Пример #1
0
    def test_normalize(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
        tokenizer.normalizer = Lowercase()

        output = tokenizer.normalize("My Name Is John")
        assert output == "my name is john"
Пример #2
0
    def test_encode(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])

        # Can encode single sequence
        output = tokenizer.encode("my name is john")
        assert output.tokens == ["my", "name", "is", "john"]
        assert type(output.ids) == list
        assert type(output.type_ids) == list
        assert type(output.offsets) == list
        with pytest.warns(DeprecationWarning):
            assert type(output.words) == list
        assert type(output.word_ids) == list
        assert type(output.special_tokens_mask) == list
        assert type(output.attention_mask) == list
        assert type(output.overflowing) == list

        # Can encode a pair of sequences
        output = tokenizer.encode("my name is john", "pair")
        assert output.tokens == ["my", "name", "is", "john", "pair"]
        assert isinstance(pickle.loads(pickle.dumps(output)), Encoding)

        # Can encode a single pre-tokenized sequence
        output = tokenizer.encode(["my", "name", "is", "john"], is_pretokenized=True)
        assert output.tokens == ["my", "name", "is", "john"]

        # Can encode a batch with both a single sequence and a pair of sequences
        output = tokenizer.encode_batch(["my name is john", ("my name is john", "pair")])
        assert len(output) == 2
Пример #3
0
    def test_add_tokens(self):
        tokenizer = Tokenizer(BPE())
        added = tokenizer.add_tokens(["my", "name", "is", "john"])
        assert added == 4

        added = tokenizer.add_tokens([AddedToken("the"), AddedToken("quick", rstrip=True)])
        assert added == 2
Пример #4
0
    def test_processing(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_special_tokens(["<s>", "</s>"])
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
        tokenizer.post_processor = RobertaProcessing(("</s>", 1), ("<s>", 0))

        output = tokenizer.encode("my name", "pair")
        assert output.tokens == ["<s>", "my", "name", "</s>", "</s>", "pair", "</s>"]
        assert output.ids == [0, 2, 3, 1, 1, 6, 1]
Пример #5
0
    def test_processing(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_special_tokens(["[SEP]", "[CLS]"])
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
        tokenizer.post_processor = BertProcessing(("[SEP]", 0), ("[CLS]", 1))

        output = tokenizer.encode("my name", "pair")
        assert output.tokens == ["[CLS]", "my", "name", "[SEP]", "pair", "[SEP]"]
        assert output.ids == [1, 2, 3, 0, 6, 0]
Пример #6
0
    def test_roberta_parity(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_special_tokens(["<s>", "</s>"])
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
        tokenizer.post_processor = RobertaProcessing(("</s>", 1), ("<s>", 0))

        original = tokenizer.encode("my name is john", "pair")
        tokenizer.post_processor = self.get_roberta()
        template = tokenizer.encode("my name is john", "pair")
        assert original.ids == template.ids
Пример #7
0
    def test_decode(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])

        # Can decode single sequences
        output = tokenizer.decode([0, 1, 2, 3])
        assert output == "my name is john"

        # Can decode batch
        output = tokenizer.decode_batch([[0, 1, 2, 3], [4]])
        assert output == ["my name is john", "pair"]
Пример #8
0
    def test_get_vocab_size(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])

        # Can retrieve vocab's size with added tokens
        size = tokenizer.get_vocab_size(with_added_tokens=True)
        assert size == 5

        # Can retrieve vocab's size without added tokens
        size = tokenizer.get_vocab_size(with_added_tokens=False)
        assert size == 0
Пример #9
0
    def test_bert_parity(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_special_tokens(["[SEP]", "[CLS]"])
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
        tokenizer.post_processor = BertProcessing(("[SEP]", 0), ("[CLS]", 1))

        original = tokenizer.encode("my name", "pair")

        tokenizer.post_processor = self.get_bert()
        template = tokenizer.encode("my name", "pair")
        assert original.ids == template.ids
Пример #10
0
    def test_get_vocab(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])

        # Can retrieve vocab with added tokens
        vocab = tokenizer.get_vocab(with_added_tokens=True)
        assert vocab == {"is": 2, "john": 3, "my": 0, "name": 1, "pair": 4}

        # Can retrieve vocab without added tokens
        vocab = tokenizer.get_vocab(with_added_tokens=False)
        assert vocab == {}
Пример #11
0
    def test_add_tokens(self):
        tokenizer = Tokenizer(BPE())
        added = tokenizer.add_tokens(["my", "name", "is", "john"])
        assert added == 4

        tokens = [AddedToken("the"), AddedToken("quick", normalized=False), AddedToken()]
        assert tokens[0].normalized == True
        added = tokenizer.add_tokens(tokens)
        assert added == 2
        assert tokens[0].normalized == True
        assert tokens[1].normalized == False
Пример #12
0
    def test_truncation(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
        tokenizer.enable_truncation(2)

        # Can truncate single sequences
        output = tokenizer.encode("my name is john")
        assert output.tokens == ["my", "name"]

        # Can truncate pair sequences as well
        output = tokenizer.encode("my name is john", "pair")
        assert output.tokens == ["my", "pair"]
Пример #13
0
    def test_post_process(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
        tokenizer.enable_truncation(2)
        tokenizer.enable_padding(length=4)

        encoding = tokenizer.encode("my name is john")
        pair_encoding = tokenizer.encode("pair")

        # Can post process a single encoding
        output = tokenizer.post_process(encoding)
        assert output.tokens == ["my", "name", "[PAD]", "[PAD]"]

        # Can post process a pair of encodings
        output = tokenizer.post_process(encoding, pair_encoding)
        assert output.tokens == ["my", "pair", "[PAD]", "[PAD]"]
Пример #14
0
    def test_padding(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])

        # By default it does nothing when encoding single sequence
        tokenizer.enable_padding()
        output = tokenizer.encode("my name")
        assert output.tokens == ["my", "name"]

        # Can pad to the longest in a batch
        output = tokenizer.encode_batch(["my name", "my name is john"])
        assert all([len(encoding) == 4 for encoding in output])

        # Can pad to the specified max length otherwise
        tokenizer.enable_padding(max_length=4)
        output = tokenizer.encode("my name")
        assert output.tokens == ["my", "name", "[PAD]", "[PAD]"]
        output = tokenizer.encode("my name", "pair")
        assert output.tokens == ["my", "name", "pair", "[PAD]"]
Пример #15
0
    def test_encode(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])

        # Can encode single sequence
        output = tokenizer.encode("my name is john")
        assert output.tokens == ["my", "name", "is", "john"]
        assert type(output.ids) == list
        assert type(output.type_ids) == list
        assert type(output.offsets) == list
        assert type(output.words) == list
        assert type(output.special_tokens_mask) == list
        assert type(output.attention_mask) == list
        assert type(output.overflowing) == list

        # Can encode a pair of sequences
        output = tokenizer.encode("my name is john", "pair")
        assert output.tokens == ["my", "name", "is", "john", "pair"]

        # Can encode a batch with both a single sequence and a pair of sequences
        output = tokenizer.encode_batch(["my name is john", ("my name is john", "pair")])
        assert len(output) == 2
Пример #16
0
def main(args):
    if args.do_train:
        # Initialize a tokenizer
        files = get_smi_files(args.training_files)
        print("Training BPE tokenizer using the following files:{}".format(
            files))
        tokenizer = Tokenizer(models.BPE(unk_token="<unk>"))
        tokenizer.enable_padding(pad_id=args.vocab_size + 2,
                                 pad_token="<pad>",
                                 length=args.pad_len)
        tokenizer.enable_truncation(max_length=args.pad_len,
                                    strategy='only_first')
        tokenizer.normalizer = Sequence([NFKC()])
        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(
            add_prefix_space=False)
        tokenizer.decoder = decoders.ByteLevel()
        tokenizer.post_processor = processors.ByteLevel(trim_offsets=True)
        # Train the tokenizer
        trainer = trainers.BpeTrainer(show_progress=True,
                                      vocab_size=args.vocab_size,
                                      min_frequency=args.min_frequency)
        tokenizer.train(files, trainer=trainer)
        tokenizer.add_tokens(["<start>", "<end>"])
        tokenizer.save(os.path.join('tokenizers', args.tokenizer_name),
                       pretty=True)
        print("Trained vocab size: {}".format(tokenizer.get_vocab_size()))

    if args.do_test:
        # Test the tokenizer
        tokenizer = Tokenizer.from_file(
            os.path.join('tokenizers', args.tokenizer_name))
        print("Testing with SMILES String: {}".format(args.test_string))
        encoding = tokenizer.encode(args.test_string)
        print("Encoded string: {}".format(encoding.tokens))
        print(encoding.ids)
        decoded = tokenizer.decode(encoding.ids)
        print("Decoded string: {}".format(decoded))
Пример #17
0
    def test_truncation(self):
        tokenizer = Tokenizer(BPE())
        tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
        tokenizer.enable_truncation(2)

        # Can truncate single sequences
        output = tokenizer.encode("my name is john")
        assert output.tokens == ["my", "name"]

        # Can truncate pair sequences as well
        output = tokenizer.encode("my name is john", "pair")
        assert output.tokens == ["my", "pair"]

        # Can get the params and give them to enable_truncation
        trunc = tokenizer.truncation
        tokenizer.enable_truncation(**trunc)

        # Left truncation direction
        tokenizer.enable_truncation(2, direction="left")
        output = tokenizer.encode("my name is john")
        assert output.tokens == ["is", "john"]

        output = tokenizer.encode("my name is john", "pair")
        assert output.tokens == ["john", "pair"]