def converted(self) -> Tokenizer:
        tokenizer_info_str = "#version:"
        token_suffix = "</w>"

        vocab = self.original_tokenizer.encoder
        merges = list(self.original_tokenizer.bpe_ranks.keys())
        if tokenizer_info_str in merges[0][0]:
            merges = merges[1:]

        tokenizer = Tokenizer(
            BPE(
                vocab,
                merges,
                dropout=None,
                unk_token=self.original_tokenizer.unk_token,
                end_of_word_suffix=token_suffix,
            ))

        tokenizer.normalizer = normalizers.BertNormalizer(lowercase=False,
                                                          strip_accents=False)
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
        tokenizer.decoder = decoders.BPEDecoder(suffix=token_suffix)
        tokenizer.post_processor = processors.BertProcessing(
            sep=(self.original_tokenizer.sep_token,
                 self.original_tokenizer.sep_token_id),
            cls=(self.original_tokenizer.cls_token,
                 self.original_tokenizer.cls_token_id),
        )

        return tokenizer
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.encoder
        merges = list(self.original_tokenizer.bpe_ranks.keys())
        unk_token = self.original_tokenizer.unk_token

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                unk_token=str(unk_token),
                end_of_word_suffix="</w>",
                fuse_unk=False,
            ))

        if tokenizer.token_to_id(str(unk_token)) is not None:
            tokenizer.add_special_tokens([str(unk_token)])

        tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True)
        tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
        tokenizer.decoder = decoders.BPEDecoder(suffix="</w>")

        return tokenizer