Пример #1
0
def main(argv):
    if len(argv) < 2:
        usage()

    # Fetch data
    texts, tags = [], []
    with open(sys.argv[1], 'rb') as f:
        reader = csv.DictReader(
            f,
            fieldnames=["title", "brand", "description", "categories", "tags"])
        count = 0
        for row in reader:
            count += 1
            text, tag_set = row['title'], row['tags'].split(' ')[:-1]
            texts.append(text)
            tags.append(tag_set)
            if count >= MAX_TEXTS:
                break
    print('Processed %s texts.' % len(texts))

    # Tokenize texts
    tokenizer = WordTokenizer()
    tokenizer.load()
    data = tokenizer.tokenize(texts)

    # Get labels from NER
    ner = ProductNER()
    labels = ner.get_labels(tags)

    # Compile NER network and train
    ner.compile(tokenizer)
    ner.train(data, labels)
Пример #2
0
def main(argv):
    if len(argv) < 2:
        usage()

    # Fetch data
    texts, categories = [], []
    with open(sys.argv[1], 'rb') as f:
        reader = csv.DictReader(
            f, fieldnames=["title", "brand", "description", "categories"])
        count = 0
        for row in reader:
            count += 1
            text, category = row['title'] + ' ' + row['description'], row[
                'categories'].split(' / ')[0]
            texts.append(text)
            categories.append(category)
            if count >= MAX_TEXTS:
                break
    print('Processed %s texts.' % len(texts))

    # Tokenize texts
    tokenizer = WordTokenizer()
    tokenizer.load()
    data = tokenizer.tokenize(texts)

    # Get labels from classifier
    classifier = ProductClassifier()
    labels = classifier.get_labels(categories)

    # Compile classifier network and train
    classifier.compile(tokenizer)
    classifier.train(data, labels)
Пример #3
0
def main(argv):
    if len(argv) < 3:
        usage()
    model_dir = sys.argv[1]
    data_file = sys.argv[2]

    # Load tokenizer
    tokenizer = WordTokenizer()
    tokenizer.load(os.path.join(model_dir, 'tokenizer'))

    # Load classifier
    classifier = ProductClassifier()
    classifier.load(os.path.join(model_dir, 'classifier'))

    # Load named entity recognizer
    ner = ProductNER()
    ner.load(os.path.join(model_dir, 'ner'))

    with open(data_file, 'rb') as f:
        reader = csv.DictReader(f)
        outfile = open(
            '.'.join(data_file.split('.')[:-1] + ['processed', 'csv']), 'wb')
        writer = csv.DictWriter(outfile,
                                fieldnames=reader.fieldnames +
                                ['category', 'brand'])
        writer.writeheader()
        count = 0
        for row in reader:
            count += 1
            processed_row = process(row, tokenizer, classifier, ner)
            print(processed_row)
            writer.writerow(processed_row)
Пример #4
0
def load_models(model_dir):
    # Load tokenizer
    tokenizer = WordTokenizer()
    tokenizer.load(os.path.join(model_dir, 'tokenizer'))

    # Load classifier
    classifier = ProductClassifier()
    classifier.load(os.path.join(model_dir, 'classifier'))

    # Load named entity recognizer
    ner = ProductNER()
    ner.load(os.path.join(model_dir, 'ner'))

    return tokenizer, classifier, ner
    def poetic_preprocessing(self, text, remove_tek=False, tek_string=None):
        '''This function is only required when dealing with poetic corpora. Make sure to use this function along with the compulsory preprocessing to have decently accurate results with poetic corpora'''
        text = re.sub(r'।', '.', text)
        text = re.sub(' ।।[૧૨૩૪૫૬૭૮૯૦]।।', '.', text)
        if remove_tek:
            text = self.remove_tek(text, tek_string)
        tokens = WordTokenizer(text, keep_punctuations=False)
        # Remove poetic words
        for i in range(len(tokens)):
            try:
                if tokens[i] in [
                        'જી', 'રે', 'હો', 'હોજી', 'લોલ​', 'હે', 'હેજી', '...',
                        'સંતો'
                ]:
                    del (tokens[i])
            except:
                pass

        for i in range(len(tokens)):
            # Rule 1
            if tokens[i].endswith('જી'):
                tokens[i] = tokens[i].strip('જી')
            # Rule 2
            if tokens[i].endswith('ૈ'):
                tokens[i] = tokens[i].strip('ૈ') + 'ે'
            # Rule 3
            index = tokens[i].find('ર')
            if tokens[i][index - 1] == 'િ' and index != len(tokens[i]) - 1:
                tokens[i] = re.sub('િર', 'ૃ', tokens[i])

        return ' '.join(tokens)
class TfIdfEvaluator(SentencesEvaluator):
    def __init__(self, language_params):
        super(TfIdfEvaluator, self).__init__(language_params, "TF-IDF Evaluator")
        self.tokenizer = WordTokenizer(self.language_params)
        self.tf_idf = TfidfVectorizer(tokenizer=self.tokenizer.tokenize)

    def train(self, training_set):
        self.tf_idf.fit(training_set)

    def evaluate(self, sentences):
        words_weights = self.__get_words_weights(sentences)
        sentences_weights = []

        for i, s in enumerate(sentences):
            words = self.tokenizer.tokenize(s)
            weights_sum = sum([words_weights.get(w, 0) for w in words])
            if len(words) > 0:
                sentences_weights.append((i, float(weights_sum)))

        return sorted(sentences_weights, reverse=True)

    def __get_words_weights(self, test_set):
        weights = self.tf_idf.transform([''.join(test_set)]).toarray()[0]
        features = self.tf_idf.get_feature_names()
        f_weights = zip(features, weights)
        return dict(f_weights)

    def encode_list(self, list):
        return [self.__encode_text(a) for a in list]

    def __encode_text(self, text):
        return text.encode(sys.stdout.encoding, errors='replace')
Пример #7
0
def main(argv):
    if len(argv) < 2:
        usage()

    # Fetch data
    texts, categories = [], []
    with open(sys.argv[1], 'rb') as f:
        reader = csv.DictReader(
            f, fieldnames=["title", "brand", "description", "categories"])
        count = 0
        for row in reader:
            count += 1
            # TODO change here what we train on, and what categories are used
            text, category = row['title'], row['categories'].split(' / ')[0]
            texts.append(text)
            categories.append(category)
            if count >= MAX_TEXTS:
                break
    print(('Processed %s texts.' % len(texts)))

    tmpx, tmpy = [], []
    c = Counter(categories)
    for x, y in zip(texts, categories):
        if c[y] > 200:
            tmpx.append(x)
            tmpy.append(y)

    texts = tmpx
    categories = tmpy

    print(Counter(tmpy))

    # Tokenize texts
    tokenizer = WordTokenizer()
    tokenizer.load()
    data = tokenizer.tokenize(texts)

    # Get labels from classifier
    classifier = ProductClassifier()
    labels = classifier.get_labels(categories)

    # Compile classifier network and train
    classifier.compile(tokenizer)
    classifier.train(data, labels)
Пример #8
0
def main(argv):
    if len(argv) < 2:
        usage()

    # Fetch data
    texts, categories = [], []
    with open(sys.argv[1], encoding='ISO8859') as f:
        reader = csv.DictReader(f, fieldnames=["title","brand","description","categories"])
        count = 0
        for row in reader:
            count += 1
            text, category = row['title']+' '+row['description'], row['categories'].split(' / ')[0]
            texts.append(text)
            categories.append(category)
            if count >= MAX_TEXTS:
                break
    print(('Processed %s texts.' % len(texts)))

    # Tokenize texts
    tokenizer = WordTokenizer()
    tokenizer.train(texts)
Пример #9
0
import sys, os, csv
import numpy as np
from operator import itemgetter
from tokenizer import WordTokenizer
from classifier import ProductClassifier
model_dir = './models'

tokenizer = WordTokenizer()
tokenizer.load(os.path.join(model_dir, 'tokenizer'))

# Load classifier
classifier = ProductClassifier()
classifier.load(os.path.join(model_dir, 'classifier'))

data = tokenizer.tokenize(["Cambridge wall calender"])
classScores = classifier.classify(data)[0]
print(classScores)
bestValIdx = np.argmax(classScores.values())
bestVal = classScores.values()[bestValIdx]
bestClass = list(classScores)[bestValIdx]
print(bestVal, bestClass)
Пример #10
0
        # update vocab
        vocab = vocab.union(tokenized_text)
        # add to lists
        all_tokenized_text.append(tokenized_text)
        all_labels_a.append(labels_a)
        all_labels_o.append(labels_o)
    # return
    return vocab, all_tokenized_text, all_labels_a, all_labels_o
# load data and unpdate vocab
vocab, train_text_tokens, train_labels_a, train_labels_o = load_data(train_data_file)
_, test_text_tokens, test_labels_a, test_labels_o = load_data(test_data_file)
vocab = list(vocab.union(['[UNK]', '[PAD]']))

# create tokenizer and model
print("Create Tokenizer and Model...")
tokenizer = WordTokenizer(vocab, do_lower_case=do_lower_case)
model = CMLA(50, 3, len(tokenizer), embedding_dim, 3, 20, 2, pad_id=tokenizer.pad_token_id)
# load pretrained embeddings
if gensim_embeddings_file is not None:
    print("Loading Pretrained Embeddings...")
    vocab = tokenizer.vocab
    if "german_deepset.bin" in gensim_embeddings_file:
        vocab = [("b'" + t + "'") for t in vocab]   # match tokens in german_deepset embeddings
    n_loaded = model.load_gensim_embeddings(gensim_embeddings_file, vocab, limit=100_000, binary=True)
    print("Loaded %i/%i vectors from pretrained embedding." % (n_loaded, len(tokenizer)))
# move model to device
model.to(device)

# optimizer and criterium
print("Create Optimizer and Criterium...")
optim = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
Пример #11
0
def main(cli_args):
    # Read from config file and make args
    with open("./tasks/korquad/config.json", "r") as f:
        args = AttrDict(json.load(f))
    args.seed = cli_args.seed
    args.tokenizer = cli_args.tokenizer
    args.output_dir = args.output_dir.format(args.tokenizer)
    args.resource_dir = cli_args.resource_dir
    args.data_dir = cli_args.data_dir
    logger.info(f"Training/evaluation parameters {args}")

    if args.doc_stride >= args.max_seq_length - args.max_query_length:
        logger.warning(
            "WARNING - You've set a doc stride which may be superior to the document length in some "
            "examples. This could result in errors when building features from the examples. Please reduce the doc "
            "stride or increase the maximum length to ensure the features are correctly built."
        )

    init_logger()
    set_seed(args.seed)

    logging.getLogger("transformers.data.metrics.squad_metrics").setLevel(
        logging.WARN)  # Reduce model loading logs

    # custom tokenizers
    tokenizer_dir = os.path.join(args.resource_dir, args.tokenizer)
    logger.info(f"get vocab and tokenizer from {tokenizer_dir}")
    if args.tokenizer.startswith("mecab-"):
        custom_tokenizer = MeCabTokenizer(
            os.path.join(tokenizer_dir, "tok.json"))
    elif args.tokenizer.startswith("sp-"):
        custom_tokenizer = SentencePieceTokenizer(
            os.path.join(tokenizer_dir, "tok.model"))
    elif args.tokenizer.startswith("mecab_sp-"):
        mecab = MeCabTokenizer(os.path.join(tokenizer_dir, "tok.json"))
        sp = SentencePieceTokenizer(os.path.join(tokenizer_dir, "tok.model"))
        custom_tokenizer = MeCabSentencePieceTokenizer(mecab, sp)
    elif args.tokenizer.startswith("char-"):
        custom_tokenizer = CharTokenizer()
    elif args.tokenizer.startswith("word-"):
        custom_tokenizer = WordTokenizer()
    elif args.tokenizer.startswith("jamo-"):
        custom_tokenizer = JamoTokenizer()
    else:
        raise ValueError("Wrong tokenizer name.")

    # Load pretrained model and tokenizer
    config = BertConfig.from_json_file(
        os.path.join(args.resource_dir, args.tokenizer,
                     args.bert_config_file_name))
    tokenizer = BertTokenizer(os.path.join(tokenizer_dir, "tok.vocab"),
                              custom_tokenizer)
    model = KorQuADModel(config)
    model.bert = load_pretrained_bert(
        config,
        os.path.join(args.resource_dir, args.tokenizer,
                     args.pretrained_bert_file_name))
    # GPU or CPU
    args.device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(args.device)

    logger.info(f"Training/evaluation parameters {args}")

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                tokenizer,
                                                evaluate=False,
                                                output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(f" global_step = {global_step}, average loss = {tr_loss}")

    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval:
        checkpoints = list(
            os.path.dirname(c) for c in sorted(
                glob.glob(args.output_dir + "/**/" + "pytorch_model.bin",
                          recursive=True)))
        if not args.eval_all_checkpoints:
            checkpoints = checkpoints[-1:]
        else:
            logging.getLogger("transformers.configuration_utils").setLevel(
                logging.WARN)  # Reduce model loading logs
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce model loading logs

        logger.info(f"Evaluate the following checkpoints: {checkpoints}")

        for checkpoint in checkpoints:
            # Reload the model
            global_step = checkpoint.split("-")[-1]
            model = KorQuADModel.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=global_step)
            result = dict((k + (f"_{global_step}" if global_step else ""), v)
                          for k, v in result.items())
            results.update(result)

        output_dir = os.path.join(args.output_dir, "eval")
        with open(os.path.join(output_dir, "eval_result.txt"),
                  "w",
                  encoding="utf-8") as f:
            official_eval_results = eval_during_train(args)
            for key in sorted(official_eval_results.keys()):
                logger.info(f"  {key} = {official_eval_results[key]}")
                f.write(f" {key} = {official_eval_results[key]}\n")
Пример #12
0
import torch
# import model and tokenizer
from model import CMLA
from tokenizer import WordTokenizer

# model directory
model_dir = "results/SemEval2015"
# sample text
text = "The ambience is nice for conversation."
text = "The staff was really nice but the food was disgusting!"
# text = "In the summer months, the back garden area is really nice."
# text = "Das Essen war sehr lecker."

# load tokenizer and model
print("Loading Tokenizer and Model...")
tokenizer = WordTokenizer(os.path.join(model_dir, 'vocab.txt'))
model = CMLA.load(model_dir)
model.eval()
# tokenize text
tokens = tokenizer.tokenize(text)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
# convert to tensor and pass through model
token_ids = torch.LongTensor([token_ids])
aspect_logits, opinion_logits = model.forward(token_ids)
# get predictions from logits
aspect_predicts = aspect_logits[0, :].max(dim=-1)[1]
opinion_predicts = opinion_logits[0, :].max(dim=-1)[1]

print(tokens)
print(aspect_predicts)
print(opinion_predicts)
    def evaluate(self, sentences):
        tokenizer = WordTokenizer(self.language_params)
        tokenized_sents = [tokenizer.tokenize(s) for s in sentences]

        return self._get_lengths(tokenized_sents)
Пример #14
0
 def pos_tag(self, sentence):
     stemmer = Stemmer()
     sent = stemmer.stem(sentence)
     sent = WordTokenizer(sent)
     tags = self.tag(sent)
     return tags
Пример #15
0
class EbooksQuotes(object):

    def __init__(
        self, keywords=None, probability=0.001,
        minimum_quote_size=8, maximum_quote_size=140,
        wrap_at=30, truncate_chance=1.0/4):
        keywords = keywords or []
        self.keywords = [x.lower() for x in keywords]
        self.probability = probability
        self.minimum_quote_size = minimum_quote_size
        self.maximum_quote_size = maximum_quote_size
        self.wrap_at = wrap_at
        self.truncate_chance = truncate_chance
        self._blobs = {}

    COMMON_STARTING_WORDS= [
        "I","How","The","You","What","A","Why",
        "And","This","It","Do","In","We","Learn","If",
        "But","Don't","Your","When","Discover",
        "Are","Get","There","My","Have","To","That",
        "As","Make","Let","One"]

    # Quotes that end in certain parts of speech get higher ratings.
    PART_OF_SPEECH_SCORE_MULTIPLIERS = {
        "NNP": 3.2,
        "NNS": 2.7,
        "NN": 2.5,
        "VGD": 1.9,
        "VBG": 1.9,
        "PRP": 1.8,
        "VB": 1.6,
        "JJR": 1.3,
        "CD": 1.2,
        "RB": 1.2,
        "VBP": 1}

    PUNCTUATION_AND_COMMON_STARTING_WORD = re.compile('[.!?"] (%s) ' % (
            "|".join(COMMON_STARTING_WORDS)))

    SEVERAL_CAPITALIZED_WORDS = re.compile("(([A-Z][a-zA-Z]+,? ){2,}[A-Z][a-zA-Z]+[!?.]?)")

    ONE_LETTER = re.compile("[A-Za-z]")
    ONE_WORD = re.compile("\W+")

    data = ['" ', "' ", "--", '\)', ']', ',', '\.', '-']
    BEGINNING_CRUFT = re.compile("^(%s)" % "|".join(data))

    TOKENIZER = WordTokenizer()

    @classmethod
    def rate(cls, s, base_score=1.0, frequencies=None, obscurity_cutoff=None):
        "Rate a string's suitability as an _ebook quote."
        s = s.strip()
        score = float(base_score)
        # print s
        # print " Starting rating: %.2f" % score

        # People like very short or very long quotes.
        # if len(s) < 40:
        #    score *= 2
        if len(s) > 128:
            score *= 2
            # print " Length bonus: %.2f" % score

        blob = TextBlob(s.decode("utf8"))
        try:
            words = blob.words
        except Exception, e:
            # TODO: I'm sick of trying to get TextBlob to parse
            # strings that include things like ". . . ". Just return
            # the current score.
            return score

        if frequencies:
            contains_known_word = False
            contains_obscure_word = False
            for word in words:
                l = word.lower()
                if l in frequencies:
                    contains_known_word = True
                    if frequencies[l] < obscurity_cutoff:
                        contains_obscure_word = True
                if contains_known_word and contains_obscure_word:
                    break

            # A string that contains no words that appear in the
            # frequency list is heavily penalized. It's probably
            # gibberish.
            if not contains_known_word:
                score *= 0.1
                # print " No known word: %.2f" % score

            # A string that contains no obscure words is even more
            # heavily penalized. It's almost certainly boring.
            if not contains_obscure_word:
                score *= 0.01
                # print " No obscure word: %.2f" % score

        if s[0].upper() == s[0]:
            # We like quotes that start with uppercase letters.
            score *= 2.5
            # print " Starts with uppercase letter: %.2f" % score

        # Let's take a look at the first and last words.
        first_word, ignore = blob.tags[0]
        if first_word.capitalize() in cls.COMMON_STARTING_WORDS:
            score *= 2.5
            # print " Starts with common starting word: %.2f" % score

        last_word, last_tag = blob.tags[-1]
        if last_tag in cls.PART_OF_SPEECH_SCORE_MULTIPLIERS:
            score *= cls.PART_OF_SPEECH_SCORE_MULTIPLIERS[last_tag]
            # print " Bonus for part of speech %s: %.2f" % (last_tag, score)

        if last_tag != 'NNP' and last_word[0].upper() == last_word[0]:
            score *= 1.25
            # print " Bonus for ending with a capitalized word: %.2f" % score
        # print "Final score: %.2f" % score
        return score
 def __text_to_vector(self, sentence):
     tokenizer = WordTokenizer(self.language_params)
     words = tokenizer.tokenize(sentence)
     return Counter(words)
 def __init__(self, language_params):
     super(TfIdfEvaluator, self).__init__(language_params, "TF-IDF Evaluator")
     self.tokenizer = WordTokenizer(self.language_params)
     self.tf_idf = TfidfVectorizer(tokenizer=self.tokenizer.tokenize)
Пример #18
0
import os, time
from multiprocessing import Pool, Manager

import numpy as np
from tqdm import tqdm

import torch
from torch.utils.data import Dataset, DataLoader

from tokenizer import WordTokenizer

tokenizer = WordTokenizer('models/tokenizer/tokenizer.json')


class TextDataset(Dataset):
    def __init__(self, txt_file, block_len=64, mlm_percentage=0.15):
        with open(txt_file, 'r', encoding='utf-8') as f:
            textlines = f.readlines()
        self.examples = []
        self.block_len = block_len
        for line in textlines:
            new_tokens = tokenizer.encode(line)
            if len(new_tokens) < self.block_len:
                new_tokens = [0,] * ((64 - len(new_tokens)) // 2) + \
                    new_tokens + [0,] * ((64 - len(new_tokens)) // 2 + 1)
            self.examples.append(new_tokens)
        self.mlm_percentage = mlm_percentage

    def __len__(self):
        return len(self.examples)
Пример #19
0
def main(args):
    # config
    config = TrainConfig(**args)
    config = config._replace(
        log_dir=config.log_dir.format(config.tokenizer),
        summary_dir=config.summary_dir.format(config.tokenizer),
        # checkpoint_dir=config.checkpoint_dir.format(config.tokenizer),
    )
    set_seed(config.seed)

    os.makedirs(config.log_dir, exist_ok=True)
    os.makedirs(config.summary_dir, exist_ok=True)
    # os.makedirs(config.checkpoint_dir, exist_ok=True)

    # logger
    logger = get_logger(log_path=os.path.join(config.log_dir, "logs.txt"))
    logger.info(config)

    # 기본적인 모듈들 생성 (vocab, tokenizer)
    tokenizer_dir = os.path.join(config.resource_dir, config.tokenizer)
    logger.info(f"get vocab and tokenizer from {tokenizer_dir}")
    vocab = Vocab(os.path.join(tokenizer_dir, "tok.vocab"))
    if config.tokenizer.startswith("mecab-"):
        tokenizer = MeCabTokenizer(os.path.join(tokenizer_dir, "tok.json"))
    elif config.tokenizer.startswith("sp-"):
        tokenizer = SentencePieceTokenizer(
            os.path.join(tokenizer_dir, "tok.model"))
    elif config.tokenizer.startswith("mecab_sp-"):
        mecab = MeCabTokenizer(os.path.join(tokenizer_dir, "tok.json"))
        sp = SentencePieceTokenizer(os.path.join(tokenizer_dir, "tok.model"))
        tokenizer = MeCabSentencePieceTokenizer(mecab, sp)
    elif config.tokenizer.startswith("char-"):
        tokenizer = CharTokenizer()
    elif config.tokenizer.startswith("word-"):
        tokenizer = WordTokenizer()
    elif config.tokenizer.startswith("jamo-"):
        tokenizer = JamoTokenizer()
    else:
        raise ValueError("Wrong tokenizer name.")

    # 모델에 넣을 데이터 준비
    # label-to-index
    label_to_index = {"0": 0, "1": 1}
    # Train
    logger.info(f"read training data from {config.train_path}")
    train_sentence_as, train_sentence_bs, train_labels = load_data(
        config.train_path, label_to_index)
    # Dev
    logger.info(f"read dev data from {config.dev_path}")
    dev_sentence_as, dev_sentence_bs, dev_labels = load_data(
        config.dev_path, label_to_index)
    # Test
    logger.info(f"read test data from {config.test_path}")
    test_sentence_as, test_sentence_bs, test_labels = load_data(
        config.test_path, label_to_index)

    # 데이터로 dataloader 만들기
    # Train
    logger.info("create data loader using training data")
    train_dataset = PAWSDataset(train_sentence_as, train_sentence_bs,
                                train_labels, vocab, tokenizer,
                                config.max_sequence_length)
    train_random_sampler = RandomSampler(train_dataset)
    train_data_loader = DataLoader(train_dataset,
                                   sampler=train_random_sampler,
                                   batch_size=config.batch_size)
    # Dev
    logger.info("create data loader using dev data")
    dev_dataset = PAWSDataset(dev_sentence_as, dev_sentence_bs, dev_labels,
                              vocab, tokenizer, config.max_sequence_length)
    dev_data_loader = DataLoader(dev_dataset, batch_size=1024)
    # Test
    logger.info("create data loader using test data")
    test_dataset = PAWSDataset(test_sentence_as, test_sentence_bs, test_labels,
                               vocab, tokenizer, config.max_sequence_length)
    test_data_loader = DataLoader(test_dataset, batch_size=1024)

    # Summary Writer 준비
    summary_writer = SummaryWriter(log_dir=config.summary_dir)

    # 모델을 준비하는 코드
    logger.info("initialize model and convert bert pretrained weight")
    bert_config = BertConfig.from_json_file(
        os.path.join(config.resource_dir, config.tokenizer,
                     config.bert_config_file_name))
    model = PAWSModel(bert_config, config.dropout_prob)
    model.bert = load_pretrained_bert(
        bert_config,
        os.path.join(config.resource_dir, config.tokenizer,
                     config.pretrained_bert_file_name))

    trainer = Trainer(config, model, train_data_loader, dev_data_loader,
                      test_data_loader, logger, summary_writer)
    trainer.train()
def train(args):

    train_data_path = args["--train-src"]
    val_data_path = args["--val-src"]
    glove_file = args["--glove-file"]

    print(
        "Reading and parsing in CONLL 2003 data...\nTrain data from {}\nValidation data from {}"
        .format(train_data_path, val_data_path))
    train_sents, train_tags = conll_parse(train_data_path)
    val_sents, val_tags = conll_parse(val_data_path)

    print("Initializing tokenizers for words, NER tags and word cases...\n")
    tok_x = WordTokenizer(from_pre=True)
    train_sents_p = tok_x.initialize(train_sents, glove_file)
    print("Vocab size for tok_x: {}".format(tok_x.vocab_size))
    tok_c = CaseTokenizer()
    print("Vocab size for tok_c: {}".format(tok_c.vocab_size))
    tok_y = WordTokenizer(oov_tok=None)
    _ = tok_y.initialize(train_tags)
    print("Vocab size for tok_y: {}\n".format(tok_y.vocab_size))

    train_sents_i = tok_x.text_to_indices(train_sents_p)
    train_cases_i = tok_c.text_to_indices(train_sents)
    train_tags_i = tok_y.text_to_indices(train_tags)

    val_sents_p = tok_x.pre_process(val_sents)
    val_sents_i = tok_x.text_to_indices(val_sents_p)
    val_cases_i = tok_c.text_to_indices(val_sents)
    val_tags_i = tok_y.text_to_indices(val_tags)

    train_data = [train_sents_i, train_cases_i, train_tags_i]
    val_data = [val_sents_i, val_cases_i, val_tags_i]

    print("Initializing NER model and beginning training...")
    ner_tagger = NERTagger(tok_x, tok_c, tok_y)
    ner_tagger.build()
    ner_tagger.train(train_data, val_data)

    if args["--model-tgt"] and args["--tok-tgt"]:
        ner_tagger.save(aux_file=args["--tok-tgt"],
                        model_file=args["--model-tgt"])
    else:
        ner_tagger.save()