi].real)
                        itp_imag = InterpolatedUnivariateSpline(
                            off, vis1[off, fi].imag)
                        vis1[on, fi] = itp_real(on) + 1.0J * itp_imag(on)
            else:
                vis1 = vis
        else:
            vis1 = vis

        freq = ts.freq[:]
        x_label = r'$\nu$ / MHz'
        if y_axis == 'jul_date':
            y_aixs = ts.time[:]
            y_label = r'$t$ / Julian Date'
        elif y_axis == 'ra':
            y_aixs = ts['ra_dec'][:, 0]
            y_label = r'RA / radian'
        elif y_axis == 'time':
            y_aixs = [
                datetime.fromtimestamp(s)
                for s in (ts['sec1970'][0], ts['sec1970'][-1])
            ]
            y_label = '%s' % y_aixs[0].date()
            # convert datetime objects to the correct format for matplotlib to work with
            y_aixs = mdates.date2num(y_aixs)
        else:
            raise ValueError(
                'Invalid y_axis %s, can only be "time", "jul_data" or "ra"' %
                y_axis)

        freq_extent = [freq[0], freq[-1]]
        time_extent = [y_aixs[0], y_aixs[-1]]
        extent = freq_extent + time_extent

        plt.figure()

        if gray_color:
            # cmap = 'gray'
            cmap = plt.cm.gray
            if color_flag:
                cmap.set_bad(flag_color)
        else:
            cmap = None

        if abs_only:
            if transpose:
                vis1 = vis1.T
                x_label, y_label = y_label, x_label
                extent = time_extent + freq_extent

            fig, ax = plt.subplots()
            vis_abs = np.abs(vis1)
            if hist_equal:
                if isinstance(vis_abs, np.ma.MaskedArray):
                    vis_hist = hist_eq.hist_eq(vis_abs.filled(0))
                    vis_abs = np.ma.array(vis_hist,
                                          mask=np.ma.getmask(vis_abs))
                else:
                    vis_hist = hist_eq.hist_eq(
                        np.where(np.isfinite(vis_abs), vis_abs, 0))
                    mask = np.where(np.isfinite(vis_abs), False, True)
                    vis_abs = np.ma.array(vis_hist, mask=mask)
            im = ax.imshow(vis_abs,
                           extent=extent,
                           origin='lower',
                           aspect='auto',
                           cmap=cmap)
            # convert axis to datetime string
            if transpose:
                ax.xaxis_date()
            else:
                ax.yaxis_date()
            # format datetime string
            # date_format = mdates.DateFormatter('%y/%m/%d %H:%M')
            date_format = mdates.DateFormatter('%H:%M')
            if transpose:
                ax.xaxis.set_major_formatter(date_format)
            else:
                ax.yaxis.set_major_formatter(date_format)

            if transpose:
                if rotate_xdate:
                    # set the x-axis tick labels to diagonal so it fits better
                    fig.autofmt_xdate()
                else:
                    # reduce the number of tick locators
                    locator = MaxNLocator(nbins=6)
                    ax.xaxis.set_major_locator(locator)
                    ax.xaxis.set_minor_locator(AutoMinorLocator(2))

            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
            plt.colorbar(im)
        else:
            if plot_abs:
                fig, axarr = plt.subplots(1, 3, sharey=True)
            else:
                fig, axarr = plt.subplots(1, 2, sharey=True)
            im = axarr[0].imshow(vis1.real,
                                 extent=extent,
                                 origin='lower',
                                 aspect='auto',
                                 cmap=cmap)
            axarr[0].set_xlabel(x_label)
            axarr[0].yaxis_date()
            # format datetime string
            date_format = mdates.DateFormatter('%H:%M')
            axarr[0].yaxis.set_major_formatter(date_format)
            axarr[0].set_ylabel(y_label)
            plt.colorbar(im, ax=axarr[0])
            im = axarr[1].imshow(vis1.imag,
                                 extent=extent,
                                 origin='lower',
                                 aspect='auto',
                                 cmap=cmap)
            axarr[1].set_xlabel(x_label)
            plt.colorbar(im, ax=axarr[1])
            if plot_abs:
                im = axarr[2].imshow(np.abs(vis1),
                                     extent=extent,
                                     origin='lower',
                                     aspect='auto',
                                     cmap=cmap)
                axarr[2].set_xlabel(x_label)
                plt.colorbar(im, ax=axarr[2])

        if feed_no:
            fig_name = '%s_%d_%d_%s.png' % (fig_prefix, bl[0], bl[1],
                                            ts.pol_dict[pol])
        else:
            fig_name = '%s_%d_%d.png' % (fig_prefix, bl[0], bl[1])

        if tag_output_iter:
            fig_name = output_path(fig_name, iteration=iteration)
        else:
            fig_name = output_path(fig_name)
        plt.savefig(fig_name)
        plt.close()
Пример #33
0
    def cal(self, vis, vis_mask, li, gi, fbl, rt, **kwargs):
        """Function that does the actual cal."""

        num_mean = self.params['num_mean']
        plot_phs = self.params['plot_phs']
        fig_prefix = self.params['fig_name']
        rotate_xdate = self.params['rotate_xdate']
        feed_no = self.params['feed_no']
        tag_output_iter = self.params['tag_output_iter']
        iteration = self.iteration
        bls_plt = kwargs['bls_plt']
        freq_plt = kwargs['freq_plt']

        if np.prod(vis.shape) == 0 :
            return

        fi = gi[0] # freq idx for this cal
        bl = tuple(fbl[1]) # bl for this cal

        nt = vis.shape[0]
        on_time = rt['ns_on'].attrs['on_time']
        num_mean = min(num_mean, on_time-2)
        if num_mean <= 0:
            raise RuntimeError('Do not have enough noise on time samples to do the ns_cal')
        ns_on = rt['ns_on'][:]
        ns_on = np.where(ns_on, 1, 0)
        diff_ns = np.diff(ns_on)
        inds = np.where(diff_ns==1)[0]
        # if inds[0]-num_mean < 0:
        if inds[0]-1 < 0: # no off data in the beginning to use
            inds = inds[1:]
        # if inds[-1]+num_mean+1 > len(ns_on)-1:
        if inds[-1]+2 > nt-1: # no on data in the end to use
            inds = inds[:-1]

        valid_inds = []
        phase = []
        for ind in inds:
            if ind == inds[0]: # the first ind
                lower = max(0, ind-num_mean)
            else:
                lower = ind - num_mean
            off_sec = np.ma.array(vis[lower:ind], mask=vis_mask[lower:ind])
            if off_sec.count() > 0: # not all data in this section are masked
                valid_inds.append(ind)
                if ind == inds[-1]: # the last ind
                    upper = min(nt, ind+2+num_mean)
                else:
                    upper = ind + 2 + num_mean
                phase.append( np.angle(np.mean(vis[ind+2:upper]) - np.ma.mean(off_sec)) ) # in radians

        # not enough valid data to do the ns_cal
        if len(phase) <= 3:
            vis_mask[:] = True # mask the vis as no ns_cal has done
            return

        phase = np.unwrap(phase) # unwrap 2pi discontinuity

        f = InterpolatedUnivariateSpline(valid_inds, phase)
        all_phase = f(np.arange(nt))

        if plot_phs and (bl in bls_plt and fi in freq_plt):
            plt.figure()
            fig, ax = plt.subplots()
            ax_val = np.array([ datetime.fromtimestamp(sec) for sec in rt['sec1970'][:] ])
            xlabel = '%s' % ax_val[0].date()
            ax_val = mdates.date2num(ax_val)
            ax.plot(ax_val, all_phase)
            ax.plot(ax_val[valid_inds], phase, 'ro')
            ax.xaxis_date()
            date_format = mdates.DateFormatter('%H:%M')
            ax.xaxis.set_major_formatter(date_format)
            if rotate_xdate:
                # set the x-axis tick labels to diagonal so it fits better
                fig.autofmt_xdate()
            else:
                # reduce the number of tick locators
                locator = MaxNLocator(nbins=6)
                ax.xaxis.set_major_locator(locator)
                ax.xaxis.set_minor_locator(AutoMinorLocator(2))
            ax.set_xlabel(xlabel)
            ax.set_ylabel(r'$\Delta \phi$ / radian')

            if feed_no:
                pol = rt['bl_pol'].local_data[li[1]]
                bl = tuple(rt['true_blorder'].local_data[li[1]])
                fig_name = '%s_%f_%d_%d_%s.png' % (fig_prefix, fbl[0], bl[0], bl[1], rt.pol_dict[pol])
            else:
                fig_name = '%s_%f_%d_%d.png' % (fig_prefix, fbl[0], fbl[1][0], fbl[1][1])
            if tag_output_iter:
                fig_name = output_path(fig_name, iteration=iteration)
            else:
                fig_name = output_path(fig_name)
            plt.savefig(fig_name)
            plt.close()

        vis[:] = vis * np.exp(-1.0J * all_phase)
Пример #34
0
    def process(self, ts):

        assert isinstance(
            ts, Timestream
        ), '%s only works for Timestream object' % self.__class__.__name__

        mask_daytime = self.params['mask_daytime']
        mask_time_range = self.params['mask_time_range']
        beam_theta_range = self.params['beam_theta_range']
        tsys = self.params['tsys']
        accuracy_boost = self.params['accuracy_boost']
        l_boost = self.params['l_boost']
        bl_range = self.params['bl_range']
        auto_correlations = self.params['auto_correlations']
        pol = self.params['pol']
        beam_dir = output_path(self.params['beam_dir'])
        gen_inv = self.params['gen_invbeam']
        noise_weight = self.params['noise_weight']
        ts_dir = output_path(self.params['ts_dir'])
        ts_name = self.params['ts_name']
        simulate = self.params['simulate']
        input_maps = self.params['input_maps']
        add_noise = self.params['add_noise']
        dirty_map = self.params['dirty_map']
        nbin = self.params['nbin']
        method = self.params['method']
        normalize = self.params['normalize']
        threshold = self.params['threshold']

        ts.redistribute('frequency')

        lat = ts.attrs['sitelat']
        # lon = ts.attrs['sitelon']
        lon = 0.0
        # lon = np.degrees(ts['ra_dec'][0, 0]) # the first ra
        local_origin = False
        freq = ts.freq
        freqs = ts.freq.data.to_numpy_array(root=None)  # MHz
        band_width = ts.attrs['freqstep']  # MHz
        ndays = ts.attrs['ndays']
        feeds = ts['feedno'][:]
        az, alt = ts['az_alt'][0]
        az = np.degrees(az)
        alt = np.degrees(alt)
        pointing = [az, alt, 0.0]
        feedpos = ts['feedpos'][:]

        if ts.is_dish:
            dish_width = ts.attrs['dishdiam']
            tel = tl_dish.TlUnpolarisedDishArray(lat, lon, freqs, band_width,
                                                 tsys, ndays, accuracy_boost,
                                                 l_boost, bl_range,
                                                 auto_correlations,
                                                 local_origin, dish_width,
                                                 feedpos, pointing)
        elif ts.is_cylinder:
            # factor = 1.2 # suppose an illumination efficiency, keep same with that in timestream_common
            factor = 0.79  # for xx
            # factor = 0.88 # for yy
            cyl_width = factor * ts.attrs['cywid']
            tel = tl_cylinder.TlUnpolarisedCylinder(
                lat, lon, freqs, band_width, tsys, ndays, accuracy_boost,
                l_boost, bl_range, auto_correlations, local_origin, cyl_width,
                feedpos)
        else:
            raise RuntimeError('Unknown array type %s' % ts.attrs['telescope'])

        if not simulate:
            # mask daytime data
            if mask_daytime:
                day_inds = np.where(
                    np.logical_and(
                        ts['local_hour'][:] >= mask_time_range[0],
                        ts['local_hour'][:] <= mask_time_range[1]))[0]
                ts.local_vis_mask[
                    day_inds] = True  # do not change vis directly

            # average data
            nt = ts['sec1970'].shape[0]
            phi_size = 2 * tel.mmax + 1
            nt_m = float(nt) / phi_size

            # roll data to have phi=0 near the first
            roll_len = np.int(np.around(0.5 * nt_m))
            ts.local_vis[:] = np.roll(ts.local_vis[:], roll_len, axis=0)
            ts.local_vis_mask[:] = np.roll(ts.local_vis_mask[:],
                                           roll_len,
                                           axis=0)
            ts['ra_dec'][:] = np.roll(ts['ra_dec'][:], roll_len, axis=0)

            repeat_inds = np.repeat(np.arange(nt), phi_size)
            num, start, end = mpiutil.split_m(nt * phi_size, phi_size)

            # phi = np.zeros((phi_size,), dtype=ts['ra_dec'].dtype)
            phi = np.linspace(0, 2 * np.pi, phi_size, endpoint=False)
            vis = np.zeros((phi_size, ) + ts.local_vis.shape[1:],
                           dtype=ts.vis.dtype)
            # average over time
            for idx in xrange(phi_size):
                inds, weight = unique(repeat_inds[start[idx]:end[idx]],
                                      return_counts=True)
                vis[idx] = average(np.ma.array(ts.local_vis[inds],
                                               mask=ts.local_vis_mask[inds]),
                                   axis=0,
                                   weights=weight)  # time mean
                # phi[idx] = np.average(ts['ra_dec'][:, 0][inds], axis=0, weights=weight)

            if pol == 'xx':
                vis = vis[:, :, 0, :]
            elif pol == 'yy':
                vis = vis[:, :, 1, :]
            elif pol == 'I':
                vis = 0.5 * (vis[:, :, 0, :] + vis[:, :, 1, :])
            elif pol == 'all':
                vis = np.sum(vis, axis=2)  # sum over all pol
            else:
                raise ValueError('Invalid pol: %s' % pol)

            allpairs = tel.allpairs
            redundancy = tel.redundancy

            # reorder bls according to allpairs
            vis_tmp = np.zeros_like(vis)
            bls = [tuple(bl) for bl in ts['blorder'][:]]
            for ind, (a1, a2) in enumerate(allpairs):
                try:
                    b_ind = bls.index((feeds[a1], feeds[a2]))
                    vis_tmp[:, :, ind] = vis[:, :, b_ind]
                except ValueError:
                    b_ind = bls.index((feeds[a2], feeds[a1]))
                    vis_tmp[:, :, ind] = vis[:, :, b_ind].conj()

            # average over redundancy
            vis_stream = np.zeros(vis.shape[:-1] + (len(redundancy), ),
                                  dtype=vis_tmp.dtype)
            red_bin = np.cumsum(np.insert(redundancy, 0, 0))  # redundancy bin
            # average over redundancy
            for ind in xrange(len(redundancy)):
                vis_stream[:, :,
                           ind] = np.sum(
                               vis_tmp[:, :, red_bin[ind]:red_bin[ind + 1]],
                               axis=2) / redundancy[ind]

            del vis
            del vis_tmp

        # beamtransfer
        bt = beamtransfer.BeamTransfer(beam_dir, tel, noise_weight, True)
        bt.generate()

        if simulate:
            ndays = 733
            print ndays
            tstream = timestream.simulate(bt,
                                          ts_dir,
                                          ts_name,
                                          input_maps,
                                          ndays,
                                          add_noise=add_noise)
        else:
            # timestream and map-making
            tstream = timestream.Timestream(ts_dir, ts_name, bt)
            for lfi, fi in freq.data.enumerate(axis=0):
                # Make directory if required
                if not os.path.exists(tstream._fdir(fi)):
                    os.makedirs(tstream._fdir(fi))

                # Write file contents
                with h5py.File(tstream._ffile(fi), 'w') as f:

                    # Timestream data
                    f.create_dataset('/timestream', data=vis_stream[:, lfi].T)
                    f.create_dataset('/phi', data=phi)

                    # Telescope layout data
                    f.create_dataset('/feedmap', data=tel.feedmap)
                    f.create_dataset('/feedconj', data=tel.feedconj)
                    f.create_dataset('/feedmask', data=tel.feedmask)
                    f.create_dataset('/uniquepairs', data=tel.uniquepairs)
                    f.create_dataset('/baselines', data=tel.baselines)

                    # Telescope frequencies
                    f.create_dataset('/frequencies', data=freqs)

                    # Write metadata
                    f.attrs['beamtransfer_path'] = os.path.abspath(
                        bt.directory)
                    f.attrs['ntime'] = phi_size

            mpiutil.barrier()

        tstream.generate_mmodes()
        nside = hputil.nside_for_lmax(tel.lmax,
                                      accuracy_boost=tel.accuracy_boost)
        if dirty_map:
            tstream.mapmake_full(nside,
                                 'map_full_dirty.hdf5',
                                 nbin,
                                 dirty=True,
                                 method=method,
                                 normalize=normalize,
                                 threshold=threshold)
        else:
            tstream.mapmake_full(nside,
                                 'map_full.hdf5',
                                 nbin,
                                 dirty=False,
                                 method=method,
                                 normalize=normalize,
                                 threshold=threshold)

        # ts.add_history(self.history)

        return tstream
Пример #35
0
def fit(vis_obs, vis_mask, vis_sim, start_ind, end_ind, num_shift, idx,
        plot_fit, fig_prefix, iteration, tag_output_iter, bls_plt, freq_plt):
    vis_obs = np.ma.array(vis_obs, mask=vis_mask)
    num_nomask = vis_obs.count()
    if num_nomask == 0:  # no valid vis data
        return 1.0, 0

    fi, pi, (i, j) = idx

    gains = []
    chi2s = []
    shifts = xrange(-num_shift / 2, num_shift / 2 + 1)
    for si in shifts:
        # vis = vis_obs[start_ind+si:end_ind+si].astype(np.complex128) # improve precision
        vis = vis_obs[start_ind + si:end_ind + si]
        num_nomask = vis.count()
        if num_nomask == 0:  # no valid vis data
            continue
        else:
            xx = np.ma.dot(vis_sim.conj(), vis_sim)
            xy = np.ma.dot(vis_sim.conj(), vis)
            gain = xy / xx
            vis_cal = gain * vis_sim
            err = vis - vis_cal
            chi2 = np.ma.dot(err.conj(), err).real
            gains.append(gain)
            chi2s.append(chi2 / num_nomask)

    if len(gains) == 0:  # no valid vis data
        return 1.0, 0

    chi2s = np.array(chi2s)
    if np.allclose(chi2s, np.sort(chi2s)):
        if mpiutil.rank0:
            print 'Warn: chi2 increasing for %s...' % (idx, )
    if np.allclose(chi2s, np.sort(chi2s)[::-1]):
        if mpiutil.rank0:
            print 'Warn: chi2 decreasing for %s...' % (idx, )

    ind = np.argmin(chi2s)
    gain = gains[ind]
    # chi2 = chi2s[ind]
    si = shifts[ind]
    obs_data = np.ma.array(vis_obs[start_ind:end_ind],
                           mask=vis_mask[start_ind:end_ind])
    factor = np.ma.max(np.ma.abs(obs_data)) / np.max(np.abs(vis_sim))
    obs_data = obs_data / factor  # make amp close to each other
    vis_cal = np.ma.array(vis_obs[start_ind + si:end_ind + si],
                          mask=vis_mask[start_ind + si:end_ind + si]) / gain
    if si != 0 and mpiutil.rank0:
        print 'shift %d for %s...' % (si, idx)

    if plot_fit and (fi in freq_plt and (i, j) in bls_plt):
        # plot the fit
        plt.figure()
        plt.subplot(311)
        plt.plot(obs_data.real, label='obs, real')
        if not vis_cal is np.ma.masked:  # in case gain is --
            plt.plot(vis_cal.real, label='cal, real')
        plt.plot(vis_sim.real, label='sim, real')
        plt.legend(loc='best')
        plt.subplot(312)
        plt.plot(obs_data.imag, label='obs, imag')
        if not vis_cal is np.ma.masked:  # in case gain is --
            plt.plot(vis_cal.imag, label='cal, imag')
        plt.plot(vis_sim.imag, label='sim, imag')
        plt.legend(loc='best')
        plt.subplot(313)
        plt.plot(np.abs(obs_data), label='obs, abs')
        if not vis_cal is np.ma.masked:  # in case gain is --
            plt.plot(np.abs(vis_cal), label='cal, abs')
        plt.plot(np.abs(vis_sim), label='sim, abs')
        plt.legend(loc='best')
        fig_name = '%s_%d_%d_%d_%d.png' % (fig_prefix, fi, pi, i, j)
        if tag_output_iter:
            fig_name = output_path(fig_name, iteration=iteration)
        else:
            fig_name = output_path(fig_name)
        plt.savefig(fig_name)
        plt.close()

    return gain, si
Пример #36
0
    def plot(self, vis, vis_mask, li, gi, bl, ts, **kwargs):
        """Function that does the actual plot work."""

        integral = self.params['integral']
        bl_incl = self.params['bl_incl']
        bl_excl = self.params['bl_excl']
        flag_mask = self.params['flag_mask']
        flag_ns = self.params['flag_ns']
        fig_prefix = self.params['fig_name']
        tag_output_iter = self.params['tag_output_iter']
        iteration= self.iteration

        if isinstance(ts, Timestream): # for Timestream
            pol = bl[0]
            bl = tuple(bl[1])
        elif isinstance(ts, RawTimestream): # for RawTimestream
            pol = None
            bl = tuple(bl)
        else:
            raise ValueError('Need either a RawTimestream or Timestream')

        if bl_incl != 'all':
            bl1 = set(bl)
            bl_incl = [ {f1, f2} for (f1, f2) in bl_incl ]
            bl_excl = [ {f1, f2} for (f1, f2) in bl_excl ]
            if (not bl1 in bl_incl) or (bl1 in bl_excl):
                return vis, vis_mask

        if flag_mask:
            vis1 = np.ma.array(vis, mask=vis_mask)
        elif flag_ns:
            vis1 = vis.copy()
            on = np.where(ts['ns_on'][:])[0]
            vis1[on] = complex(np.nan, np.nan)
        else:
            vis1 = vis

        if integral == 'time':
            ax_val = ts.freq[:]
            vis1 = np.ma.mean(np.ma.masked_invalid(vis1), axis=0)
            xlabel = r'$\nu$ / MHz'
        elif integral == 'freq':
            ax_val = ts.time[:]
            vis1 = np.ma.mean(np.ma.masked_invalid(vis1), axis=1)
            xlabel = r'$t$ / Julian Date'
        else:
            raise ValueError('Unknown integral type %s' % integral)

        plt.figure()
        f, axarr = plt.subplots(3, sharex=True)
        axarr[0].plot(ax_val, vis1.real, label='real')
        axarr[0].legend()
        axarr[1].plot(ax_val, vis1.imag, label='imag')
        axarr[1].legend()
        axarr[2].plot(ax_val, np.abs(vis1), label='abs')
        axarr[2].legend()
        axarr[2].set_xlabel(xlabel)

        if pol is None:
            fig_name = '%s_%s_%d_%d.png' % (fig_prefix, integral, bl[0], bl[1])
        else:
            fig_name = '%s_%s_%d_%d_%s.png' % (fig_prefix, integral, bl[0], bl[1], pol)
        if tag_output_iter:
            fig_name = output_path(fig_name, iteration=iteration)
        else:
            fig_name = output_path(fig_name)
        plt.savefig(fig_name)
        plt.close()

        return vis, vis_mask
Пример #37
0
    def process(self, ts):

        assert isinstance(
            ts, Timestream
        ), '%s only works for Timestream object' % self.__class__.__name__

        calibrator = self.params['calibrator']
        catalog = self.params['catalog']
        vis_conj = self.params['vis_conj']
        zero_diag = self.params['zero_diag']
        span = self.params['span']
        reserve_high_gain = self.params['reserve_high_gain']
        plot_figs = self.params['plot_figs']
        fig_prefix = self.params['fig_name']
        tag_output_iter = self.params['tag_output_iter']
        save_src_vis = self.params['save_src_vis']
        src_vis_file = self.params['src_vis_file']
        subtract_src = self.params['subtract_src']
        replace_with_src = self.params['replace_with_src']
        apply_gain = self.params['apply_gain']
        save_gain = self.params['save_gain']
        save_phs_change = self.params['save_phs_change']
        gain_file = self.params['gain_file']
        # temperature_convert = self.params['temperature_convert']
        show_progress = self.params['show_progress']
        progress_step = self.params['progress_step']

        if save_src_vis or subtract_src or apply_gain or save_gain:
            pol_type = ts['pol'].attrs['pol_type']
            if pol_type != 'linear':
                raise RuntimeError('Can not do ps_cal for pol_type: %s' %
                                   pol_type)

            ts.redistribute('baseline')

            feedno = ts['feedno'][:].tolist()
            pol = [ts.pol_dict[p] for p in ts['pol'][:]]  # as string
            gain_pd = {
                'xx': 0,
                'yy': 1,
                0: 'xx',
                1: 'yy'
            }  # for gain related op
            bls = mpiutil.gather_array(ts.local_bl[:], root=None, comm=ts.comm)
            # # antpointing = np.radians(ts['antpointing'][-1, :, :]) # radians
            # transitsource = ts['transitsource'][:]
            # transit_time = transitsource[-1, 0] # second, sec1970
            # int_time = ts.attrs['inttime'] # second

            # get the calibrator
            try:
                s = calibrators.get_src(calibrator)
            except KeyError:
                if mpiutil.rank0:
                    print 'Calibrator %s is unavailable, available calibrators are:'
                    for key, d in calibrators.src_data.items():
                        print '%8s  ->  %12s' % (key, d[0])
                raise RuntimeError('Calibrator %s is unavailable')
            if mpiutil.rank0:
                print 'Try to calibrate with %s...' % s.src_name

            # get transit time of calibrator
            # array
            aa = ts.array
            aa.set_jultime(ts['jul_date'][0])  # the first obs time point
            next_transit = aa.next_transit(s)
            transit_time = a.phs.ephem2juldate(next_transit)  # Julian date
            # get time zone
            pattern = '[-+]?\d+'
            tz = re.search(pattern, ts.attrs['timezone']).group()
            tz = int(tz)
            local_next_transit = ephem.Date(
                next_transit + tz * ephem.hour)  # plus 8h to get Beijing time
            # if transit_time > ts['jul_date'][-1]:
            if transit_time > max(ts['jul_date'][-1], ts['jul_date'][:].max()):
                raise RuntimeError(
                    'Data does not contain local transit time %s of source %s'
                    % (local_next_transit, calibrator))

            # the first transit index
            transit_inds = [np.searchsorted(ts['jul_date'][:], transit_time)]
            # find all other transit indices
            aa.set_jultime(ts['jul_date'][0] + 1.0)
            transit_time = a.phs.ephem2juldate(
                aa.next_transit(s))  # Julian date
            cnt = 2
            while (transit_time <= ts['jul_date'][-1]):
                transit_inds.append(
                    np.searchsorted(ts['jul_date'][:], transit_time))
                aa.set_jultime(ts['jul_date'][0] + 1.0 * cnt)
                transit_time = a.phs.ephem2juldate(
                    aa.next_transit(s))  # Julian date
                cnt += 1

            if mpiutil.rank0:
                print 'transit ind of %s: %s, time: %s' % (
                    s.src_name, transit_inds, local_next_transit)

            ### now only use the first transit point to do the cal
            ### may need to improve in the future
            transit_ind = transit_inds[0]
            int_time = ts.attrs['inttime']  # second
            start_ind = transit_ind - np.int(span / int_time)
            end_ind = transit_ind + np.int(
                span /
                int_time) + 1  # plus 1 to make transit_ind is at the center

            start_ind = max(0, start_ind)
            end_ind = min(end_ind, ts.vis.shape[0])

            if vis_conj:
                ts.local_vis[:] = ts.local_vis.conj()

            nt = end_ind - start_ind
            t_inds = range(start_ind, end_ind)
            freq = ts.freq[:]  # MHz
            nf = len(freq)
            nlb = len(ts.local_bl[:])
            nfeed = len(feedno)
            tfp_inds = list(
                itertools.product(
                    t_inds, range(nf),
                    [pol.index('xx'), pol.index('yy')]))  # only for xx and yy
            ns, ss, es = mpiutil.split_all(len(tfp_inds), comm=ts.comm)
            # gather data to make each process to have its own data which has all bls
            for ri, (ni, si, ei) in enumerate(zip(ns, ss, es)):
                lvis = np.zeros((ni, nlb), dtype=ts.vis.dtype)
                lvis_mask = np.zeros((ni, nlb), dtype=ts.vis_mask.dtype)
                for ii, (ti, fi, pi) in enumerate(tfp_inds[si:ei]):
                    lvis[ii] = ts.local_vis[ti, fi, pi]
                    lvis_mask[ii] = ts.local_vis_mask[ti, fi, pi]
                # gather vis from all process for separate bls
                gvis = mpiutil.gather_array(lvis,
                                            axis=1,
                                            root=ri,
                                            comm=ts.comm)
                gvis_mask = mpiutil.gather_array(lvis_mask,
                                                 axis=1,
                                                 root=ri,
                                                 comm=ts.comm)
                if ri == mpiutil.rank:
                    tfp_linds = tfp_inds[si:ei]  # inds for this process
                    this_vis = gvis
                    this_vis_mask = gvis_mask
            del tfp_inds
            del lvis
            del lvis_mask
            tfp_len = len(tfp_linds)

            # lotl_mask = np.zeros((tfp_len, nfeed, nfeed), dtype=bool)
            cnan = complex(np.nan, np.nan)  # complex nan
            if save_src_vis or subtract_src:
                # save calibrator src vis
                lsrc_vis = np.full((tfp_len, nfeed, nfeed),
                                   cnan,
                                   dtype=ts.vis.dtype)
                if save_src_vis:
                    # save sky vis
                    lsky_vis = np.full((tfp_len, nfeed, nfeed),
                                       cnan,
                                       dtype=ts.vis.dtype)
                    # save outlier vis
                    lotl_vis = np.full((tfp_len, nfeed, nfeed),
                                       cnan,
                                       dtype=ts.vis.dtype)

            if apply_gain or save_gain:
                lGain = np.full((tfp_len, nfeed), cnan, dtype=ts.vis.dtype)

            # find indices mapping between Vmat and vis
            # bis = range(nbl)
            bis_conj = []  # indices that shold be conj
            mis = [
            ]  # indices in the nfeed x nfeed matrix by flatten it to a vector
            mis_conj = [
            ]  # indices (of conj vis) in the nfeed x nfeed matrix by flatten it to a vector
            for bi, (fdi, fdj) in enumerate(bls):
                ai, aj = feedno.index(fdi), feedno.index(fdj)
                mis.append(ai * nfeed + aj)
                if ai != aj:
                    bis_conj.append(bi)
                    mis_conj.append(aj * nfeed + ai)

            # construct visibility matrix for a single time, freq, pol
            Vmat = np.full((nfeed, nfeed), cnan, dtype=ts.vis.dtype)
            # get flus of the calibrator in the observing frequencies
            if show_progress and mpiutil.rank0:
                pg = progress.Progress(tfp_len, step=progress_step)
            for ii, (ti, fi, pi) in enumerate(tfp_linds):
                if show_progress and mpiutil.rank0:
                    pg.show(ii)
                # when noise on, just pass
                if 'ns_on' in ts.iterkeys() and ts['ns_on'][ti]:
                    continue
                # aa.set_jultime(ts['jul_date'][ti])
                # s.compute(aa)
                # get the topocentric coordinate of the calibrator at the current time
                # s_top = s.get_crds('top', ncrd=3)
                # aa.sim_cache(cat.get_crds('eq', ncrd=3)) # for compute bm_response and sim
                Vmat.flat[mis] = np.ma.array(
                    this_vis[ii], mask=this_vis_mask[ii]).filled(cnan)
                Vmat.flat[mis_conj] = np.ma.array(
                    this_vis[ii, bis_conj],
                    mask=this_vis_mask[ii, bis_conj]).conj().filled(cnan)

                if save_src_vis:
                    lsky_vis[ii] = Vmat

                # set invalid val to 0
                invalid = ~np.isfinite(Vmat)  # a bool array
                # if too many masks
                if np.where(invalid)[0].shape[0] > 0.3 * nfeed**2:
                    continue
                Vmat[invalid] = 0
                # if all are zeros
                if np.allclose(Vmat, 0.0):
                    continue

                # fill diagonal of Vmat to 0
                if zero_diag:
                    np.fill_diagonal(Vmat, 0)

                # initialize the outliers
                med = np.median(Vmat.real) + 1.0J * np.median(Vmat.imag)
                diff = Vmat - med
                S0 = np.where(
                    np.abs(diff) > 3.0 * rpca_decomp.MAD(Vmat), diff, 0)
                # stable PCA decomposition
                V0, S = rpca_decomp.decompose(Vmat,
                                              rank=1,
                                              S=S0,
                                              max_iter=200,
                                              threshold='hard',
                                              tol=1.0e-6,
                                              debug=False)

                # # find abnormal values in S
                # # first check diagonal elements
                # import pdb; pdb.set_trace()
                # svals = np.diag(S)
                # smed = np.median(svals.real) + 1.0J * np.median(svals.imag)
                # smad = rpca_decomp.MAD(svals)
                # # abnormal indices
                # abis =  np.where(np.abs(svals - smed) > 3.0 * smad)[0]
                # for abi in abis:
                #     lotl_mask[ii, abi, abi] = True
                # # then check non-diagonal elements
                # for rii in range(nfeed):
                #     for cii in range(nfeed):
                #         if rii == cii:
                #             continue
                #         rli = max(0, rii-2)
                #         rhi = min(nfeed, rii+3)
                #         cli = max(0, cii-2)
                #         chi = min(nfeed, cii+3)
                #         svals = np.array([ S[xi, yi] for xi in range(rli, rhi) for yi in range(cli, chi) if xi != yi ])
                #         smed = np.median(svals.real) + 1.0J * np.median(svals.imag)
                #         smad = rpca_decomp.MAD(svals)
                #         if np.abs(S[rii, cii] - smed) > 3.0 * smad:
                #             lotl_mask[ii, rii, cii] = True

                if save_src_vis or subtract_src:
                    lsrc_vis[ii] = V0
                    if save_src_vis:
                        lotl_vis[ii] = S

                # plot
                if plot_figs:
                    ind = ti - start_ind
                    # plot Vmat
                    plt.figure(figsize=(13, 5))
                    plt.subplot(121)
                    plt.imshow(Vmat.real,
                               aspect='equal',
                               origin='lower',
                               interpolation='nearest')
                    plt.colorbar(shrink=1.0)
                    plt.subplot(122)
                    plt.imshow(Vmat.imag,
                               aspect='equal',
                               origin='lower',
                               interpolation='nearest')
                    plt.colorbar(shrink=1.0)
                    fig_name = '%s_V_%d_%d_%s.png' % (fig_prefix, ind, fi,
                                                      pol[pi])
                    if tag_output_iter:
                        fig_name = output_path(fig_name,
                                               iteration=self.iteration)
                    else:
                        fig_name = output_path(fig_name)
                    plt.savefig(fig_name)
                    plt.close()
                    # plot V0
                    plt.figure(figsize=(13, 5))
                    plt.subplot(121)
                    plt.imshow(V0.real,
                               aspect='equal',
                               origin='lower',
                               interpolation='nearest')
                    plt.colorbar(shrink=1.0)
                    plt.subplot(122)
                    plt.imshow(V0.imag,
                               aspect='equal',
                               origin='lower',
                               interpolation='nearest')
                    plt.colorbar(shrink=1.0)
                    fig_name = '%s_V0_%d_%d_%s.png' % (fig_prefix, ind, fi,
                                                       pol[pi])
                    if tag_output_iter:
                        fig_name = output_path(fig_name,
                                               iteration=self.iteration)
                    else:
                        fig_name = output_path(fig_name)
                    plt.savefig(fig_name)
                    plt.close()
                    # plot S
                    plt.figure(figsize=(13, 5))
                    plt.subplot(121)
                    plt.imshow(S.real,
                               aspect='equal',
                               origin='lower',
                               interpolation='nearest')
                    plt.colorbar(shrink=1.0)
                    plt.subplot(122)
                    plt.imshow(S.imag,
                               aspect='equal',
                               origin='lower',
                               interpolation='nearest')
                    plt.colorbar(shrink=1.0)
                    fig_name = '%s_S_%d_%d_%s.png' % (fig_prefix, ind, fi,
                                                      pol[pi])
                    if tag_output_iter:
                        fig_name = output_path(fig_name,
                                               iteration=self.iteration)
                    else:
                        fig_name = output_path(fig_name)
                    plt.savefig(fig_name)
                    plt.close()
                    # plot N
                    N = Vmat - V0 - S
                    plt.figure(figsize=(13, 5))
                    plt.subplot(121)
                    plt.imshow(N.real,
                               aspect='equal',
                               origin='lower',
                               interpolation='nearest')
                    plt.colorbar(shrink=1.0)
                    plt.subplot(122)
                    plt.imshow(N.imag,
                               aspect='equal',
                               origin='lower',
                               interpolation='nearest')
                    plt.colorbar(shrink=1.0)
                    fig_name = '%s_N_%d_%d_%s.png' % (fig_prefix, ind, fi,
                                                      pol[pi])
                    if tag_output_iter:
                        fig_name = output_path(fig_name,
                                               iteration=self.iteration)
                    else:
                        fig_name = output_path(fig_name)
                    plt.savefig(fig_name)
                    plt.close()

                if apply_gain or save_gain:
                    # use v_ij = gi gj^* \int Ai Aj^* e^(2\pi i n \cdot uij) T(x) d^2n
                    # precisely, we shold have
                    # V0 = (lambda^2 * Sc / (2 k_B)) * gi gj^* Ai Aj^* e^(2\pi i n0 \cdot uij)
                    e, U = la.eigh(V0, eigvals=(nfeed - 1, nfeed - 1))
                    g = U[:, -1] * e[
                        -1]**0.5  # = \sqrt(lambda^2 * Sc / (2 k_B)) * gi Ai * e^(2\pi i n0 \cdot ui)
                    if g[0].real < 0:
                        g *= -1.0  # make all g[0] phase 0, instead of pi
                    lGain[ii] = g

                    # plot Gain
                    if plot_figs:
                        plt.figure()
                        plt.plot(feedno, g.real, 'b-', label='real')
                        plt.plot(feedno, g.real, 'bo')
                        plt.plot(feedno, g.imag, 'g-', label='imag')
                        plt.plot(feedno, g.imag, 'go')
                        plt.plot(feedno, np.abs(g), 'r-', label='abs')
                        plt.plot(feedno, np.abs(g), 'ro')
                        plt.xlim(feedno[0] - 1, feedno[-1] + 1)
                        yl, yh = plt.ylim()
                        plt.ylim(yl, yh + (yh - yl) / 5)
                        plt.xlabel('Feed number')
                        plt.legend()
                        fig_name = '%s_ants_%d_%d_%s.png' % (fig_prefix, ind,
                                                             fi, pol[pi])
                        if tag_output_iter:
                            fig_name = output_path(fig_name,
                                                   iteration=self.iteration)
                        else:
                            fig_name = output_path(fig_name)
                        plt.savefig(fig_name)
                        plt.close()

            # # apply outlier mask
            # nbl = len(bls)
            # lom = np.zeros((lotl_mask.shape[0], nbl), dtype=lotl_mask.dtype)
            # for bi, (fd1, fd2) in enumerate(bls):
            #     b1, b2 = feedno.index(fd1), feedno.index(fd2)
            #     lom[:, bi] = lotl_mask[:, b1, b2]
            # lom = mpiarray.MPIArray.wrap(lom, axis=0, comm=ts.comm)
            # lom = lom.redistribute(axis=1).local_array.reshape(nt, nf, 2, -1)
            # ts.local_vis_mask[start_ind:end_ind, :, pol.index('xx')] |= lom[:, :, 0]
            # ts.local_vis_mask[start_ind:end_ind, :, pol.index('yy')] |= lom[:, :, 1]

            # subtract the vis of calibrator from self.vis
            if subtract_src:
                nbl = len(bls)
                lv = np.zeros((lsrc_vis.shape[0], nbl), dtype=lsrc_vis.dtype)
                for bi, (fd1, fd2) in enumerate(bls):
                    b1, b2 = feedno.index(fd1), feedno.index(fd2)
                    lv[:, bi] = lsrc_vis[:, b1, b2]
                lv = mpiarray.MPIArray.wrap(lv, axis=0, comm=ts.comm)
                lv = lv.redistribute(axis=1).local_array.reshape(nt, nf, 2, -1)
                if replace_with_src:
                    ts.local_vis[start_ind:end_ind, :,
                                 pol.index('xx')] = lv[:, :, 0]
                    ts.local_vis[start_ind:end_ind, :,
                                 pol.index('yy')] = lv[:, :, 1]
                else:
                    if 'ns_on' in ts.iterkeys():
                        lv[ts['ns_on']
                           [start_ind:
                            end_ind]] = 0  # avoid ns_on signal to become nan
                    ts.local_vis[start_ind:end_ind, :,
                                 pol.index('xx')] -= lv[:, :, 0]
                    ts.local_vis[start_ind:end_ind, :,
                                 pol.index('yy')] -= lv[:, :, 1]

                del lv

            if not save_src_vis:
                if subtract_src:
                    del lsrc_vis
            else:
                if tag_output_iter:
                    src_vis_file = output_path(src_vis_file,
                                               iteration=self.iteration)
                else:
                    src_vis_file = output_path(src_vis_file)
                # create file and allocate space first by rank0
                if mpiutil.rank0:
                    with h5py.File(src_vis_file, 'w') as f:
                        # allocate space
                        shp = (nt, nf, 2, nfeed, nfeed)
                        f.create_dataset('sky_vis', shp, dtype=lsky_vis.dtype)
                        f.create_dataset('src_vis', shp, dtype=lsrc_vis.dtype)
                        f.create_dataset('outlier_vis',
                                         shp,
                                         dtype=lotl_vis.dtype)
                        # f.create_dataset('outlier_mask', shp, dtype=lotl_mask.dtype)
                        f.attrs['calibrator'] = calibrator
                        f.attrs['dim'] = 'time, freq, pol, feed, feed'
                        try:
                            f.attrs['time'] = ts.time[start_ind:end_ind]
                        except RuntimeError:
                            f.create_dataset('time',
                                             data=ts.time[start_ind:end_ind])
                            f.attrs['time'] = '/time'
                        f.attrs['freq'] = freq
                        f.attrs['pol'] = np.array(['xx', 'yy'])
                        f.attrs['feed'] = np.array(feedno)

                mpiutil.barrier()

                # write data to file
                for i in range(10):
                    try:
                        # NOTE: if write simultaneously, will loss data with processes distributed in several nodes
                        for ri in xrange(mpiutil.size):
                            if ri == mpiutil.rank:
                                with h5py.File(src_vis_file, 'r+') as f:
                                    for ii, (ti, fi,
                                             pi) in enumerate(tfp_linds):
                                        ti_ = ti - start_ind
                                        pi_ = gain_pd[pol[pi]]
                                        f['sky_vis'][ti_, fi,
                                                     pi_] = lsky_vis[ii]
                                        f['src_vis'][ti_, fi,
                                                     pi_] = lsrc_vis[ii]
                                        f['outlier_vis'][ti_, fi,
                                                         pi_] = lotl_vis[ii]
                                        # f['outlier_mask'][ti_, fi, pi_] = lotl_mask[ii]
                            mpiutil.barrier()
                        break
                    except IOError:
                        time.sleep(0.5)
                        continue
                else:
                    raise RuntimeError('Could not open file: %s...' %
                                       src_vis_file)

                del lsrc_vis
                del lsky_vis
                del lotl_vis
                # del lotl_mask

                mpiutil.barrier()

            if apply_gain or save_gain:
                # flag outliers in lGain along each feed
                lG_abs = np.full_like(lGain, np.nan, dtype=lGain.real.dtype)
                for i in range(lGain.shape[0]):
                    valid_inds = np.where(np.isfinite(lGain[i]))[0]
                    if len(valid_inds) > 3:
                        vabs = np.abs(lGain[i, valid_inds])
                        vmed = np.median(vabs)
                        vabs_diff = np.abs(vabs - vmed)
                        vmad = np.median(vabs_diff) / 0.6745
                        if reserve_high_gain:
                            # reserve significantly higher ones, flag only significantly lower ones
                            lG_abs[i, valid_inds] = np.where(
                                vmed - vabs > 3.0 * vmad, np.nan, vabs)
                        else:
                            # flag both significantly higher and lower ones
                            lG_abs[i, valid_inds] = np.where(
                                vabs_diff > 3.0 * vmad, np.nan, vabs)

                # choose data slice near the transit time
                li = max(start_ind, transit_ind - 10) - start_ind
                hi = min(end_ind, transit_ind + 10 + 1) - start_ind
                ci = transit_ind - start_ind  # center index for transit_ind
                # compute s_top for this time range
                n0 = np.zeros(((hi - li), 3))
                for ti, jt in enumerate(ts.time[start_ind:end_ind][li:hi]):
                    aa.set_jultime(jt)
                    s.compute(aa)
                    n0[ti] = s.get_crds('top', ncrd=3)
                if save_phs_change:
                    n0t = np.zeros((nt, 3))
                    for ti, jt in enumerate(ts.time[start_ind:end_ind]):
                        aa.set_jultime(jt)
                        s.compute(aa)
                        n0t[ti] = s.get_crds('top', ncrd=3)

                # get the positions of feeds
                feedpos = ts['feedpos'][:]

                # wrap and redistribute Gain and flagged G_abs
                Gain = mpiarray.MPIArray.wrap(lGain, axis=0, comm=ts.comm)
                Gain = Gain.redistribute(axis=1).reshape(
                    nt, nf, 2, None).redistribute(axis=0).reshape(
                        None, nf * 2 * nfeed).redistribute(axis=1)
                G_abs = mpiarray.MPIArray.wrap(lG_abs, axis=0, comm=ts.comm)
                G_abs = G_abs.redistribute(axis=1).reshape(
                    nt, nf, 2, None).redistribute(axis=0).reshape(
                        None, nf * 2 * nfeed).redistribute(axis=1)

                fpd_inds = list(
                    itertools.product(range(nf), range(2),
                                      range(nfeed)))  # only for xx and yy
                fpd_linds = mpiutil.mpilist(fpd_inds,
                                            method='con',
                                            comm=ts.comm)
                del fpd_inds
                # create data to save the solved gain for each feed
                lgain = np.full((len(fpd_linds), ), cnan,
                                dtype=Gain.dtype)  # gain for each feed
                if save_phs_change:
                    lphs = np.full((nt, len(fpd_linds)),
                                   np.nan,
                                   dtype=Gain.real.dtype
                                   )  # phase change with time for each feed

                # check for conj
                num_conj = 0
                for ii, (fi, pi, di) in enumerate(fpd_linds):
                    y = G_abs.local_array[li:hi, ii]
                    inds = np.where(np.isfinite(y))[0]
                    if len(inds) >= max(4, 0.5 * len(y)):
                        # get the approximate magnitude by averaging the central G_abs
                        # solve phase by least square fit
                        ui = (feedpos[di] - feedpos[0]) * (
                            1.0e6 * freq[fi]
                        ) / const.c  # position of this feed (relative to the first feed) in unit of wavelength
                        exp_factor = np.exp(2.0J * np.pi * np.dot(n0, ui))
                        ef = exp_factor
                        Gi = Gain.local_array[li:hi, ii]
                        e_phs = np.dot(ef[inds].conj(),
                                       Gi[inds] / y[inds]) / len(inds)
                        ea = np.abs(e_phs)
                        e_phs_conj = np.dot(ef[inds],
                                            Gi[inds] / y[inds]) / len(inds)
                        eac = np.abs(e_phs_conj)
                        if eac > ea:
                            num_conj += 1
                # reduce num_conj from all processes
                num_conj = mpiutil.allreduce(num_conj, comm=ts.comm)
                if num_conj > 0.5 * (nf * 2 * nfeed):  # 2 for 2 pols
                    if mpiutil.rank0:
                        print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
                        print '!!!   Detect data should be their conjugate...   !!!'
                        print '!!!   Correct it automatically...                !!!'
                        print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
                    mpiutil.barrier()
                    # correct vis
                    ts.local_vis[:] = ts.local_vis.conj()
                    # correct G
                    Gain.local_array[:] = Gain.local_array.conj()

                # solve for gain
                for ii, (fi, pi, di) in enumerate(fpd_linds):
                    y = G_abs.local_array[li:hi, ii]
                    inds = np.where(np.isfinite(y))[0]
                    if len(inds) >= max(4, 0.5 * len(y)):
                        # get the approximate magnitude by averaging the central G_abs
                        mag = np.mean(
                            y[inds]
                        )  # = \sqrt(lambda^2 * Sc / (2 k_B)) * |gi| Ai
                        # solve phase by least square fit
                        ui = (feedpos[di] - feedpos[0]) * (
                            1.0e6 * freq[fi]
                        ) / const.c  # position of this feed (relative to the first feed) in unit of wavelength
                        exp_factor = np.exp(2.0J * np.pi * np.dot(n0, ui))
                        ef = exp_factor
                        Gi = Gain.local_array[li:hi, ii]
                        e_phs = np.dot(ef[inds].conj(), Gi[inds] /
                                       y[inds]) / len(inds)  # the phase of gi
                        ea = np.abs(e_phs)
                        if np.abs(ea - 1.0) < 0.1:
                            # compute gain for this feed
                            lgain[
                                ii] = mag * e_phs  # \sqrt(lambda^2 * Sc / (2 k_B)) * gi Ai
                            if save_phs_change:
                                lphs[:, ii] = np.angle(
                                    np.exp(-2.0J * np.pi * np.dot(n0t, ui)) *
                                    Gain.local_array[:, ii])
                        else:
                            e_phs_conj = np.dot(ef[inds],
                                                Gi[inds] / y[inds]) / len(inds)
                            eac = np.abs(e_phs_conj)
                            if eac > ea:
                                if np.abs(eac - 1.0) < 0.01:
                                    print 'feedno = %d, fi = %d, pol = %s: may need to be conjugated' % (
                                        feedno[di], fi, gain_pd[pi])
                            else:
                                print 'feedno = %d, fi = %d, pol = %s: maybe wrong abs(e_phs): %s' % (
                                    feedno[di], fi, gain_pd[pi], ea)

                # gather local gain
                gain = mpiutil.gather_array(lgain,
                                            axis=0,
                                            root=None,
                                            comm=ts.comm)
                del lgain
                gain = gain.reshape(nf, 2, nfeed)
                if save_phs_change:
                    phs = mpiutil.gather_array(lphs,
                                               axis=1,
                                               root=0,
                                               comm=ts.comm)
                    del lphs
                    if mpiutil.rank0:
                        phs = phs.reshape(nt, nf, 2, nfeed)

                # normalize to get the exact gain
                Sc = s.get_jys(1.0e-3 * freq)
                # Omega = aa.ants[0].beam.Omega ### TODO: implement Omega for dish
                Ai = aa.ants[0].beam.response(n0[ci - li])
                lmd = const.c / (1.0e6 * freq)
                factor = np.sqrt(
                    (lmd**2 * 1.0e-26 * Sc) /
                    (2 * const.k_B)) * Ai  # NOTE: 1Jy = 1.0e-26 W m^-2 Hz^-1
                gain /= factor[:, np.newaxis, np.newaxis]

                # apply gain to vis
                if apply_gain:
                    for fi in range(nf):
                        for pi in [pol.index('xx'), pol.index('yy')]:
                            pi_ = gain_pd[pol[pi]]
                            for bi, (fd1, fd2) in enumerate(
                                    ts['blorder'].local_data):
                                g1 = gain[fi, pi_, feedno.index(fd1)]
                                g2 = gain[fi, pi_, feedno.index(fd2)]
                                if np.isfinite(g1) and np.isfinite(g2):
                                    if fd1 == fd2:
                                        # auto-correlation should be real
                                        ts.local_vis[:, fi, pi,
                                                     bi] /= (g1 *
                                                             np.conj(g2)).real
                                    else:
                                        ts.local_vis[:, fi, pi,
                                                     bi] /= (g1 * np.conj(g2))
                                else:
                                    # mask the un-calibrated vis
                                    ts.local_vis_mask[:, fi, pi, bi] = True

                    # in unit K after the calibration
                    ts.vis.attrs['unit'] = 'K'

                # save gain to file
                if save_gain:
                    if tag_output_iter:
                        gain_file = output_path(gain_file,
                                                iteration=self.iteration)
                    else:
                        gain_file = output_path(gain_file)
                    if mpiutil.rank0:
                        with h5py.File(gain_file, 'w') as f:
                            # allocate space for Gain
                            dset = f.create_dataset('Gain', (nt, nf, 2, nfeed),
                                                    dtype=Gain.dtype)
                            dset.attrs['calibrator'] = calibrator
                            dset.attrs['dim'] = 'time, freq, pol, feed'
                            try:
                                dset.attrs['time'] = ts.time[start_ind:end_ind]
                            except RuntimeError:
                                f.create_dataset(
                                    'time', data=ts.time[start_ind:end_ind])
                                dset.attrs['time'] = '/time'
                            dset.attrs['freq'] = freq
                            dset.attrs['pol'] = np.array(['xx', 'yy'])
                            dset.attrs['feed'] = np.array(feedno)
                            dset.attrs['transit_ind'] = transit_ind
                            # save gain
                            dset = f.create_dataset('gain', data=gain)
                            dset.attrs['calibrator'] = calibrator
                            dset.attrs['dim'] = 'freq, pol, feed'
                            dset.attrs['freq'] = freq
                            dset.attrs['pol'] = np.array(['xx', 'yy'])
                            dset.attrs['feed'] = np.array(feedno)
                            # save phs
                            if save_phs_change:
                                f.create_dataset('phs', data=phs)

                    mpiutil.barrier()

                    # save Gain
                    for i in range(10):
                        try:
                            # NOTE: if write simultaneously, will loss data with processes distributed in several nodes
                            for ri in xrange(mpiutil.size):
                                if ri == mpiutil.rank:
                                    with h5py.File(gain_file, 'r+') as f:
                                        for ii, (ti, fi,
                                                 pi) in enumerate(tfp_linds):
                                            ti_ = ti - start_ind
                                            pi_ = gain_pd[pol[pi]]
                                            f['Gain'][ti_, fi, pi_] = lGain[ii]
                                mpiutil.barrier()
                            break
                        except IOError:
                            time.sleep(0.5)
                            continue
                    else:
                        raise RuntimeError('Could not open file: %s...' %
                                           gain_file)

                    mpiutil.barrier()

        return super(PsCal, self).process(ts)
Пример #38
0
    def plot(self, vis, vis_mask, li, gi, bl, ts, **kwargs):
        """Function that does the actual plot work."""

        integral = self.params['integral']
        bl_incl = self.params['bl_incl']
        bl_excl = self.params['bl_excl']
        flag_mask = self.params['flag_mask']
        flag_ns = self.params['flag_ns']
        fig_prefix = self.params['fig_name']
        rotate_xdate = self.params['rotate_xdate']
        feed_no = self.params['feed_no']
        tag_output_iter = self.params['tag_output_iter']
        iteration = self.iteration

        if isinstance(ts, Timestream):  # for Timestream
            pol = bl[0]
            bl = tuple(bl[1])
            feed_no = True
        elif isinstance(ts, RawTimestream):  # for RawTimestream
            pol = None
            bl = tuple(bl)
            if feed_no:
                pol = ts['bl_pol'].local_data[li]
                bl = tuple(ts['true_blorder'].local_data[li])
        else:
            raise ValueError('Need either a RawTimestream or Timestream')

        if bl_incl != 'all':
            bl1 = set(bl)
            bl_incl = [{f1, f2} for (f1, f2) in bl_incl]
            bl_excl = [{f1, f2} for (f1, f2) in bl_excl]
            if (not bl1 in bl_incl) or (bl1 in bl_excl):
                return

        if flag_mask:
            vis1 = np.ma.array(vis, mask=vis_mask)
        elif flag_ns:
            if 'ns_on' in ts.iterkeys():
                vis1 = vis.copy()
                on = np.where(ts['ns_on'][:])[0]
                vis1[on] = complex(np.nan, np.nan)
            else:
                vis1 = vis
        else:
            vis1 = vis

        if integral == 'time':
            vis1 = np.ma.mean(np.ma.masked_invalid(vis1), axis=0)
            ax_val = ts.freq[:]
            xlabel = r'$\nu$ / MHz'
        elif integral == 'freq':
            vis1 = np.ma.mean(np.ma.masked_invalid(vis1), axis=1)
            # ax_val = ts.time[:]
            # xlabel = r'$t$ / Julian Date'
            ax_val = np.array(
                [datetime.fromtimestamp(sec) for sec in ts['sec1970'][:]])
            xlabel = '%s' % ax_val[0].date()
            ax_val = mdates.date2num(ax_val)
        else:
            raise ValueError('Unknown integral type %s' % integral)

        plt.figure()
        f, axarr = plt.subplots(3, sharex=True)
        axarr[0].plot(ax_val, vis1.real, label='real')
        axarr[0].legend()
        axarr[1].plot(ax_val, vis1.imag, label='imag')
        axarr[1].legend()
        axarr[2].plot(ax_val, np.abs(vis1), label='abs')
        axarr[2].legend()
        axarr[2].xaxis_date()
        date_format = mdates.DateFormatter('%H:%M')
        axarr[2].xaxis.set_major_formatter(date_format)
        if rotate_xdate:
            # set the x-axis tick labels to diagonal so it fits better
            f.autofmt_xdate()
        else:
            # reduce the number of tick locators
            locator = MaxNLocator(nbins=6)
            axarr[2].xaxis.set_major_locator(locator)
            axarr[2].xaxis.set_minor_locator(AutoMinorLocator(2))
        axarr[2].set_xlabel(xlabel)

        if feed_no:
            fig_name = '%s_%s_%d_%d_%s.png' % (fig_prefix, integral, bl[0],
                                               bl[1], ts.pol_dict[pol])
        else:
            fig_name = '%s_%s_%d_%d.png' % (fig_prefix, integral, bl[0], bl[1])
        if tag_output_iter:
            fig_name = output_path(fig_name, iteration=iteration)
        else:
            fig_name = output_path(fig_name)
        plt.savefig(fig_name)
        plt.close()
Пример #39
0
    def process(self, ts):

        calibrator = self.params['calibrator']
        catalog = self.params['catalog']
        span = self.params['span']
        save_gain = self.params['save_gain']
        gain_file = self.params['gain_file']

        ts.redistribute('frequency')

        lfreq = ts.local_freq[:]  # local freq

        feedno = ts['feedno'][:].tolist()
        pol = ts['pol'][:].tolist()
        bl = ts.bl[:]
        bls = [tuple(b) for b in bl]
        # # antpointing = np.radians(ts['antpointing'][-1, :, :]) # radians
        # transitsource = ts['transitsource'][:]
        # transit_time = transitsource[-1, 0] # second, sec1970
        # int_time = ts.attrs['inttime'] # second

        # calibrator
        srclist, cutoff, catalogs = a.scripting.parse_srcs(calibrator, catalog)
        cat = a.src.get_catalog(srclist, cutoff, catalogs)
        assert (len(cat) == 1), 'Allow only one calibrator'
        s = cat.values()[0]
        if mpiutil.rank0:
            print 'Calibrating for source %s with' % calibrator,
            print 'strength', s._jys, 'Jy',
            print 'measured at', s.mfreq, 'GHz',
            print 'with index', s.index

        # get transit time of calibrator
        # array
        aa = ts.array
        aa.set_jultime(ts['jul_date'][0])  # the first obs time point
        next_transit = aa.next_transit(s)
        transit_time = a.phs.ephem2juldate(next_transit)  # Julian date
        if transit_time > ts['jul_date'][-1]:
            local_next_transit = ephem.Date(next_transit + 8.0 * ephem.hour)
            raise RuntimeError(
                'Data does not contain local transit time %s of source %s' %
                (local_next_transit, calibrator))

        # the first transit index
        transit_inds = [np.searchsorted(ts['jul_date'][:], transit_time)]
        # find all other transit indices
        aa.set_jultime(ts['jul_date'][0] + 1.0)
        transit_time = a.phs.ephem2juldate(aa.next_transit(s))  # Julian date
        cnt = 2
        while (transit_time <= ts['jul_date'][-1]):
            transit_inds.append(
                np.searchsorted(ts['jul_date'][:], transit_time))
            aa.set_jultime(ts['jul_date'][0] + 1.0 * cnt)
            transit_time = a.phs.ephem2juldate(
                aa.next_transit(s))  # Julian date
            cnt += 1

        print transit_inds

        ### now only use the first transit point to do the cal
        ### may need to improve in the future
        transit_ind = transit_inds[0]
        int_time = ts.attrs['inttime']  # second
        start_ind = transit_ind - np.int(span / int_time)
        end_ind = transit_ind + np.int(span / int_time)

        nt = end_ind - start_ind
        nfeed = len(feedno)
        eigval = np.empty((nt, nfeed, 2, len(lfreq)), dtype=np.float64)
        eigval[:] = np.nan
        gain = np.empty((nt, nfeed, 2, len(lfreq)), dtype=np.complex128)
        gain[:] = complex(np.nan, np.nan)

        # construct visibility matrix for a single time, pol, freq
        Vmat = np.zeros((nfeed, nfeed), dtype=ts.main_data.dtype)
        for ind, ti in enumerate(range(start_ind, end_ind)):
            # when noise on, just pass
            if 'ns_on' in ts.iterkeys() and ts['ns_on'][ti]:
                continue
            aa.set_jultime(ts['jul_date'][ti])
            s.compute(aa)
            # get fluxes vs. freq of the calibrator
            Sc = s.get_jys()
            # get the topocentric coordinate of the calibrator at the current time
            s_top = s.get_crds('top', ncrd=3)
            aa.sim_cache(cat.get_crds(
                'eq', ncrd=3))  # for compute bm_response and sim
            for pi in [pol.index('xx'), pol.index('yy')]:  # xx, yy
                aa.set_active_pol(pol[pi])
                for fi, freq in enumerate(lfreq):  # mpi among freq
                    for i, ai in enumerate(feedno):
                        for j, aj in enumerate(feedno):
                            # uij = aa.gen_uvw(i, j, src='z').squeeze() # (rj - ri)/lambda
                            uij = aa.gen_uvw(i, j,
                                             src='z')[:,
                                                      0, :]  # (rj - ri)/lambda
                            # bmij = aa.bm_response(i, j).squeeze() # will get error for only one local freq
                            # import pdb
                            # pdb.set_trace()
                            bmij = aa.bm_response(i, j).reshape(-1)
                            try:
                                bi = bls.index((ai, aj))
                                # Vmat[i, j] = ts.local_vis[ti, fi, pi, bi] / (Sc[fi] * bmij[fi] * np.exp(-2.0J * np.pi * np.dot(s_top, uij[:, fi]))) # xx, yy
                                Vmat[i, j] = ts.local_vis[ti, fi, pi, bi] / (
                                    Sc[fi] * bmij[fi] *
                                    np.exp(2.0J * np.pi * np.dot(
                                        s_top, uij[:, fi])))  # xx, yy
                            except ValueError:
                                bi = bls.index((aj, ai))
                                # Vmat[i, j] = np.conj(ts.local_vis[ti, fi, pi, bi] / (Sc[fi] * bmij[fi] * np.exp(-2.0J * np.pi * np.dot(s_top, uij[:, fi])))) # xx, yy
                                Vmat[i, j] = np.conj(
                                    ts.local_vis[ti, fi, pi, bi] /
                                    (Sc[fi] * bmij[fi] *
                                     np.exp(2.0J * np.pi * np.dot(
                                         s_top, uij[:, fi]))))  # xx, yy

                    # Eigen decomposition

                    Vmat = np.where(np.isfinite(Vmat), Vmat, 0)

                    e, U = eigh(Vmat)
                    eigval[ind, :, pi, fi] = e[::-1]  # descending order
                    # max eigen-val
                    lbd = e[-1]  # lambda
                    # the gain vector for this freq
                    gvec = np.sqrt(
                        lbd
                    ) * U[:,
                          -1]  # only eigen-vector corresponding to the maximum eigen-val
                    gain[ind, :, pi, fi] = gvec

        # apply gain to vis
        # get the time mean gain
        tgain = np.ma.mean(np.ma.masked_invalid(gain), axis=0)  # time mean
        tgain = mpiutil.gather_array(tgain, axis=-1, root=None)

        ts.redistribute('baseline')
        ts.pol_and_bl_data_operate(cal, tgain=tgain)

        # save gain if required:
        if save_gain:
            gain_file = output_path(gain_file)
            eigval = mpiarray.MPIArray.wrap(eigval, axis=3)
            gain = mpiarray.MPIArray.wrap(gain, axis=3)
            mem_gain = memh5.MemGroup(distributed=True)
            mem_gain.create_dataset('eigval', data=eigval)
            mem_gain.create_dataset('gain', data=gain)
            # add attris
            mem_gain.attrs['jul_data'] = ts['jul_date'][start_ind:end_ind]
            mem_gain.attrs['feed'] = np.array(feedno)
            mem_gain.attrs['pol'] = np.array(['xx', 'yy'])
            mem_gain.attrs['freq'] = ts.freq[:]  # freq should be common

            # save to file
            mem_gain.to_hdf5(gain_file, hints=False)

        return super(PsCal, self).process(ts)
Пример #40
0
    def process(self, ts):

        excl_auto = self.params['excl_auto']
        plot_stats = self.params['plot_stats']
        fig_prefix = self.params['fig_name']
        rotate_xdate = self.params['rotate_xdate']
        tag_output_iter = self.params['tag_output_iter']

        ts.redistribute('baseline')

        if ts.local_vis_mask.ndim == 3:  # RawTimestream
            if excl_auto:
                bl = ts.local_bl
                vis_mask = ts.local_vis_mask[:, :, bl[:, 0] != bl[:, 1]].copy()
            else:
                vis_mask = ts.local_vis_mask.copy()
            nt, nf, lnb = vis_mask.shape
        elif ts.local_vis_mask.ndim == 4:  # Timestream
            # suppose masks are the same for all 4 pols
            if excl_auto:
                bl = ts.local_bl
                vis_mask = ts.local_vis_mask[:, :, 0,
                                             bl[:, 0] != bl[:, 1]].copy()
            else:
                vis_mask = ts.local_vis_mask[:, :, 0].copy()
            nt, nf, lnb = vis_mask.shape
        else:
            raise RuntimeError('Incorrect vis_mask shape %s' %
                               ts.local_vis_mask.shape)

        # total number of bl
        nb = mpiutil.allreduce(lnb, comm=ts.comm)

        # un-mask ns-on positions
        if 'ns_on' in ts.iterkeys():
            vis_mask[ts['ns_on'][:]] = False

        # statistics along time axis
        time_mask = np.sum(vis_mask, axis=(1, 2)).reshape(-1, 1)
        # gather local array to rank0
        time_mask = mpiutil.gather_array(time_mask,
                                         axis=1,
                                         root=0,
                                         comm=ts.comm)
        if mpiutil.rank0:
            time_mask = np.sum(time_mask, axis=1)

        # statistics along time axis
        freq_mask = np.sum(vis_mask, axis=(0, 2)).reshape(-1, 1)
        # gather local array to rank0
        freq_mask = mpiutil.gather_array(freq_mask,
                                         axis=1,
                                         root=0,
                                         comm=ts.comm)
        if mpiutil.rank0:
            freq_mask = np.sum(freq_mask, axis=1)

        if plot_stats and mpiutil.rank0:
            time_fig_name = '%s_%s.png' % (fig_prefix, 'time')
            if tag_output_iter:
                time_fig_name = output_path(time_fig_name,
                                            iteration=self.iteration)
            else:
                time_fig_name = output_path(time_fig_name)

            # plot time_mask
            plt.figure()
            fig, ax = plt.subplots()
            x_vals = np.array([
                (datetime.utcfromtimestamp(s) + timedelta(hours=8))
                for s in ts['sec1970'][:]
            ])
            xlabel = '%s' % x_vals[0].date()
            x_vals = mdates.date2num(x_vals)
            ax.plot(x_vals, 100 * time_mask / np.float(nf * nb))
            ax.xaxis_date()
            date_format = mdates.DateFormatter('%H:%M')
            ax.xaxis.set_major_formatter(date_format)
            if rotate_xdate:
                # set the x-axis tick labels to diagonal so it fits better
                fig.autofmt_xdate()
            else:
                # reduce the number of tick locators
                locator = MaxNLocator(nbins=6)
                ax.xaxis.set_major_locator(locator)
                ax.xaxis.set_minor_locator(AutoMinorLocator(2))

            ax.set_xlabel(xlabel)
            ax.set_ylabel(r'RFI (%)')
            plt.savefig(time_fig_name)
            plt.close()

            freq_fig_name = '%s_%s.png' % (fig_prefix, 'freq')
            if tag_output_iter:
                freq_fig_name = output_path(freq_fig_name,
                                            iteration=self.iteration)
            else:
                freq_fig_name = output_path(freq_fig_name)

            # plot freq_mask
            plt.figure()
            plt.plot(ts.freq[:], 100 * freq_mask / np.float(nt * nb))
            plt.grid(True)
            plt.xlabel(r'$\nu$ / MHz')
            plt.ylabel(r'RFI (%)')
            plt.savefig(freq_fig_name)
            plt.close()

        return super(Stats, self).process(ts)