def find_dup_str(s, n): for index in range(len(s)-n+1): temp_string = s[index:index+n] updated_string = s[index+n:] if updated_string.find(temp_string) != -1 and len(updated_string) != 0: return temp_string return ""
def find_max_dups(s): if len(s) > 1: for i in range(len(s)): if find_dup_str(s, i) != "": longest_dup = find_dup_str(s, i) return longest_dup else: return ""
def main(): s = input() n1 = n2 = n3 = 0 for i in range(0, len(s), 2): if s[i] == '1': n1 += 1 elif s[i] == '2': n2 += 1 else: n3 += 1 ss = "1+" * n1 + "2+" * n2 + "3+" * n3 print(ss[:-1])
def prlist(arr): for idx,el in enumerate(arr): if(idx != len(arr)-1): print(el,end=",") else: print(el)
id_dict = {} for row in top3blast if row[0] not in id_dict.keys() id_dict[row[0]] = 1 ## Do for one-way blast ## Assuming blast hits are ordered from best to worst e-value for key in id_dict() list = [] for row in top3blast if row[0] = key list.append entire.row for rows from 0 to len(list) if len(list) == 1 first = row[0] print row[0] to first_hits.tsv elif len(list) == 2 first = row[0] print row[0] to first_hits.tsv second = row[1] print row[1] to second_hits.tsv else first = row[0] print row[0] to first_hits.tsv second = row[1] print row[1] to second_hits.tsv third = row[2] print row[2] to third_hits.tsv ## Do for reciprocal blast
# # Create an Empty Series # A basic series, which can be created is an Empty Series. # In[1]: #import the pandas library and aliasing as pd import pandas as pd import numpy as np s = pd.Series() print(s) # # Create a Series from ndarray # If data is an ndarray, then index passed must be of the same length. If no index is passed, then by default index will be range(n) where n is array length, i.e., [0,1,2,3…. range(len(array))-1]. # In[2]: data = np.array(['a','b','c','d']) s = pd.Series(data) print (s) We did not pass any index, so by default, it assigned the indexes ranging from 0 to len(data)-1, i.e., 0 to 3. # In[3]: data = np.array(['a','b','c','d']) s = pd.Series(data,index=[100,101,102,103]) print (s)
Name.append(name.text) else:Name.append(np.nan) if name !=None: review.append(pno.text) else:review.append(np.nan) if add !=None: address.append(add.text) else:address.append(np.nan) if catt !=None: cattagory.append(catt.text) else:cattagory.append(np.nan) except : #if some error occures then it will give some basic Recomendation to avoid That error print('some error occured.!') print('1) try to chenge the number of pages to scrowl "preffered number is 4"') print('2) check your internet connection') print('3) run the script agin') print('4) close all current chrome tabs') pass creating an index list contaions the numbers from 1 to len of the data index=[];for i in range(1,len(Name)+1):index.append(i) #at last creating the DataFrame from the list df = pd.DataFrame({'index':index, 'Hotel Name':Name ,'Catogory':cattagory, 'number of reviews' :review,'address':address}) df.to_csv('new_business.csv', index=False, encoding='utf-8')