help='Batch size')
parser.add_argument('-n_best', type=int, default=1,
                    help="""If verbose is set, will output the n_best decoded sentences""")
parser.add_argument('-no_cuda', action='store_true')
opt = parser.parse_args()
opt.cuda = not opt.no_cuda

# Prepare DataLoader
data = torch.load(opt.src)
data['settings'].cuda = opt.cuda

# Create Translator Model
translator = Summarizer(opt)

# Create Tokenizer
tokenizer = FullTokenizer(opt.vocab)


@app.route('/', methods=['POST'])
def summarization():
    json_data = request.get_json()

    data_loader = preprocess(json_data)
    summaries = summarize(data_loader)
    summaries = remove_symbol(summaries)

    return jsonify({
        'summaries': summaries,
    })