def create_preprocessing_pipeline(args, graph, source=None, processing_node=None): pm = Ufo.PluginManager() if not (args.width and args.height): width, height = determine_shape(args, args.projections) if not width: raise RuntimeError("Could not determine width from the input") if not args.width: args.width = width if not args.height: args.height = height - args.y LOG.debug('Image width x height: %d x %d', args.width, args.height) if source: current = source elif args.darks and args.flats: current = create_flat_correct_pipeline(args, graph, processing_node=processing_node) else: current = get_task('read') set_node_props(current, args) if not args.projections: raise RuntimeError('--projections not set') setup_read_task(current, args.projections, args) if args.absorptivity: absorptivity = get_task('calculate', processing_node=processing_node) absorptivity.props.expression = '-log(v)' graph.connect_nodes(current, absorptivity) current = absorptivity if args.transpose_input: transpose = get_task('transpose') graph.connect_nodes(current, transpose) current = transpose tmp = args.width args.width = args.height args.height = tmp if args.projection_filter != 'none': pf_first, pf_last = create_projection_filtering_pipeline( args, graph, processing_node=processing_node) graph.connect_nodes(current, pf_first) current = pf_last if args.energy is not None and args.propagation_distance is not None: pr_first, pr_last = create_phase_retrieval_pipeline( args, graph, processing_node=processing_node) graph.connect_nodes(current, pr_first) current = pr_last return current
def _setup_source(params, pm, graph): from tofu.preprocess import create_flat_correct_pipeline from tofu.util import set_node_props, setup_read_task if params.dry_run: source = pm.get_task('dummy-data') source.props.number = params.number source.props.width = params.width source.props.height = params.height elif params.darks and params.flats: source = create_flat_correct_pipeline(params, graph) else: source = pm.get_task('read') set_node_props(source, params) setup_read_task(source, params.projections, params) return source
def create_sinogram_pipeline(args, graph): """Create sinogram generating pipeline based on arguments from *args*.""" pm = Ufo.PluginManager() sinos = pm.get_task('transpose-projections') if args.number: region = (args.start, args.start + args.number, args.step) num_projections = len(range(*region)) else: num_projections = len(get_filenames(args.projections)) sinos.props.number = num_projections if args.darks and args.flats: start = create_flat_correct_pipeline(args, graph) else: start = pm.get_task('read') start.props.path = args.projections set_node_props(start, args) graph.connect_nodes(start, sinos) return sinos
def get_file_reader(params): reader = pm.get_task('read') set_node_props(reader, params) return reader
def create_flat_correct_pipeline(args, graph): """ Create flat field correction pipeline. All the settings are provided in *args*. *graph* is used for making the connections. Returns the flat field correction task which can be used for further pipelining. """ pm = Ufo.PluginManager() if args.projections is None or args.flats is None or args.darks is None: raise RuntimeError( "You must specify --projections, --flats and --darks.") def get_task(name, **kwargs): """Get task *name* with properties *kwargs*.""" task = pm.get_task(name) task.set_properties(**kwargs) return task reader = get_task('read') dark_reader = get_task('read') flat_before_reader = get_task('read') ffc = get_task('flat-field-correct', dark_scale=args.dark_scale, absorption_correct=args.absorptivity, fix_nan_and_inf=args.fix_nan_and_inf) mode = args.reduction_mode.lower() roi_args = make_subargs(args, ['y', 'height', 'y_step']) set_node_props(reader, args) set_node_props(dark_reader, roi_args) set_node_props(flat_before_reader, roi_args) for r, path in ((reader, args.projections), (dark_reader, args.darks), (flat_before_reader, args.flats)): setup_read_task(r, path, args) LOG.debug( "Doing flat field correction using reduction mode `{}'".format(mode)) if args.flats2: flat_after_reader = get_task('read') setup_read_task(flat_after_reader, args.flats2, args) set_node_props(flat_after_reader, roi_args) num_files = len(get_filenames(args.projections)) can_read = len(range(args.start, num_files, args.step)) number = args.number if args.number else num_files num_read = min(can_read, number) flat_interpolate = get_task('interpolate', number=num_read) if args.resize: LOG.debug("Resize input data by factor of {}".format(args.resize)) proj_bin = get_task('bin', size=args.resize) dark_bin = get_task('bin', size=args.resize) flat_bin = get_task('bin', size=args.resize) graph.connect_nodes(reader, proj_bin) graph.connect_nodes(dark_reader, dark_bin) graph.connect_nodes(flat_before_reader, flat_bin) reader, dark_reader, flat_before_reader = proj_bin, dark_bin, flat_bin if args.flats2: flat_bin = get_task('bin', size=args.resize) graph.connect_nodes(flat_after_reader, flat_bin) flat_after_reader = flat_bin if mode == 'median': dark_stack = get_task('stack', number=len(get_filenames(args.darks))) dark_reduced = get_task('flatten', mode='median') flat_before_stack = get_task('stack', number=len(get_filenames(args.flats))) flat_before_reduced = get_task('flatten', mode='median') graph.connect_nodes(dark_reader, dark_stack) graph.connect_nodes(dark_stack, dark_reduced) graph.connect_nodes(flat_before_reader, flat_before_stack) graph.connect_nodes(flat_before_stack, flat_before_reduced) if args.flats2: flat_after_stack = get_task('stack', number=len(get_filenames(args.flats2))) flat_after_reduced = get_task('flatten', mode='median') graph.connect_nodes(flat_after_reader, flat_after_stack) graph.connect_nodes(flat_after_stack, flat_after_reduced) elif mode == 'average': dark_reduced = get_task('average') flat_before_reduced = get_task('average') graph.connect_nodes(dark_reader, dark_reduced) graph.connect_nodes(flat_before_reader, flat_before_reduced) if args.flats2: flat_after_reduced = get_task('average') graph.connect_nodes(flat_after_reader, flat_after_reduced) else: raise ValueError('Invalid reduction mode') graph.connect_nodes_full(reader, ffc, 0) graph.connect_nodes_full(dark_reduced, ffc, 1) if args.flats2: graph.connect_nodes_full(flat_before_reduced, flat_interpolate, 0) graph.connect_nodes_full(flat_after_reduced, flat_interpolate, 1) graph.connect_nodes_full(flat_interpolate, ffc, 2) else: graph.connect_nodes_full(flat_before_reduced, ffc, 2) return ffc
def create_flat_correct_pipeline(args, graph): """ Create flat field correction pipeline. All the settings are provided in *args*. *graph* is used for making the connections. Returns the flat field correction task which can be used for further pipelining. """ pm = Ufo.PluginManager() if args.projections is None or args.flats is None or args.darks is None: raise RuntimeError("You must specify --projections, --flats and --darks.") def get_task(name, **kwargs): """Get task *name* with properties *kwargs*.""" task = pm.get_task(name) task.set_properties(**kwargs) return task reader = get_task('read') dark_reader = get_task('read') flat_before_reader = get_task('read') ffc = get_task('flat-field-correct', dark_scale=args.dark_scale, absorption_correct=args.absorptivity, fix_nan_and_inf=args.fix_nan_and_inf) mode = args.reduction_mode.lower() roi_args = make_subargs(args, ['y', 'height', 'y_step']) set_node_props(reader, args) set_node_props(dark_reader, roi_args) set_node_props(flat_before_reader, roi_args) for r, path in ((reader, args.projections), (dark_reader, args.darks), (flat_before_reader, args.flats)): setup_read_task(r, path, args) LOG.debug("Doing flat field correction using reduction mode `{}'".format(mode)) if args.flats2: flat_after_reader = get_task('read') setup_read_task(flat_after_reader, args.flats2, args) set_node_props(flat_after_reader, roi_args) num_files = len(get_filenames(args.projections)) can_read = len(range(args.start, num_files, args.step)) number = args.number if args.number else num_files num_read = min(can_read, number) flat_interpolate = get_task('interpolate', number=num_read) if args.resize: LOG.debug("Resize input data by factor of {}".format(args.resize)) proj_bin = get_task('bin', size=args.resize) dark_bin = get_task('bin', size=args.resize) flat_bin = get_task('bin', size=args.resize) graph.connect_nodes(reader, proj_bin) graph.connect_nodes(dark_reader, dark_bin) graph.connect_nodes(flat_before_reader, flat_bin) reader, dark_reader, flat_before_reader = proj_bin, dark_bin, flat_bin if args.flats2: flat_bin = get_task('bin', size=args.resize) graph.connect_nodes(flat_after_reader, flat_bin) flat_after_reader = flat_bin if mode == 'median': dark_stack = get_task('stack', number=len(get_filenames(args.darks))) dark_reduced = get_task('flatten', mode='median') flat_before_stack = get_task('stack', number=len(get_filenames(args.flats))) flat_before_reduced = get_task('flatten', mode='median') graph.connect_nodes(dark_reader, dark_stack) graph.connect_nodes(dark_stack, dark_reduced) graph.connect_nodes(flat_before_reader, flat_before_stack) graph.connect_nodes(flat_before_stack, flat_before_reduced) if args.flats2: flat_after_stack = get_task('stack', number=len(get_filenames(args.flats2))) flat_after_reduced = get_task('flatten', mode='median') graph.connect_nodes(flat_after_reader, flat_after_stack) graph.connect_nodes(flat_after_stack, flat_after_reduced) elif mode == 'average': dark_reduced = get_task('average') flat_before_reduced = get_task('average') graph.connect_nodes(dark_reader, dark_reduced) graph.connect_nodes(flat_before_reader, flat_before_reduced) if args.flats2: flat_after_reduced = get_task('average') graph.connect_nodes(flat_after_reader, flat_after_reduced) else: raise ValueError('Invalid reduction mode') graph.connect_nodes_full(reader, ffc, 0) graph.connect_nodes_full(dark_reduced, ffc, 1) if args.flats2: graph.connect_nodes_full(flat_before_reduced, flat_interpolate, 0) graph.connect_nodes_full(flat_after_reduced, flat_interpolate, 1) graph.connect_nodes_full(flat_interpolate, ffc, 2) else: graph.connect_nodes_full(flat_before_reduced, ffc, 2) return ffc
def create_preprocessing_pipeline(args, graph, source=None, processing_node=None, cone_beam_weight=True, make_reader=True): """If *make_reader* is True, create a read task if *source* is None and no dark and flat fields are given. """ import numpy as np if not (args.width and args.height): width, height = determine_shape(args, args.projections) if not width: raise RuntimeError("Could not determine width from the input") if not args.width: args.width = width if not args.height: args.height = height - args.y LOG.debug('Image width x height: %d x %d', args.width, args.height) current = None if source: current = source elif args.darks and args.flats: current = create_flat_correct_pipeline(args, graph, processing_node=processing_node) else: if make_reader: current = get_task('read') set_node_props(current, args) if not args.projections: raise RuntimeError('--projections not set') setup_read_task(current, args.projections, args) if args.absorptivity: absorptivity = get_task('calculate', processing_node=processing_node) absorptivity.props.expression = 'v <= 0 ? 0.0f : -log(v)' if current: graph.connect_nodes(current, absorptivity) current = absorptivity if args.transpose_input: transpose = get_task('transpose') if current: graph.connect_nodes(current, transpose) current = transpose tmp = args.width args.width = args.height args.height = tmp if cone_beam_weight and not np.all(np.isinf(args.source_position_y)): # Cone beam projection weight LOG.debug('Enabling cone beam weighting') weight = get_task('cone-beam-projection-weight', processing_node=processing_node) weight.props.source_distance = (-np.array(args.source_position_y)).tolist() weight.props.detector_distance = args.detector_position_y weight.props.center_position_x = args.center_position_x or [args.width / 2. + (args.width % 2) * 0.5] weight.props.center_position_z = args.center_position_z or [args.height / 2. + (args.height % 2) * 0.5] weight.props.axis_angle_x = args.axis_angle_x if current: graph.connect_nodes(current, weight) current = weight if args.energy is not None and args.propagation_distance is not None: pr_first, pr_last = create_phase_retrieval_pipeline(args, graph, processing_node=processing_node) if current: graph.connect_nodes(current, pr_first) current = pr_last if args.projection_filter != 'none': pf_first, pf_last = create_projection_filtering_pipeline(args, graph, processing_node=processing_node) if current: graph.connect_nodes(current, pf_first) current = pf_last return current
def create_preprocessing_pipeline(args, graph, source=None, processing_node=None, cone_beam_weight=True, make_reader=True): """If *make_reader* is True, create a read task if *source* is None and no dark and flat fields are given. """ import numpy as np if not (args.width and args.height): width, height = determine_shape(args, args.projections) if not width: raise RuntimeError("Could not determine width from the input") if not args.width: args.width = width if not args.height: args.height = height - args.y LOG.debug('Image width x height: %d x %d', args.width, args.height) current = None if source: current = source elif args.darks and args.flats: current = create_flat_correct_pipeline(args, graph, processing_node=processing_node) else: if make_reader: current = get_task('read') set_node_props(current, args) if not args.projections: raise RuntimeError('--projections not set') setup_read_task(current, args.projections, args) if args.absorptivity: absorptivity = get_task('calculate', processing_node=processing_node) absorptivity.props.expression = 'v <= 0 ? 0.0f : -log(v)' if current: graph.connect_nodes(current, absorptivity) current = absorptivity if args.transpose_input: transpose = get_task('transpose') if current: graph.connect_nodes(current, transpose) current = transpose tmp = args.width args.width = args.height args.height = tmp if cone_beam_weight and not np.all(np.isinf(args.source_position_y)): # Cone beam projection weight LOG.debug('Enabling cone beam weighting') weight = get_task('cone-beam-projection-weight', processing_node=processing_node) weight.props.source_distance = ( -np.array(args.source_position_y)).tolist() weight.props.detector_distance = args.detector_position_y weight.props.center_position_x = args.center_position_x or [ args.width / 2. + (args.width % 2) * 0.5 ] weight.props.center_position_z = args.center_position_z or [ args.height / 2. + (args.height % 2) * 0.5 ] weight.props.axis_angle_x = args.axis_angle_x if current: graph.connect_nodes(current, weight) current = weight if args.energy is not None and args.propagation_distance is not None: pr_first, pr_last = create_phase_retrieval_pipeline( args, graph, processing_node=processing_node) if current: graph.connect_nodes(current, pr_first) current = pr_last if args.projection_filter != 'none': pf_first, pf_last = create_projection_filtering_pipeline( args, graph, processing_node=processing_node) if current: graph.connect_nodes(current, pf_first) current = pf_last return current